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Abstract: Immune checkpoint blockades prescribed in the neoadjuvant setting are now under active
investigation for many types of tumors, and many have shown early success. The primary tumor
(PT) and tumor-draining lymph node (TDLN) immune factors, along with adequate therapeutic
antibody distributions to the PT and TDLN, are critical for optimal immune activation and anti-
tumor efficacy in neoadjuvant immunotherapy. However, it remains largely unknown how much
of the antibody can be distributed into the PT-TDLN axis at different clinical scenarios. The goal
of the current work is to build a physiologically based pharmacokinetic (PBPK) model framework
capable of characterizing antibody distribution gradients in the PT-TDLN axis across various clinical
and pathophysiological scenarios. The model was calibrated using clinical data from immuno-PET
antibody-imaging studies quantifying antibody pharmacokinetics (PK) in the blood, PTs, and TDLNs.
The effects of metastatic lesion location, tumor-induced compression, and inflammation, as well as
surgery, on antibody concentration gradients in the PT-TDLN axis were characterized. The PBPK
model serves as a valuable tool to predict antibody exposures in various types of tumors, metastases,
and the associated lymph node, supporting effective immunotherapy.

Keywords: therapeutic antibodies; pharmacokinetics; immunotherapy; PBPK; neoadjuvant;
tumor-draining lymph nodes

1. Introduction

The success of antibody immunotherapy in advanced metastatic cancers has inspired
oncologists to assess these therapies in patients with early-stage cancers or in the neoad-
juvant setting [1]. Early results for neoadjuvant immunotherapy are promising. In a
metastatic melanoma study, about 30% of patients showed a significant or complete patho-
logical response after a single neoadjuvant dose of anti-PD-1 antibody pembrolizumab [2].
Significant pathological responses were also observed in non-small-cell lung cancers
(NSCLC) with neoadjuvant nivolumab and ipilimumab combination therapy, owing to
the activated, systemic T-cell immunologic response [3]. The primary tumor (PT) and
tumor-draining lymph node (TDLN) signaling axis has been a focal point for the efficacy of
neoadjuvant immunotherapy [1].

An intact PT–TDLN signaling axis is critical for the efficacy of immunotherapy, as
it may enhance tumor-specific T-cell priming and expansion at either the primary tumor
microenvironment or in the neighboring TDLNs. The concept of “Cancer-Immunity Cycle”
underlines the importance of an intact PT-TDLN signaling axis for systemic antitumor im-
munity [4]. The full activation of antitumor immunity is also highly dependent on adequate
therapeutic antibody exposure into both the primary tumor and TDLNs. Unfortunately,
surgical resections or other pathological conditions may disrupt the tissue anatomical
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structure and impair the effective distribution of therapeutic antibodies into the tumor
lesions and the surrounding TDLNs, leading to a suboptimal effect of immunotherapy.

Moreover, checkpoint blockade immunotherapies reveal organ-specific patterns of
response. The lesions in the lymph nodes tend to be the most responsive site for systemic
activation of tumor-specific T cells [5]. The activation of tumor-specific T cells in the
TDLNs is enhanced by sufficient antibody exposure. However, it remains largely unknown
how much antibody can distribute into the PT–TDLN axis at different anatomical sites
and clinical scenarios. Therefore, an exploration of the processes that affect the antibody
distribution kinetics and the resulting degree of target engagement in the organ-specific
PT–TDLN axis has become critical for understanding the mechanisms contributing to the
efficacy of neoadjuvant immunotherapy.

Physiologically based pharmacokinetic (PBPK) modeling allows for the quantitative
analysis and prediction of drug pharmacokinetics (PK) and tissue distributions
(i.e., concentration vs. time profiles) at any relevant organ. In PBPK models, physio-
logically relevant parameters, such as organ-specific lymph flows and lymphatic networks,
can be implemented to support anatomical characterizations of antibody distribution [6].
PBPK models could define antibody distribution gradients along the organ-specific PT–
TDLN axis. While there are previously reported antibody PBPK models, none to date
have emphasized antibody biodistributions in anatomically distinct tumors and their
TDLNs [7,8]. We have reviewed the lymphatic network and the general framework for
building such a model [6]. The current work provides the first proof-of-concept PBPK
model to characterize antibody distribution gradients from organ-specific tumor to TDLNs.
The PBPK model serves as a valuable tool to predict antibody distribution gradients be-
tween the tumor and TDLN in a spatiotemporal manner, which has substantial implications
for neoadjuvant immunotherapy.

2. Materials and Methods
2.1. The PBPK Model Structure

The proposed PBPK model structure is shown in Figure 1, adapted from our minimal
PBPK model with emphasis on the anatomically distinctive tumors and the associated
TDLNs [6,9]. In the model, all non-tumor tissues were lumped together as one compartment
to account for the antibody distribution in the other parts of the body. Antibody systemic
clearance from the vascular compartment (CLp) is assumed to be the primary nonspecific
elimination pathway for therapeutic antibodies, consistent with previous findings [10].
Moreover, while TDLNs are vascularized by both blood and lymphatic vessels, antibody
delivery to TDLN was only assumed via lymphatic capillaries. Specialized, thickened
endothelial cells in the LN vasculature known as high endothelial venules (HEVs) facilitate
active transport of lymphocytes from the blood into the LN via adhesion receptors; due
to their structure and unique function, it was assumed that direct antibody entry via
convection was negligible (σV,TDLN = 1) [11,12]. The target-mediated antibody accumulation
and elimination were considered in both the tumors and TDLNs. The target-binding process
is assumed to be at a quasi-equilibrium state, where the process of target association and
dissociation were not separately considered. This assumption has been widely validated
in many cases considering that antibody-target binding is usually on a much faster time
scale than those describing target synthesis (ksyn), degradation (kdeg), and internalization
(kint) [13,14]. Furthermore, we are not taking into accounting residualized/metabolized
antibodies that may increase noise signal. Antibody trafficking from the tumors to the
TDLN, determined by the physical distance and lymphatic network, are subject to non-
specific pinocytosis and FcRn salvage in the endothelial cells, while trafficking through
the lymphatic vessels. FcRn expression levels in lymphatic endothelial cells were assumed
to be the same as for blood vascular endothelial cells. A detailed summary of the model
ordinary differential equations is provided in Appendix A.
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compartment is a lumped compartment depicting antibody distribution in non-tumor sites of the 
system (bottom). CLp denotes antibody clearance from the system. Antibody [Ab] engagement with 
its cognate receptor [R] is characterized in both the tumors and lymph nodes. The target [R] turno-
vers (biosynthesis (ksyn) and degradation (kdeg)) are both considered. The endocytosis of antibody–
receptor complexes (kint) is also defined. The trafficking of antibodies from the tumors to the TDLNs 
are subject to nonspecific pinocytosis and FcRn-salvage in the lymphatic endothelial cells (FcRnb1). 
Other symbols are defined in Tables 1 and 2. Figure prepared in Biorender. 
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Antibody human immuno-PET data in the blood, tumors, and TDLN from eleven 

IgG antibodies were applied to calibrate the PBPK model. We applied the WebPlotDig-
itzer tool [15] for digitizing the disposition data of the eleven antibodies across eight im-
muno-PET biodistribution studies. Immuno-PET imaging studies involve the radiolabel-
ing of antibodies for quantitative in vivo tracking of antibody binding in the PT and 
TDLN. The eleven unique immuno-PET antibody:primary tumor pairs included: 89Zr-
fresolimumab (glioblastoma) [16]; 89Zr-bevacizumab (non-small-cell lung cancer; NSCLC) 
[17]; 89Zr-bevacizumab (breast cancer) [18]; 89Zr-bevacizumab (renal cell carcinoma) [19]; 
64Cu-DOTA-trastuzumab (breast cancer) [20]; 89Zr-trastuzumab (esophagogastric cancer) 
[21]; 89Zr-MMOT0530A (pancreatic cancer) [22]; 89Zr-MMOT0530A (ovarian cancer) [22]; 
89Zr-atezolizumab (NSCLC) [23]; 89Zr-atezolizumab (breast cancer) [23]; 89Zr-atezolizumab 
(bladder cancer) [23]. Of note, the therapeutic antibodies used for model calibration ex-
hibit similar distribution behaviors to most immunotherapeutic antibodies and these an-
tibodies are all approved for treating various tumor types. Whenever there is data availa-
ble for calibration from a study, they are presented as the mean +/− standard deviation 
(SD). Curves that are not calibrated with any literature data (i.e., no data points in curve) 
represent what the predicted (simulated) SUV would be at that tissue. For clarity and eas-
ier viewing, the SD error bars are only presented in one direction. 

Figure 1. Schematic of the PBPK model to capture antibody distribution gradients from the organ-
specific primary tumor (PT) to the tumor-draining lymph node (TDLN) (top). The non-tumor tissue
compartment is a lumped compartment depicting antibody distribution in non-tumor sites of the
system (bottom). CLp denotes antibody clearance from the system. Antibody [Ab] engagement
with its cognate receptor [R] is characterized in both the tumors and lymph nodes. The target [R]
turnovers (biosynthesis (ksyn) and degradation (kdeg)) are both considered. The endocytosis of
antibody–receptor complexes (kint) is also defined. The trafficking of antibodies from the tumors to
the TDLNs are subject to nonspecific pinocytosis and FcRn-salvage in the lymphatic endothelial cells
(FcRnb1). Other symbols are defined in Tables 1 and 2. Figure prepared in Biorender.

2.2. Model Calibration and Simulation

Antibody human immuno-PET data in the blood, tumors, and TDLN from eleven IgG
antibodies were applied to calibrate the PBPK model. We applied the WebPlotDigitzer
tool [15] for digitizing the disposition data of the eleven antibodies across eight immuno-
PET biodistribution studies. Immuno-PET imaging studies involve the radiolabeling of
antibodies for quantitative in vivo tracking of antibody binding in the PT and TDLN. The
eleven unique immuno-PET antibody:primary tumor pairs included: 89Zr-fresolimumab
(glioblastoma) [16]; 89Zr-bevacizumab (non-small-cell lung cancer; NSCLC) [17]; 89Zr-
bevacizumab (breast cancer) [18]; 89Zr-bevacizumab (renal cell carcinoma) [19]; 64Cu-
DOTA-trastuzumab (breast cancer) [20]; 89Zr-trastuzumab (esophagogastric cancer) [21];
89Zr-MMOT0530A (pancreatic cancer) [22]; 89Zr-MMOT0530A (ovarian cancer) [22]; 89Zr-
atezolizumab (NSCLC) [23]; 89Zr-atezolizumab (breast cancer) [23]; 89Zr-atezolizumab
(bladder cancer) [23]. Of note, the therapeutic antibodies used for model calibration exhibit
similar distribution behaviors to most immunotherapeutic antibodies and these antibodies
are all approved for treating various tumor types. Whenever there is data available for
calibration from a study, they are presented as the mean +/− standard deviation (SD).
Curves that are not calibrated with any literature data (i.e., no data points in curve) represent
what the predicted (simulated) SUV would be at that tissue. For clarity and easier viewing,
the SD error bars are only presented in one direction.
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We used the RxODE simulation package in R to build the model (Appendix A) and
perform model calibration. Model parameters were derived either from the literature,
theoretical calculation, or model optimization. Once calibrated, the PBPK model was
subsequently applied to simulate and characterize antibody distribution gradients from
organ-specific tumors to TDLN across three clinical scenarios: metastasis, inflamed tumor
microenvironment, and before and after surgical resection (i.e., neoadjuvant vs. adjuvant).
Sensitivity analyses were also performed to assess the parameters that significantly influ-
ence antibody distribution. The key parameters (excluding the vascular and lymphatic
reflection coefficients) were simulated in the range of 0.1–100 fold of the optimized values.
The σV was assessed in the range of 0.01–1.25, and σL in the range of 0.1–5 times the
optimized values. The fold change values were selected such that they reflect a wide, yet
reasonable spectrum (i.e., σV and σL are restricted to values between 0 and 1) of plausible
values for these parameters and to assess their impact on model predictions.

3. Results
3.1. The PBPK Model Adequately Captured Antibody Distribution in Anatomically Distinctive
Tumors and TDLNs

The developed PBPK model adequately captured antibody distributions across mul-
tiple types of anatomically distinctive tumors and TDLNs (Figure 2). Tables 1 and 2
denote the optimized range of parameters for calibrating each organ-specific tumor model.
The parameter ranges are associated with tumor-specific and antibody-specific properties
(i.e., σV, R01, R02, Kd, dln, CLp), highlighting the variabilities in antibody distribution
across tumors. For instance, renal tumors showed the highest antibody uptake (i.e., highest
SUV value), which was about five-fold higher than antibody uptake in the brain and lung
cancers. This is associated with the kidney being one of the most highly perfused organs in
the body. Indeed, our model is consistent with clinical observations that the kidney tumors
also exhibit the fastest blood and subsequently lymph perfusion rates [24]. Among the
tumor types with both PT and TDLN data, the kidney model also exhibited the largest dis-
tribution gradient between the two tissues. Our calibrated parameters suggest that the very
high tumor target density of the PT (R01) compared to TDLN (R02) accounts for this steep
antibody gradient. In the other tumor types where the observed distribution gradient was
relatively flat, the tumor target density between these two tissues were comparable. The
reasoning behind this clinical observation is discussed in-depth in the following section.

In addition to metastatic lesions, other clinical and pathophysiological processes, such
as surgery and rapid tumor growth-induced inflammation, may further alter the antibody
distribution gradient from the PT to TDLN. Simulations to capture these processes were
thus performed using the calibrated model, and their impacts on the distribution gradients
were also compared.
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Pancreatic [22] 89Zr-MMOT0530A 0.87 0.004 0.029 5.0 
Ovarian [22] 89Zr-MMOT0530A 0.95 0.004 0.001 5.0 
NSCLC [23] 89Zr-atezolizumab 0.80 0.012 0.175 5.0 
Breast [23] 89Zr-atezolizumab 0.90 0.008 0.112 5.0 

Bladder [23] 89Zr-atezolizumab 0.86 0.001 0.0084 5.0 
a Lorgan (organ-specific lymph flow), 0.2% of organ blood flow [25,26]; b VISF,PT (PT interstitial fluid 
volume), 20% of total organ/tissue volume; σV (vascular reflection coefficient). Organ-specific pa-
rameters that were shared by all organ systems include: σL (lymphatic reflection coefficient) = 0.2 
[27]; Laff (afferent lymph flow) = 0.004 L/h [28]; Leff (efferent lymph flow) = 0.004 L/h [28]; VISF, TDLN 
(TDLN interstitial fluid volume) = 0.0000584 L, 20% of volume of average LN [28]; [FcRn] (FcRn 
concentration in endothelial cells) = 40 uM [29]. 
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Figure 2. PBPK model calibration in anatomically distinctive tumors and TDLNs. Antibody
distribution data in the plasma (circles), primary tumors (triangles), and TDLNs (diamonds)
in eight immuno-PET biodistribution studies were applied to calibrate the model. Each cali-
brated plot is an organ-specific primary tumor, representing the following immunoPET-antibody
pairs: (a) 89Zr-fresolimumab (glioblastoma) [16]; (b) 89Zr-bevacizumab (non-small-cell lung can-
cer; NSCLC) [17]; (c) 89Zr-bevacizumab (breast cancer) [18]; (d) 89Zr-bevacizumab (renal cell carci-
noma) [19]; (e) 64Cu-DOTA-trastuzumab (breast cancer) [20]; (f) 89Zr-trastuzumab (esophagogastric
cancer) [21]; (g) 89Zr-MMOT0530A (pancreatic cancer) [22]; (h) 89Zr-MMOT0530A (ovarian can-
cer) [22]; (i) 89Zr-atezolizumab (NSCLC) [23]; (j) 89Zr-atezolizumab (breast cancer) [23]; (k) 89Zr-
atezolizumab (bladder cancer) [23]. SUV = standard uptake value. Data are presented as mean +/−
standard deviation (SD). Please consult Appendix F for the derivation of the SUV parameter.

Table 1. Individual table listing organ-specific parameters used to calibrate the model.

Primary Tumors Antibody σV Lorgan
a (L/h) VISF,PT

b (L) Vp (L)

GBM [16] 89Zr-fresolimumab 0.94 0.05 0.265 5.0
NSCLC [17] 89Zr-bevacizumab 0.85 0.012 0.175 5.0
Breast [18] 89Zr-bevacizumab 0.95 0.008 0.112 5.0
Renal [19] 89Zr-bevacizumab 0.97 0.082 0.060 5.0
Breast [20] 64Cu-DOTA-trastuzumab 0.65 0.008 0.112 5.0

Esophagogastric [21] 89Zr-trastuzumab 0.95 0.007 0.005 7.0
Pancreatic [22] 89Zr-MMOT0530A 0.87 0.004 0.029 5.0
Ovarian [22] 89Zr-MMOT0530A 0.95 0.004 0.001 5.0
NSCLC [23] 89Zr-atezolizumab 0.80 0.012 0.175 5.0
Breast [23] 89Zr-atezolizumab 0.90 0.008 0.112 5.0

Bladder [23] 89Zr-atezolizumab 0.86 0.001 0.0084 5.0
a Lorgan (organ-specific lymph flow), 0.2% of organ blood flow [25,26]; b VISF,PT (PT interstitial fluid volume), 20%
of total organ/tissue volume; σV (vascular reflection coefficient). Organ-specific parameters that were shared by
all organ systems include: σL (lymphatic reflection coefficient) = 0.2 [27]; Laff (afferent lymph flow) = 0.004 L/h
[28]; Leff (efferent lymph flow) = 0.004 L/h [28]; VISF, TDLN (TDLN interstitial fluid volume) = 0.0000584 L, 20% of
volume of average LN [28]; [FcRn] (FcRn concentration in endothelial cells) = 40 uM [29].
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Table 2. Antibody and tumor-specific parameters in the model.

Primary Tumors Antibody R01 (nM) R02 (nM) Kd (nM) Kd,FcRn (nM) dln CLp (L/h)

GBM [16] 89Zr-fresolimumab 1 1 1.7 2400 19 0.075
NSCLC [17] 89Zr-bevacizumab 10 10 0.058 2400 21 0.07
Breast [18] 89Zr-bevacizumab 1 1.5 0.058 2400 20 0.06
Renal [19] 89Zr-bevacizumab 10 2.5 0.058 2400 21 0.042
Breast [20] 64Cu-DOTA-trastuzumab 100 100 5 774 61 0.063

Esophagogastric [21] 89Zr-trastuzumab 30 30 5 774 63 0.0288
Pancreatic [22] 89Zr-MMOT0530A 1000 1000 0.5 2400 21 0.033
Ovarian [22] 89Zr-MMOT0530A 24 24 0.5 2400 24 0.033
NSCLC [23] 89Zr-atezolizumab 7 7 0.43 2400 21 0.0083
Breast [23] 89Zr-atezolizumab 1 2.5 0.43 2400 20 0.0083

Bladder [23] 89Zr-atezolizumab 11 11 0.43 2400 24 0.0083

R01: baseline target concentration in PT [29]; R02: baseline target concentration in TDLN [29]; Kd: antibody
affinity to target [30–32]; Kd,FcRn: antibody affinity to FcRn [33]; dln: shape factor [28,34]; CLp: antibody clearance
from plasma [35–38]. Antibody/tumor specific parameters that were shared by all organ systems include: kdeg:
target degradation rate, 0.01 1/h; kint: antibody-target complex internalization rate, 0.01 1/h. Please consult
Appendix B for derivation of dln parameter.

3.2. Therapeutic Antibodies Showed Varied Distribution across Metastatic Lesions

Lung metastasis data in patients with both bladder and breast cancer primary tumor
types were compared in the modeling platform [23]. The PBPK model could capture anti-
body distribution in lung metastases in patients with differing tumor origins (Figure 3a,b).
In bladder cancer, antibody distribution into the TDLNs was lower than the primary tumors,
but higher than the metastatic lesions (Figure 3a). In breast cancer, antibody distribution
into the TDLNs was higher than both the primary tumor and metastases (Figure 3b). Anti-
body distribution gradients across metastases were also compared at either comparable
(Figure 3c) or different simulated target density (Figure 3d). The antibody distribution
gradient from the newly metastasized lesion to its TDLNs are dependent on various factors:
target density (R01, R02), tumor vascular leakiness (σV), and lesion locations (dln, Lorgan).
Target density at either the PT (R01) or TDLN (R02) can significantly alter the antibody dis-
tribution gradient between these two tissues, especially at low antibody concentrations in
the tumors relative to target levels. At a low antibody concentration, high target abundance
and extensive target-mediated antibody endocytosis can make antibodies quickly degrade
in the tumors, further lowering antibody exposure in the tumor beds [39]. Therefore, inside
a target-expressing metastatic lesion (high R01), the exposure of free antibody (i.e., Cf1)
left for trafficking into the TDLN will be limited, causing a sharp distribution gradient, as
shown in Figure 3d.

In addition to the target density in metastatic lesions, the metastatic sites also affect the
antibody distribution gradient from the PT to TDLN. Differences in organ-specific lymph
flow and the physical distance between the organ-specific PT and TDLN (Tables 1 and 2)
influence both the rate of antibody distribution and the extent of FcRn recycling along
with the organ-specific lymphatic vessel network, leading to organ-specific distribution
gradients. The organ-specific distribution gradient was also observed for albumin from
the injection site to the sentinel lymph nodes [34]. The antibody distribution gradient in
the TDLN at different anatomical sites partly explains the heterogeneous responses across
metastatic lesions [5]. The results from Table 2 suggest that antibodies with similar binding
affinities to FcRn (i.e., KdFcRn) will be subject to a similar distribution gradient (i.e., dln),
with the steepness of the gradient governed by the length of the lymphatic vessel network
that drains that region.



Antibodies 2022, 11, 28 7 of 16Antibodies 2022, 11, x FOR PEER REVIEW 7 of 17 
 

 

 

 
Figure 3. The PBPK model captured antibody distribution in lung metastases in patients with dif-
fering primary tumor types. Antibody PK data in (a) bladder and (b) breast cancer patients, both 
bearing lung metastases, were digitized and implemented into the model [23]; (c) effects of similar 
PT (red) and TDLN (green) target density (i.e., R01 = R02) on concentration gradients; (d) simulation 
of the effect of high PT target density relative to TDLN (i.e., R01 > R02) on gradient. The black arrow 
in (d) denotes the change in gradient owing to high PT metastatic target density. SUV = standard 
uptake value. Data are presented as mean ± SD. 

In addition to the target density in metastatic lesions, the metastatic sites also affect 
the antibody distribution gradient from the PT to TDLN. Differences in organ-specific 
lymph flow and the physical distance between the organ-specific PT and TDLN (Tables 1 
and 2) influence both the rate of antibody distribution and the extent of FcRn recycling 
along with the organ-specific lymphatic vessel network, leading to organ-specific distri-
bution gradients. The organ-specific distribution gradient was also observed for albumin 
from the injection site to the sentinel lymph nodes [34]. The antibody distribution gradient 
in the TDLN at different anatomical sites partly explains the heterogeneous responses 
across metastatic lesions [5]. The results from Table 2 suggest that antibodies with similar 
binding affinities to FcRn (i.e., KdFcRn) will be subject to a similar distribution gradient (i.e., 
dln), with the steepness of the gradient governed by the length of the lymphatic vessel 
network that drains that region. 

  

Figure 3. The PBPK model captured antibody distribution in lung metastases in patients with
differing primary tumor types. Antibody PK data in (a) bladder and (b) breast cancer patients, both
bearing lung metastases, were digitized and implemented into the model [23]; (c) effects of similar
PT (red) and TDLN (green) target density (i.e., R01 = R02) on concentration gradients; (d) simulation
of the effect of high PT target density relative to TDLN (i.e., R01 > R02) on gradient. The black arrow
in (d) denotes the change in gradient owing to high PT metastatic target density. SUV = standard
uptake value. Data are presented as mean ± SD.

3.3. Therapeutic Antibodies Markedly Reduced Distribution in the TDLNs after Surgical Resection

The effect of surgical resection on antibody distribution gradients was investigated
next using the PBPK model and parameterizations (Figure 4 and Appendix D). Surgical
resection of the primary tumor (i.e., R01 = 0) resulted in the impairment of local lymphatic
drainage surrounding the tumor region, clinically known as lymphedema [40]. Given
that the degree of surgery-induced lymphedema varies widely, we simulated the effect
of both a 50 and 80% reduction in local lymph flows (i.e., Lorgan, Laff) on the antibody
distribution gradient. Consistent with the expected clinical outcomes, our simulation
suggested a significantly reduced distribution to the residual TDLNs, which may result in
the suboptimal exposure of the antibody. Inefficient T-cell priming in the residual TDLNs
may partially explain the heterogeneous responses across patients in adjuvant settings.
Therefore, it could be challenging to treat the residual lymph node-positive patients with
immunotherapy after surgical resection of the tumors due to poor drug distribution. This
observation has significant implications for treating minimal residual disease and the
relapse potential during adjuvant immunotherapy.
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Figure 4. Surgical resection could drastically reduce antibody distribution into the TDLNs. Surgery
(i.e., adjuvant) disrupts the local lymphatic vasculature, impairing lymph flow surrounding the tumor
regions, resulting in a steeper concentration gradient (i.e., lower antibody delivery) for the residual
TDLNs. The black arrows denote the change in gradient in cases where the lymph flows surrounding
the residual TDLNs are reduced by 50 and 80% by the surgery, respectively.

3.4. Tumor-Induced Tissue Inflammation Limits Antibody Distribution in the Intratumoral TDLNs

We then investigated the effects of rapid tumor growth-induced inflammation on
antibody distribution gradients across several TDLN networks (Figure 5 and Appendix E).
Due to rapid tumor expansion, the intratumoral lymphatic vessels and the lymphatic
drainage to the intratumoral TDLNs often become compressed, rendering a non-functional
lymphatic system (i.e., Laff~0) [41]. Subsequently, the lymphatic flow to the peri-tumoral
TDLNs is considerably increased in the rapidly growing tumor [42]. The increased afferent
lymph flow (Laff) and their impact on antibody distribution gradient were investigated in
the model. As shown in Figure 5, our simulations suggest that the antibody distribution
gradient between various TDLN networks could be drastically altered because of the rapid
expansion of the tumor and tumor-induced inflammation. The antibody distribution to the
intratumoral TDLNs is considerably lower than to the peritumoral TDLNs, regardless of
TDLN tumor metastatic status. The impaired antibody distribution into the intratumoral
TDLNs could result in a sub-optimal antibody exposure for poor anti-tumor response in
the altered TDLN networks.
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Figure 5. The antibody distribution between peritumoral and intra-tumoral TDLNs. Tumor-induced
inflammation can impair, to different degrees, the lymphatic drainage to both tumor-positive (+) and
tumor-negative (−) intratumoral lymphatic vessels/TDLNs, while also enhancing lymphatic drainage
to peri-tumoral vessels and TDLNs. The model predicts the effect of PT-induced inflammation on
antibody distribution gradients (i.e., black arrows) between the various TDLN networks.
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3.5. Sensitivity Analysis

Finally, a series of local sensitivity analyses were performed to identify the key model
parameters that most highly impact antibody distribution gradients from the tumors to
the TDLNs. As shown in Figure 6 and Appendix C, nearly all parameters were shown to
affect, to varying degrees, antibody distribution profiles. Furthermore, as the parameters
R01/R02 and dln were increased, the simulated profiles also increased (i.e., shifted upward),
whereas parameters Kd and kint showed an inverse simulated effect when increased. kdeg
was not a sensitive model parameter. These trends are largely expected, given that having
a relative higher PT target density (R01/R02) should lead to higher antibody exposure in
the tumors. Moreover, a slower (i.e., lower) antibody internalization rate (kint) along with
lower antibody Kd values will both lead to prolonged antibody-target engagement and
subsequently higher antibody exposure in tumor beds. Future clinical studies with richer
data would allow for a more thorough calibration of the model parameters.
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Figure 6. The effects of the key model parameters on antibody distribution profiles in the tumors
and TDLNs. Each plot represents a specific model parameter that was adjusted by multiplying the
calibrated value by the following fold changes: (1) 0.1×; (2) 0.3×; (3) 0.5×; (4) 0.7×; (5) 1.0×; (6) 3.0×;
(7) 5.0×; (8) 7.0×; (9) 10.0×; (10) 50.0×; (11) 100.0×. The parameters that were adjusted, and their
resulting predicted curves, were as follows: (a) R01/R02 ratio (i.e., ratio of tumor burden in the PT
versus TDLN); (b) dln; (c) Kd; (d) kint; (e) kdeg. The dashed yellow line in each plot is the simulation
for the calibrated (i.e., 1.0×, (5)) parameter value in the model. For best results, please view in color.
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4. Discussion

The high potential for prescribing immunotherapy in neoadjuvant settings has made
it critical to understand therapeutic antibody distribution in the tumor and the TDLNs.
Despite previously published PBPK models for quantifying antibody PK in tumors and
the lumped LNs, none have characterized the organ-specific antibody distribution gradi-
ent from the PT to the TDLNs [7,8]. The developed proof-of-concept PBPK model could
thus be valuable to predict the antibody distribution gradient between these two tissues
in an anatomically distinctive and pathophysiologically relevant manner. The model
was calibrated using data collected in various types of cancer patients in immuno-PET
antibody studies. The calibrated PBPK model was used to simulate the antibody dis-
tribution gradient between the tumors and TDLNs at different pathophysiological and
clinical scenarios, including metastasis, surgical resection, rapid tumor expansion, and
expansion-induced inflammation.

The developed PBPK framework predicts antibody distribution largely based on the
available tumor-specific information, including tumor type, anatomical location, tumor
target density, target abundance, surrounding lymphatic network, and surgical resection.
Although broad validation is needed, the model could provide a population-average
prediction of antibody exposure in the tumors and the TDLNs. Once patient-specific
information becomes available, the model could be further improved with high precision.
Of note, the priori exposure prediction could be informative to comprehending therapeutic
efficacy, resistance probability, and dose justification.

Most checkpoint blockades are approved for treating advanced cancers when mul-
tiple metastases have developed. Metastasis is arguably the most significant concern in
cancer treatment, accounting for over 90% of cancer deaths [43]. High metastasis and
target-expressing cells are usually associated with rapid tumor antigen-mediated antibody
degradation, resulting in a steeper distribution gradient and limited antibody exposure to
the TDLNs (Figure 3d). Indeed, an increased trastuzumab clearance was reported in breast
cancer patients with high tumor target density due to increased antigen-mediated antibody
clearance [44]. Furthermore, the metastatic location of the tumor may also affect the con-
centration gradient to the TDLN. Lymphatic drainage networks are quite heterogeneous
across anatomical sites [6], differing in the length and networks of the lymphatic vessels
around tumors to the TDLNs [34]. As our model predicted, the trafficking distance from
the tumor to the TDLNs can be associated with the fraction of antibody degradation in the
lymphatic endothelial cells, even though FcRn can recycle a fraction of antibodies.

Surgical resection of the primary tumor was also evaluated, which was predicted
to substantially affect antibody distribution into the TDLNs, potentially leading to sub-
optimal antibody exposure (Figure 4). As shown in Figure 5, heterogeneous distribution
of the antibody was observed in both the peri-tumoral and intra-tumoral lymphatic ves-
sels and the ancillary TDLNs, highlighting the impact of rapid tumor expansion and
expansion-induced inflammation on antibody distribution to various TDLN networks. The
heterogeneous and sometimes inadequate antibody exposure to tumor metastatic lesions
at varying anatomical sites may create a tumor sanctuary, leading to rapid tumor relapse.
Our model platform once validated with more extensive data would predict the metastatic
lesions where antibodies have limited exposure and tumor cells could possibly relapse.

One limitation in our model is the scarcity of the data for model calibrations. Few
studies quantified antibody uptake in the TDLNs, and the longitudinal data were not
sufficient to optimize all dynamic model parameters. Information about the tumor target
lesions and the specific anatomical locations of the TDLN were not accurately reported.
The parameters with high uncertainty were restricted to the literature values. Notably,
despite similar PK and distribution profiles, some antibodies used in model calibration
were not checkpoint blockades. While the afferent and efferent lymph flows for each
organ-specific tumor were fixed to the same value in this study, it is plausible they could
vary, considering the different densities and properties of lymphatic vessels across tumor
types. Furthermore, an empirical approach was used to account for FcRn-mediated salvage
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occurring in the lymphatic vessels (Appendix B). Indeed, there are already several published
PBPK models that adequately capture these processes in detail and were not the focus
of this study [27,29,45]. Moreover, depending on the study, the SUV value reported and
used for model calibration was either SUVmean, SUVmax, or SUVpeak. SUV values are
generally viewed as a semiquantitative imaging metric due to the uncertainties around its
measurement (i.e., effect of residualizing radioisotopes, high residual variability, etc.) [46].
This also explains the high variabilities seen in the observed data (i.e., high standard
deviations). Therefore, the model should be used as more of a qualitative tool to predict
the distribution gradients in relevant scenarios.

We performed a series of local sensitivity analyses to assess the robustness of the model
and highlighted the parameters significantly influencing antibody distribution gradients in
the TDLNs. The most sensitive model parameters should be further optimized in future
studies before making patient-specific predictions.

5. Conclusions

In summary, the current PBPK model presented a proof-of-concept quantitative plat-
form that can predict antibody distribution gradients from the tumors to the TDLNs in a
spatiotemporal manner, which has substantial implications for neoadjuvant immunotherapy.
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Appendix A

Model ODEs.
The differential equations describing the system are as follows (IC = initial condition):

Vp

(dCAb,p

dt

)
= Input− Σ

(
(1− σv)•Lorgan•CAb,p

)
−CLp•CAb,p + Σ(Leff•Cf2 ∗ FcRnb2), IC = 0 (A1)

VisfPT

(
dCAb,PT

dt

)
= (1− σv)•Lorgan•CAb,p − (1− σL)•Laff•Cf1∗FcRnb1− kint•ARPT•VisfPT, IC = 0 (A2)

dRPT

dt
= R01− kdeg•(RT,PT −ARPT)− kint•ARPT, IC = R01 (A3)

Visf,TDLN

(
dCAb,TDLN

dt

)
= (1− σL)•Laff•Cf1∗FcRnb1− Leff•Cf2∗FcRnb2− kint•ARTDLN•VisfTDLN, IC = 0 (A4)

dRTDLN

dt
= R02− kdeg•(RT,TDLN −ARTDLN)− kint•ARTDLN, IC = R02 (A5)

where Equation (A1) describes the rate of change of antibody mass in the plasma and
Equations (A2) and (A4) describe rates of change of total mAb mass in the PT and TDLN
compartments, respectively. The sigma summation sign (Σ) in Equation (A1) is relevant if
multiple channels (i.e., metastases) are opened. Equations (A3) and (A5) represent rates of
change of total target concentration in the PT and TDLN, respectively. The IC is the initial
condition of the system. Vp is the plasma volume, Cab,p is the concentration of antibody
in the plasma, and Lorgan is the organ-specific lymph flow. Laff and Leff denote afferent
and efferent lymph flows, respectively. σV and σL represent the vascular and lymphatic
reflection coefficients. R01 and R02 are baseline target (i.e., antigen) concentrations at the
PT and TDLN, respectively. The concentration of unbound, free antibody at either the
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PT (Cf1) or the TDLN (Cf2) are expressed as the roots of a quadratic function, dependent
on several properties in the system, including total target (i.e., RT,PT) and total antibody
(i.e., CAb,PT) concentration levels:

Cf1 = 0.5•{(CAb,PT − RT,PT −Kd) +
√
(CAb,PT − RT,PT −Kd)

2 + 4•CAb,PT•Kd} (A6)

Cf2 = 0.5•{(CAb,TDLN − RT,TDLN −Kd) +
√
(CAb,TDLN − RT,TDLN −Kd)

2 + 4•CAb,TDLN•Kd} (A7)

Antibody–target complex concentrations at either PT (ARPT) or TDLN (ARTDLN) are
defined as follows:

ARPT =
RT,PT•Cf1
Kd + Cf1

(A8)

ARTDLN =
RT,TDLN•Cf2

Kd + Cf2
(A9)

An organ-specific antibody concentration gradient from PT to TDLN was implemented
into the model by taking into account FcRn recycling along the lymphatic vessel endothelial
cell layer in a spatially relevant manner; Equation (A10) below is an empirical equation that
describes the percentage of FcRn-recycled antibodies (i.e., FcRnb1, FcRnb2) that eventually
reach the TDLN via the vessels:

FcRnb1, FcRnb2 = Base +
(

[FcRn]tot
[mAb] + Kd,FcRn + [FcRn]tot

)dln

(A10)

where base is the baseline rate of antibody trafficking to the TDLN in the absence of FcRn
recycling, Kd,FcRn is the antibody affinity to the FcRn receptor, [mAb] is the free antibody
concentration in the lymphatic vessel, [FcRn] is concentration of FcRn, and dln is a shape
factor to distinguish the anatomically distinct differences in the length (i.e., gradient) from
PT to the first (i.e., sentinel) TDLN. The derivation of this equation can be found in the
following section. It is assumed that free antibodies leaving the TDLN (Cf2) is drained
directly into the central compartment.

Appendix B

Derivation of empirical equation to account for FcRn recycling in organ-specific lym-
phatic vessel (i.e., FcRnb1, FcRnb2) and calibration of dln parameter

According to the receptor occupancy equation,

[FcRn−mAb]
[FcRn]tot

=
[mAb]

[mAb] + KD,FcRn
(A11)

where [FcRn-mAb] is equal to the antibody-FcRn complex concentrations, [FcRn]tot is the
total FcRn concentration in endothelial cell layer, [mAb] is the concentration of the free
antibody, and KD,FcRn is the antibody affinity to FcRn. This equation is used to determine
the percentage of FcRn receptors that are target-bound.

Rearranging Equation (A11) to solve for the concentration of FcRn-mAb, [FcRn-mAb], yields:

[FcRn−mAb] =
[FcRn]tot ∗ [mAb]
[mAb] + KD,FcRn

(A12)

For our model development, we were interested in quantifying the percentage of
antibodies that were FcRn-bound ( [mAb−FcRn]

[mAb]tot
), as we assumed that bound mAb-FcRn

complexes were recycled back into the vessel lumen space (and subsequently appearing
in TDLN).
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An equation that quantifies the percentage of antibodies that are FcRn bound is
as follows:

[mAb− FcRn]
[mAb]tot

=
[FcRn−mAb]

[FcRn−mAb] + [mAb]
(A13)

Plugging the value of [FcRn-mAb] from Equation (A12) into Equation (A13), an
equation that quantifies the percentage of recycled mAb’s back into the lymphatic vessel is
expressed as follows:

[mAb− FcRn]
[mAb]tot

=

(
[FcRn]tot

[mAb] + Kd,FcRn + [FcRn]tot

)
(A14)

To account for organ-specific physical differences in FcRn recycling along the lym-
phatic vessels, a shape parameter, dln, was introduced to yield Equation (14):

[mAb− FcRn]
[mAb]tot

=

(
[FcRn]tot

[mAb] + Kd,FcRn + [FcRn]tot

)dln

(A15)

Finally, a baseline value of 0.418 was added to Equation (A15), which was taken from a
study in FcRn-knockout mice that quantifies the percentage of antibodies that successfully
undergo lymphatic trafficking independent of FcRn recycling (Equation (A10)) [47]. In
cases of FcRn-knockout mice, the dln parameter is not quantifiable (the second term in
Equation (10) becomes zero).

According to Nathanson et al.’s study, they found the average distance from albumin
injection site (i.e., primary tumor anatomical location) to the sentinel LN was 30 cm. Given
that there was variability in the lengths reported according to anatomical location, we fixed
the mean value distance (i.e., Equation (A15)) to roughly 2/3 (0.715). This is consistent
with previous findings along with a model that reported a 0.715 recycling fraction of FcRn-
bound mAb in their model [23]. Each organ-specific PT-TDLN gradient axis was calibrated
according to its size relative to the mean; higher values had a steeper gradient (i.e, <0.715),
while lower distances had an attenuated gradient (i.e., >0.715). The calculated values that
were implemented into each organ-specific model can be referenced in Table 2.
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adjusted by multiplying the calibrated value by the following fold changes: (1) 0.01×; (2) 0.1×;
(3) 0.105×; (4) 0.21×; (5) 0.31×; (6) 0.42×; (7) 0.52×; (8) 0.63×; (9) 0.74×; (10) 0.84×; (11) 0.94×;
(12) 1.0×; (13) 1.25×. The lymphatic reflection coefficient (sigma_l) was adjusted by multiplying the
calibrated value by the following fold changes: (1) 0.1×; (2) 0.3×; (3) 0.5×; (4) 0.7×; (5) 1.0×; (6) 1.5×;
(7) 2.0×; (8) 2.5×; (9) 3.0×; (10) 3.5×; (11) 4.0×; (12) 4.5×; (13) 5.0×. The dashed pink line in each
plot is the simulation for the calibrated (i.e., 1.0×, (12)) parameter value in the model. For the best
results, please view in color.

Appendix D

Parameterization of Figure 4 (surgery).

Table A1. Table listing antibody and tumor-specific parameters.

Primary Tumors Antibody R01 (nM) R02 (nM) Kd (nM) Kd,FcRn (nM) dln CLp (L/h)

Breast [23] 89Zr-atezolizumab 0.001 2.5 0.43 2400 5 0.0083

Parameters σL (0.2), VISF,TDLN (0.0000584 L), kint (0.01 h−1), and kdeg (0.01 h−1) retained from original model.

Appendix E

Parameterization of Figure 5 (peri-/intra-tumoral TDLNs).

Table A2. Table listing organ-specific parameters.

Type of TDLN Antibody σV Lorgan
a (L/hr) VISF,PT

b (L) Vp (L) Laff (L/h) Leff (L/h)

Peritumoral 64Cu-DOTA-trastuzumab 0.87 0.008 0.1122 5.0 0.04 0.004
(+)-Intratumoral 64Cu-DOTA-trastuzumab 0.87 0.008 0.1122 5.0 0.00001 0.00001
(−)-Intratumoral 64Cu-DOTA-trastuzumab 0.87 0.008 0.1122 5.0 0.004 0.004

a Lorgan (organ-specific lymph flow), 0.2% of organ blood flow [25,26]; b VISF,PT (PT interstitial fluid volume), 20%
of total organ/tissue volume; σV (vascular reflection coefficient).

Table A3. Table listing antibody and tumor-specific parameters.

Type of TDLN Antibody R01 (nM) R02 (nM) Kd (nM) Kd,FcRn (nM) dln CLp (L/h)

Peritumoral 64Cu-DOTA-trastuzumab 500 100 5 2400 5 0.004
(+)-Intratumoral 64Cu-DOTA-trastuzumab 500 100 5 2400 5 0.00001
(−)-Intratumoral 64Cu-DOTA-trastuzumab 500 0 5 2400 5 0.004

Parameters σL (0.2), VISF,TDLN (0.0000584 L), kint (0.01 h−1), and kdeg (0.01 h−1) retained from original model.

Appendix F

Calculation of SUV (standardized uptake value).

SUV =
Concentration at target site

(
nmol

L

)
∗whole body volume (L)

Injected dose (nmol)
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