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Abstract: Salmonella and Campylobacter are the two leading causes of bacterial-induced foodborne
illness in the US. Food production animals including cattle, swine, and chickens are transmission
sources for both pathogens. The number of Salmonella outbreaks attributed to poultry has decreased.
However, the same cannot be said for Campylobacter where 50–70% of human cases result from poultry
products. The poultry industry selects heavily on performance traits which adversely affects immune
competence. Despite increasing demand for poultry, regulations and public outcry resulted in the
ban of antibiotic growth promoters, pressuring the industry to find alternatives to manage flock
health. One approach is to incorporate a program that naturally enhances/modulates the bird’s
immune response. Immunomodulation of the immune system can be achieved using a targeted
dietary supplementation and/or feed additive to alter immune function. Science-based modulation
of the immune system targets ways to reduce inflammation, boost a weakened response, manage gut
health, and provide an alternative approach to prevent disease and control foodborne pathogens
when conventional methods are not efficacious or not available. The role of immunomodulation is
just one aspect of an integrated, coordinated approach to produce healthy birds that are also safe and
wholesome products for consumers.
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1. Introduction

Salmonella enterica Enteritidis and Typhimurium, as well as Campylobacter, including C. jejuni
and C. coli, are leading causes of bacterial-induced foodborne illness [1] with an economic burden in
excess of 5.5 B USD per year in the United States (US) alone [2], and the number of culture-positive
infections continues to increase each year [3]. In fact, the number of foodborne disease outbreaks
associated with Salmonella enterica Enteritidis has maintained an increasing trend since 1965 [4] and
continues to send people to the hospital [5]. Food production animals including cattle, swine,
and chickens are known host reservoirs and transmission sources for both of these foodborne
pathogens. According to the National Chicken Council, chicken is the number one protein consumed
in the US and nearly 41,000 million pounds of ready-to-cook products were produced in 2017 [6].
Despite more stringent Salmonella and Campylobacter tolerance levels on processed carcasses [7],
poultry products remain a source of foodborne illness. While the number of Salmonella outbreaks
directly attributed to poultry has decreased [4], the same cannot be said for Campylobacter where
estimates suggest poultry products still account for 50–70% of human campylobacteriosis cases [8].
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A recent review eloquently covered the role of Campylobacter and Salmonella as causative agents of
zoonotic foodborne disease, specifically addressing reservoirs for contamination, risk factors for
contracting the disease, and the virulence mechanism(s) for each [9]. Campylobacter is “ubiquitous and
adaptable” in broiler farms and once introduced can quickly colonize and spread through an entire
flock [10]. As such, Campylobacter control will rely on a multifaceted approach ranging from enhanced
biosecurity, feed/water treatments, litter amendments, and feed additives and yet may still only
produce varied success. Salmonella control will rely on similar approaches but will also incorporate
vaccination to control vertical transmission from the breeder flocks all the way to the broiler grown
for meat consumption or in the hen laying table eggs [11]. Foodborne illness, in both instances,
may result from the consumption of undercooked or from the improper handling of contaminated
poultry products [12].

When discussing poultry and Salmonella, it is important to distinguish between the strains of
Salmonella associated with foodborne disease outbreaks in humans and those responsible for the actual
disease in the bird. As previously mentioned, Salmonella enterica Enteritidis and Typhimurium are
causative agents associated with foodborne diseases. However, these two strains typically cause little
to no disease in the bird. Nevertheless, two of the most important bacterial pathogens for the poultry
industry are Salmonella enterica Pullorum and Gallinarum which are responsible for pullorum disease
and fowl typhoid, respectively [13,14]. Even though these pathogens have been eradicated from flocks
in the US, Canada, and most of Western Europe, they can be devastating to poultry industries in
developing countries including China and may result in anorexia, diarrhea, dehydration, weakness,
decreased egg production, poor fertility and hatchability, and mortality [15], which may be further
complicated by the presence of antimicrobial resistant strains [16]. For the purpose of this review,
discussions and intervention strategies will be directed towards controlling the Salmonella strains
associated with foodborne illness which are not necessarily the appropriate interventions required to
treat Salmonella-associated poultry diseases.

The increased production and consumption of poultry has been largely led by the ability of
the poultry industry to produce a quality protein in a relatively short timeframe while keeping the
products affordable. In the past 50–60 years, there have been three key initiatives that primary poultry
breeders have employed to meet the ever-changing demands of a global food market: (1) eradication
of vertically transmitted diseases; (2) selection within and between genetic lines for increased livability
and disease resistance; and (3) improved dissemination of husbandry practices and biosecurity [17].
Economic efficiency demanded by the poultry industry has directed the selection process towards
fast-growing broiler chickens (Gallus gallus) with improved feed conversion ratios (FCR) and high
yields. Such breeding has dramatically reduced the time required to get a bird to processing
weight [17,18]. However, selection based heavily on growth characteristics and other phenotypic
traits can adversely affect immune competence and leave birds more susceptible to diseases [19–22]
and possibly leave them with a higher burden of key foodborne pathogens.

In the US, traditional poultry management depends on the husbandry practices, biosecurity,
vaccination, and when medically-necessary the application of broad-spectrum antibiotics. Historically,
in addition to disease treatment, continual feeding of low-dose antibiotics as growth promoters
(AGP) was standard practice [23]. However, much has changed in the past 10–15 years when
the European Union (EU) withdrew approval for the use of growth-promoting, low-dose AGP in
2006 [24]. Studies suggest the misuse of antibiotics by all food animal industries is responsible, in part,
for an increase in antibiotic-resistant bacteria. A recent review addressing antibiotic-resistant bacteria
associated with the poultry industry, indicated that poultry may serve as source of resistant bacterial
genes in zoonotic bacteria that present a real risk to human health [16]. This is supported by the
findings of a recent study showing Salmonella enterica Enteritidis was the most commonly isolated
serovar from US farms and that 7% of all isolates displayed a level of antibiotic resistance [25]. As a
result of this and other factors, the general public is clamoring for removal of all drugs from poultry
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feed and has further pressured the poultry industry to find suitable alternative control and preventative
measures [26]; therefore, research in this area has greatly increased.

Simply defined, alternatives to antibiotics are “any substance that can be substituted for
therapeutic drugs” either in their absence because of mandated withdrawal or reduced efficacy [27].
Identifying new approaches to manage flock health is becoming increasingly important as poultry
breeding companies attempt to meet global consumption, fulfill consumer demands and comply with
increased regulations all the while improving robustness, livability, production efficiency, and animal
welfare. Therefore, the interaction(s) between the immune response and diet (immunomodulation)
will be strategic areas of focus and research for controlling foodborne pathogens and improving animal
health moving the poultry industry forward in the coming years.

2. Immune Response

The host immune response to pathogens in the earliest stages of infection is a critical determinant
of disease resistance and susceptibility over the life of a bird. There are two distinct divisions of an
immune response referred to as innate and acquired immunity, and some of the key distinguishing
characteristics associated with each are provided in Figure 1. Pattern recognition receptors (PRR) on
host cells of the innate immune system recognize key pathogen or danger-associated molecular patterns
(PAMPs or DAMPs) including polysaccharides, glycolipids, lipoproteins, nucleotides, and nucleic
acids. This recognition by the innate immune system initiates the immediate defense against the threat
and the interplay between the innate and adaptive immune responses is critical for coordinating the
lasting response associated with adaptive immunity [28]. The coordinating intracellular signaling
pathways can result in the activation of microbicidal killing mechanisms, the release of cytokines and
chemokines, and the production of co-stimulatory molecules required for antigen presentation and
activation of the acquired immune system [29,30]. It has been proposed that immune modulation
targeting the innate system could prove more advantageous because induction is rapid, non-specific,
yet offering therapeutic benefits including prophylaxis, adjuvant boosting effects, as well as local and
systemic protection involving numerous cellular immune targets [27].
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Figure 1. Two distinct divisions of an immune response: Innate and acquire immunity.

In chickens, some of the specific cells associated with an innate response are macrophages,
heterophils, and B1-type lymphocytes that produce natural antibodies while B2 and T lymphocytes
are more commonly associated with an acquired response [31]. Innate and acquired immunity work
together to produce a response that is diverse and sensitive enough to recognize and eliminate a
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broad range of pathogens. The ultimate outcome of a successful immune response is for the bird to
recognize the invading pathogen, prevent colonization, and eliminate the threat so as not to incur
lasting negative affects to health and/or production.

3. Nutrition

Nutrition encompasses more than merely feeding a bird a complete and balanced diet in today’s
high-intensity production systems. Proper nutrition plays a vital role in enhancing productivity,
helping to maintain a healthy gastrointestinal tract (GIT) and gut microflora, enabling the bird to
reach its genetic potential, and improving animal health. With such a diverse impact on the bird,
it is not surprising that nutrition can and does have the potential to either positively or negatively
affect the host’s immune response. It is important to realize that these affects are largely due to the
host–microbiota interaction(s) in the GIT where the microbiota process nutrients consumed by the
host and then release metabolites from the intestinal lumen to the mucosal surface that directly impact
host functions, including development, metabolism, and immunity [32,33]. Evaluation of specific
feed ingredients and their impact on host immune function are outside the scope of this review since
most interventions discussed herein are additive in nature and not specifically required for complete
nutrition. However, this is an important aspect to animal health and some examples are provided
elsewhere [31,34,35]. Additionally, there are outstanding reviews available that address the specific
role of the GIT with regard to immunomodulation [27,36,37] and therefore, will not be covered herein.

For the perspective of this review, the concept of modulation of the immune response will focus
on the addition of feed additives to the dietary program to achieve a desired functional goal in the host
(i.e., reduced colonization by foodborne pathogens and/or improved animal health). The literature
is filled with published papers where investigators have evaluated an array of products as AGP
alternatives including, but not limited to, food industry by-products, plant metabolites, non-digestible
oligosaccharides, natural by-products, essential minerals, amino acids, medicinal herbs, organic acids,
and essential oils. Another area of interest to reduce poultry pathogens as well as foodborne pathogens
is centered around the use of pro and prebiotics, and because there are numerous studies in the
literature addressing the role of these products in the poultry industry, we will only mention a few
studies and recognize their importance. A recent review thoroughly addresses control strategies,
including probiotics, in the control of Campylobacter in the poultry industry [38]. In other studies,
feed supplementation with a prebiotic mixture altered the gut microflora and boosted the innate
immune responsiveness in chickens challenged with Salmonella enterica Typhimurium [39] and using
55 probiotic bacterial strains showed some strains were able to persist in the chicken gut and reduce
Campylobacter jejuni colonization and subsequent fecal shedding [40]. Clearly, modulation of the
immune response is garnering much interest across all meat-producing sectors.

4. Immunomodulation in Poultry

It has been said “Diets nourish immune cells, modulate them and facilitate establishment of
commensal microflora, but diets shouldn’t normally stimulate the immune system. Let pathogens
do that.” [31]. Clearly, there is a fine balance between when a diet simply nourishes the host and
when stimulation occurs, and care must be taken to achieve the proper balance or bird health and/or
performance could be compromised. However, continual feeding of an immunomodulatory product(s)
throughout a broiler grow out does not necessarily mean the birds will be over-stimulated and
experience poor performance. In fact, some findings report increased body weight (BW) and improved
FCR with continual feeding. Broilers fed a phytogenic feed additive (PFA) report comparable BW gain
and FCR to birds fed a diet containing AGP, suggesting such products are suitable alternatives to AGP
in some instances [41]. In that study, the PFA-fed birds had a general increase in villus height through
the small intestine and alterations in cecal microbiota composition that are typically associated with a
healthy gut, suggesting the mechanism of action was through modulating the intestinal microbiota
or by altering nutrient utilization in the GIT. These data demonstrate effective use of a PFA as a
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means to enhance animal health and welfare in the absence of AGP. The product administered in
the above-mentioned study was proprietary, but some examples of PFAs that could be used for
immunomodulatory purposes include essential oils, oleoresins, flavonoids, and bioactive molecules
such as carvacrol, thymol, capsaicin, and cineole some of which are reviewed elsewhere [42,43].
To avoid the possible scenario of constant activation of the immune response and/or as a way to
reduce expenses associated with the diet, the industry could consider implementing a strategy that
specifically targets times when the birds are most susceptible to infections and/or other stressors.
With respect to meat-type birds, times to consider immunomodulation could be in ovo, at hatch
through the first week of life, at feed changes (starter to grower and grower to finisher), prior to
transport to the processing facility, or during a disease outbreak. Additional evidence also indicates
the diet fed to the broiler breeder can reduce chick mortality while increasing the immune responses
indicating indirect modulation of the chick via the diet given to the broiler breeders [44].

During the first few days post-hatch, poultry are highly susceptible to pathogens many of which
are commonly found in poultry facilities. In addition to the actual environmental sources, it is widely
accepted that poultry feed can also serve as a direct source of contamination [45,46]. This susceptibility
to infectious diseases can lead to significant economic losses and stems from an impairment of the
innate and acquired host defense mechanisms. One of the most important features of this immune
impairment is the functional inefficiency of the primary poultry polymorphonuclear cell (PMN),
the heterophil. Functionally, heterophils are critical components of the innate immune response and
exhibit an assortment of activities which include adhesion, chemotaxis, phagocytosis, production of
cytokines/chemokines, and the microbicidal activities of degranulation and production of a respiratory
burst [47]. Our laboratory has shown immunomodulation using prebiotics and antimicrobial peptides
at the early post-hatch time was attainable and produced an immunologically superior bird compared
to those given control, non-treated diets. Supplementation with a prebiotic such as beta-glucan [48],
or antimicrobial peptides [49,50], resulted in enhanced heterophil function that translated to increased
resistance against Salmonella enterica Enteritidis organ invasion and cecal colonization in young chicks.
Additional studies on the impact of nutrition and feed additives on the innate immune response is
reviewed elsewhere [51]. A number of the studies evaluating innate immunity lack performance data
and additional experiments are needed to determine the true value of these approaches. However,
the preliminary studies mentioned herein indicate select feed additives targeting the innate immune
response may be used to successfully expedite and boost the development of early defense mechanisms
to protect the young chicks.

Foodborne and poultry pathogens are obvious concerns for the poultry industry and are
becoming more difficult to manage between more stringent Salmonella and Campylobacter tolerance
levels on processed carcasses [7]. It has also been reported that conventionally raised broilers
have lower numbers of Salmonella enterica members compared to birds reared in antibiotic-free
conditions [52]. Targeting and reducing the numbers of these two foodborne pathogens in the GIT
of poultry will be key in reducing the incidence of foodborne illness acquired from handling or
consuming contaminated or undercooked poultry. Successful delivery of a feed additive will depend,
in part, on the stability of the compound being added and whether it can withstand the harsh
environment of the GIT. One approach to circumvent this problem is to protect the compound by
microencapsulating it with a lipid–embedding matrix [53], and once encapsulated, it is protected
from the harsh environment, has improved stability, allows for a slow release, and thereby reduces
the effective dose. By lowering the effective dose, producers can feed less compound, thus reducing
cost. There are numerous studies in the literature clearly showing the benefit and effectiveness of
such technology. In one such study, feeding a microencapsulated sorbic acid blend proved effective
at reducing the load of Salmonella enterica Enteritidis by 2 log10 in market-age broilers following
experimental challenge [54]. In a separate study, a different encapsulated product comprised of a blend
of organic acids and botanicals similarly reduced the load of Campylobacter jejuni in slaughter-age
broilers [55]. This finding is highly important as Campylobacter jejuni accounts for 80–85% of all
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infections associated with human gastroenteritis [12], further highlighting the significance of reducing
Campylobacter burden in the live bird prior to processing. In addition to demonstrating the effectiveness
of a microencapsulated product, these studies clearly show the potential for feed additives fed
throughout or prior to transport to slaughter as a viable pre-harvest food safety intervention strategy
to reduce the incidence of these highly important foodborne pathogens entering the food chain.
Though important, laboratory challenges are not always comparable to field trials as shown in a
study where a feed additive reduced C. jejuni colonization in broilers in laboratory trials but failed to
reproduce those same beneficial effects under farm conditions [56]. This further supports what was
stated earlier, that Campylobacter control will rely on a multifaceted approach ranging from enhanced
biosecurity, feed/water treatment, litter amendments, and feed additives.

5. Importance of Understanding the Mode-of-Action

If immunomodulation is to become a routine part of large-scale poultry production, it is imperative
that research moving forward must begin to understand the mechanism(s) and mode-of-action behind
the results. From an industry perspective, a product’s impact on performance and production traits
will always be the driving factors as to whether a product is used or not. In most of the studies
mentioned herein, the mechanism(s) resulting in the enhanced performance, reduced bacterial load,
or increased resistance are not fully understood.

There are several approaches to understanding the mode-of-action of any given feed additive.
We have begun to dissect the mode-of-action of an encapsulated product containing citric acid,
sorbic acid, thymol, and vanillin. The preliminary data showed feeding the encapsulated product the
first four days post-hatch enhanced in vitro heterophil function including degranulation and oxidative
burst (Swaggerty and Grilli, unpublished data), and earlier studies by our laboratory and others
indicated increased heterophil function translated to increased resistance against Salmonella enterica
Enteritidis [57–59] and Campylobacter [60]. Additional studies are required to fully understand the
mode-of-action, but clearly, heterophil function should be considered as a contributing factor to the
previously mentioned reduction in Salmonella enterica Enteritidis and Hadar [54]. Salmonella enterica
Typhimurium uses inflammation products as a means to outgrow and outcompete other microbes in
the intestine due to the reactive oxygen species that are generated during intestinal inflammation [61].
From a newer perspective, botanicals may act as crucial players in the chemosensory system by
activating the transient receptor potential channels (TRP) [62]. TRP are expressed throughout the
digestive tract and play several roles in taste, chemosensation, mechanosensation, pain, and control of
motility by neurons [63]. They have been identified as mediators for the taste sensations of several spicy
molecules [64] but more interestingly, recent advances in TRP research underlined their involvement
in inflammation-mediated and immune-mediated diseases [65].

In order to clarify the mode-of-action of these additives, in addition to functional assays,
newer technologies, such as a kinome array, are emerging as powerful research tools to
dissect mechanisms. Kinome analysis using peptide arrays provide site-specific information,
display similar biochemical properties to the full-length protein, and provide a means for
defining phosphorylation-mediated events [66]. Phosphorylation is the predominant mechanism of
post-translational modification regulating protein function, has a central role in virtually every cellular
event, is essential for all cell signaling networks, and regulates fundamental biological processes [67,68].
Global analysis of the kinome provides information on the abundance, activity, substrate specificity,
phosphorylation pattern, and mutational status of a given peptide [68], and chicken-specific
kinome arrays are available [69,70]. Studies show the usefulness of kinome arrays to dissect key
immuno-metabolic pathways associated with different feed additives. Therefore, making it possible
to identify specific pathways and biomarkers associated with a given treatment compared to a
control. One such study showed the addition of β-mannanase to broiler diets resulted in distinct
changes in specific biological processes including regulation of immune response, innate immune
response, MAPK signaling pathway, activation of immune response, and many others thereby
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providing mechanistic support for previously known outcomes associated with the feed additive [71].
Kinome studies can also provide insight while examining the complex interplay between the host
and dietary supplementation under control and challenged conditions. Another study evaluated the
effects of different preparations of yeast cell wall in non-challenged control birds compared to those
experimentally infected with C. perfringens and found the level of purity of the feed additive impacted
performance and could minimize the adverse impact of the challenge [72]. From a purely scientific
standpoint, understanding the mechanism(s) is important, but even more so, this understanding will
be vital for the poultry industry moving forward so they can make decisions based on sound science.

6. Conclusions

The selected examples provided herein indicate immunomodulation can be achieved and is
a practical means to enhance animal health and improve food safety without adversely impacting
performance. To successfully raise commercial poultry in today’s setting, one must consider animal
health and welfare and implement a multifaceted approach that keeps the bird free from harmful
poultry pathogens all the while reducing the occurrence of foodborne pathogens. The role of
immunomodulation is just one aspect of an integrated coordinated approach to produce a healthy bird
that is also a safe and wholesome product for consumers.
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