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Abstract

Motivation: The goal of fine-mapping in genomic regions associated with complex diseases and

traits is to identify causal variants that point to molecular mechanisms behind the associations.

Recent fine-mapping methods using summary data from genome-wide association studies rely on

exhaustive search through all possible causal configurations, which is computationally expensive.

Results: We introduce FINEMAP, a software package to efficiently explore a set of the most import-

ant causal configurations of the region via a shotgun stochastic search algorithm. We show that

FINEMAP produces accurate results in a fraction of processing time of existing approaches and is

therefore a promising tool for analyzing growing amounts of data produced in genome-wide asso-

ciation studies and emerging sequencing projects.

Availability and implementation: FINEMAP v1.0 is freely available for Mac OS X and Linux at

http://www.christianbenner.com.

Contact: christian.benner@helsinki.fi or matti.pirinen@helsinki.fi

1 Introduction

Genome-Wide Association Studies (GWAS) have identified thou-

sands of genomic regions associated with complex diseases and

traits. Any associated region may contain thousands of genetic vari-

ants with complex correlation structure. Therefore, one of the next

challenges is fine-mapping that aims to pinpoint individual variants

and genes that have a direct effect on the trait. This step is crucial

for fully exploiting the potential of GWAS: to unveil molecular biol-

ogy of complex traits and, eventually, provide targets for therapeutic

interventions. For a recent review on fine-mapping, see Spain and

Barrett (2015).

A standard approach for refining association signals is a step-

wise conditional analysis, an iterative procedure that conditions

on the Single-Nucleotide Polymorphisms (SNPs) with the lowest

P-value of association until no additional SNP reaches the pre-as-

signed P-value threshold. While conditional analysis is informative

about the number of complementary sources of association signals

within the region, it fails to provide probabilistic measures of causal-

ity for individual variants. To overcome this problem, many recent

fine-mapping methods have adopted a Bayesian framework.

Approaches for Bayesian analysis of multi-SNP GWAS data in-

clude exhaustive search as implemented in software BIMBAM

(Servin and Stephens, 2007), MCMC algorithms (Guan and

Stephens, 2011), variational approximations (Carbonetto and

Stephens, 2012) and stochastic search as implemented in software

GUESS (Bottolo and Richardson, 2010, Bottolo et al., 2013) and

GUESSFM (Wallace et al., 2015). Bayesian fine-mapping has also

been conducted under a simplified assumption of a single causal
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variant in the region (WTCCC et al., 2012). Common to these

approaches is that they require original genotype-phenotype data as

input, which is becoming impractical or even impossible as the size

of current GWAS meta-analyses rises to several hundreds of thou-

sands of samples (Wood et al., 2014). For this reason, fine-mapping

methods have recently been extended to use only GWAS summary

data together with a SNP correlation estimate from a reference

panel. To our knowledge, the existing fine-mapping implementa-

tions using GWAS summary data are PAINTOR (Kichaev et al.,

2014, Kichaev and Pasaniuc, 2015), CAVIAR (Hormozdiari et al.,

2014) and CAVIARBF (Chen et al., 2015).

PAINTOR is an EM-algorithm to jointly fine-map several associ-

ated regions by utilizing functional annotation information of indi-

vidual variants. As a special case of only a single region without

annotation information, PAINTOR tackles the standard fine-

mapping problem. CAVIAR differs from PAINTOR by modeling

the uncertainty in the observed association statistics. This might be a

reason why CAVIARBF, a more efficient implementation of

CAVIAR, has been reported to be more accurate than PAINTOR in

prioritizing variants when no annotation information is available

(Chen et al., 2015).

Although PAINTOR, CAVIAR and CAVIARBF are very useful

methods for performing fine-mapping on GWAS summary data, we

think that their implementation via an exhaustive search through all

possible causal configurations is likely to hinder their use in several

settings. For example, it becomes computationally slow or even im-

possible to run these methods by allowing more than three causal

variants on dense genotype data with thousands of variants per re-

gion. Thus, these methods are unlikely to make full use of unprece-

dented statistical power to discern complex association patterns

provided by ever increasing GWAS sample sizes and genome

sequencing technologies.

We introduce FINEMAP, a novel software package to improve

the performance of GWAS summary data based fine-mapping. The

statistical model of FINEMAP is similar to CAVIAR and

CAVIARBF while the important difference is the computational al-

gorithm. FINEMAP uses a Shotgun Stochastic Search (SSS) algo-

rithm (Hans et al., 2007) that explores the vast space of causal

configurations by concentrating efforts on the configurations with

non-negligible probability. We compare FINEMAP with the ex-

haustive search algorithm implemented in CAVIARBF. The com-

parisons to two other GWAS summary data based fine-mapping

methods CAVIAR and PAINTOR are not shown in this paper since

CAVIARBF is more efficient but equally accurate as CAVIAR and

more accurate than PAINTOR without annotation information

(Chen et al., 2015). In this paper we show that

• FINEMAP is thousands of times faster than CAVIARBF while

still providing similar accuracy in the examples where

CAVIARBF can be applied.
• FINEMAP is more accurate than CAVIARBF when the number

of causal variants in CAVIARBF needs to be restricted for com-

putational reasons.

Our examples are based on genotype and lipid level data of the

Finnish population (Borodulin et al., 2015) as well as summary statistics

from GWAS on Parkinson’s disease (UKPDC and WTCCC2, 2011).

2 Model

We are interested in fine-mapping a genomic region using GWAS

summary data instead of original genotype-phenotype data as input.

The building blocks of our Bayesian approach are the likelihood

function (Section 2.1), priors (Section 2.2), efficient likelihood

evaluation (Section 2.3) and efficient search algorithm (section 3).

At each step we describe how our choices differ from the existing

methods PAINTOR and CAVIARBF.

2.1 Likelihood function
For a quantitative trait, we assume the following linear model

y ¼ Xkþ �;

where y is a mean-centered vector of values of a quantitative trait

for n individuals, X a column-standardized SNP genotype matrix of

dimension n�m and pð�Þ ¼ Nð�j0; r2InÞ. The Maximum

Likelihood Estimate (MLE) of the causal SNP effects k depends on X

and y only through the SNP correlation matrix R ¼ n�1XTX and

single-SNP z-scores ẑ ¼ nr2
� ��1=2

XTy

k̂ ¼ ðXTXÞ�1XTy ¼ n�1=2rR�1ẑ

V½k̂� ¼ r2ðXTXÞ�1 ¼ n�1r2R�1:

Thus, it is possible to approximate the likelihood function for k by

Nðk̂jk;V½k̂�Þ using a SNP correlation estimate from a reference panel

and single-SNP z-scores from a standard GWAS software, as previ-

ously done in GCTA (Yang et al., 2011), PAINTOR and

CAVIARBF. Note that with z-scores for quantitative traits we can

assume that r2 ¼ 1 without any loss of generality. For binary traits,

a similar approximation applies with z-scores originating from logis-

tic regression and r2 � 1=fuð1� uÞg, where u is the proportion of

cases among the n individuals (Pirinen et al., 2013).

When m is large but k has only very few non-zero elements, the

MLE alone is not ideal since it does not account for the sparsity as-

sumption (Fig. 1). Thus, we take a Bayesian approach with a prior

distribution that induces sparsity among causal effects.

2.2 Priors for k and c

Let a binary indicator vector c determine which SNPs have non-zero

causal effects (c‘ ¼ 1 if the ‘th SNP is causal and 0, otherwise; see

top panel in Fig. 1). For the causal effects, we use the prior

pðkjcÞ ¼ N ðkj0; s2
kr

2DcÞ;

where s2
k is the user given prior variance for the causal effects in units

of r2, with r2 ¼ 1 for quantitative traits and r2 ¼ 1=fuð1� uÞg for

binary traits, and Dc a diagonal matrix with c on the diagonal. In

our examples for quantitative traits, we have set s2
k ¼ 0:052. This

means that with 95% probability a causal SNP explains less than

1% of the trait variation. When available z-scores originate from lo-

gistic regression, a value of s2
k ¼ ð005=rÞ2 ¼ 0:052uð1� uÞ means

Fig. 1. The binary indicator vector c determines which SNPs have non-zero

causal effects ( ). The corresponding causal (linear) model for a quantitative

trait assumes only few SNPs with a causal effect. The Maximum Likelihood

Estimate (MLE) of the causal SNP effects k̂ can be computed by using only

the SNP correlation matrix and single-SNP z-scores. However, the MLE is not

ideal because it does not account for the sparsity assumption
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that with 95% probability the effect of a causal SNP on the odds-

ratio scale is less than 1.15 for common variants (MAF ¼ 0.5) and

less than 2.0 for low-frequency variants (MAF ¼ 0.01), where MAF

is the minor allele frequency. Robustness to the values of sk has been

studied previously by Chen et al. (2015).

To define the prior for each causal configuration, we use a gen-

eral discrete distribution for the number of causal SNPs

pk ¼ Prð] of causal SNPs is kÞ; k ¼ 1; . . . ;K;

where K << m is the maximum number of SNPs in the causal config-

uration. Note that we assume that the region to be fine-mapped in-

cludes at least one causal SNP, i.e. p0 ¼ 0. For a fixed value of k, we

assume the same probability for each configuration with k causal

SNPs. Thus, a priori,

pðcÞ ¼pk

,
m

k

 !
when

Xm
‘¼1

c‘ ¼ k:

PAINTOR does not use an explicit prior on k but restricts k � 3

in practice. The default prior used by CAVIARBF builds on that of

CAVIAR and assumes that each SNP is causal with probability 1=m

and that k � 5. This is a special case of our prior when we set

pk ¼
m

k

 !
1

m

� �k m� 1

m

� �m�k

and renormalize for K ¼ 5 except that CAVIARBF assigns non-zero

prior also for the null configuration k ¼ 0.

2.3 Marginal likelihood for c

We now show how the marginal likelihood for the causal configur-

ation c can be computed efficiently.

2.3.1 Integrating out causal effects k

The likelihood function pðyjk;XÞ of the causal SNP effects is (pro-

portional to) a Normal density Nðk̂jk;r2ðnRÞ�1Þ. This enables an

analytic solution for the marginal likelihood of c eliminating the

causal effects

pðyjc;XÞ ¼
ð

pðyjk;XÞpðkjcÞdk

¼ Nðk̂j0; r2ðnRÞ�1 þ s2
kr

2DcÞ

¼ Nðẑj0;Rþ RRcRÞ;

where we defined Rc � ns2
kDc. Importantly, an evaluation of the

marginal likelihood requires only single-SNP z-scores and SNP cor-

relations from a reference panel and does not depend on r2. This

elimination of k is similar to the one used by CAVIAR and

CAVIARBF and differs from PAINTOR that fixes those values

based on the observed z-scores. Next, we describe two implementa-

tions to evaluate Nðẑj0;Rþ RRcRÞ with high computational

efficiency.

2.3.2 Reducing the complexity from O m3
� �

to O k3
� �

Option 1. Let C ¼ f1; . . . ; kg and N ¼ fkþ 1; . . . ;mg be respect-

ively the set of causal and non-causal SNPs. Consider the quadratic

form

Q ¼ ẑTðRþ RRcRÞ�1ẑ ¼ ẑTðIm þ RcRÞ�1a

inside the exponential function in Nðẑj0;Rþ RRcRÞ, where

a ¼ R�1ẑ can be precomputed. We solve the linear system

ðIm þ RcRÞb ¼ a for b by observing that the m – k elements in b

corresponding to non-causal SNPs (c‘ ¼ 0) are b‘ ¼ a‘ and the re-

maining elements result from solving a system of k equations

ðIk þ ns2
kRCCÞbC ¼ aC � ns2

kRCNaN ;

where RCC is the k � k correlation matrix of the causal SNPs and

RCN the k� ðm� kÞ submatrix of R corresponding to the correl-

ations between the causal and non-causal SNPs. In addition, we ob-

serve that detðIm þ RcRÞ is simply detðIk þ ns2
kRCCÞ after expanding

with respect to the rows corresponding to non-causal SNPs.

Computationally, these computations require one Cholesky decom-

position with complexity Oðk3Þ and provide thus a considerable sav-

ing compared to the naive way of decomposing the whole m � m

matrix with complexity Oðm3Þ.
This derivation differs from the one used by CAVIARBF that is

similar to our option 2 below. It also differs from PAINTOR that

fixes k based on the observed z-scores and performs once a Cholesky

decomposition of the whole m � m SNP correlation matrix that is

used repeatedly in each likelihood evaluation. Note that option 1

cannot be used in case of collinearity among the SNPs, because the

correlation matrix R is not invertible if two SNPs are perfectly corre-

lated and is unstable with nearly perfectly correlated SNPs.

Option 2. We partition the observed z-scores into components ẑC

and ẑN and permute rows and columns of the SNP correlation ma-

trix and covariance matrix Rc such that

and Rc ¼ diagfr‘gwith rkþ1 ¼ � � � ¼ rm ¼ 0. This partitioning en-

tails a block structure in the covariance matrix of Nðẑj0;Rþ RRcRÞ

Using properties of the multivariate Normal distribution, the condi-

tional expectation and covariance matrix of ẑN given ẑC are readily

available

E½ẑN jẑC� ¼ RNCR�1
CCẑC

V½ẑN jẑC� ¼ RNN � RNCR�1
CCRCN

and do not depend on Rc. We rewrite the marginal likelihood

pðyjc;XÞ ¼Nðẑj0;Rþ RRcRÞ in terms of the marginal distribution

of ẑC and conditional distribution of ẑN given ẑC to obtain the fol-

lowing expression

Nðẑj0;Rþ RRcRÞ ¼ N ðẑCj0;RCC þ RCCRCCRCCÞ�

N ẑNjE ẑN jẑC½ �;V ẑN jẑC½ �ð Þ

¼ N ðẑCj0;RCC þ RCCRCCRCCÞ �
N ẑj0;Rð Þ
N ẑCj0;RCCð Þ

This means that we can compute the Bayes factor for assessing the

evidence against the null model by using only the causal SNPs

BFðc : NULLÞ ¼
N ẑj0;Rþ RRcR
� �
N ẑj0;Rð Þ

¼ N ẑCj0;RCC þ RCCRCCRCCð Þ
N ẑCj0;RCCð Þ

and that the marginal likelihood is proportional to this expression.

CAVIARBF utilizes this result, although without a mathematical
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derivation explicitly shown in Chen et al. (2015). Note that the cor-

relation submatrix RCC is not invertible if there is almost perfect col-

linearity among the SNPs in C. To handle this case, we have

implemented an option in FINEMAP to set the posterior probability

of a causal configuration to zero if it contains at least one SNP pair

with absolute correlation greater or equal to some specified

threshold.

2.4 Posterior for c

According to the Bayesian paradigm, we want to base our inference

on the posterior of causal configurations pðcjy;XÞ. The unnormal-

ized posterior can be evaluated by combining the prior with the mar-

ginal likelihood (option 1) as

p	1ðcjy;XÞ ¼
m

k

 !�1

pk � pðyjc;XÞ;

where k is the number of causal SNPs in configuration c. In add-

ition, we can compute unnormalized posterior by using the Bayes

factor (option 2)

p	2ðcjy;XÞ ¼
m

k

 !�1

pk � BFðc : NULLÞ:

We observed that option 2 was faster than option 1 and therefore

option 2 is used by default in FINEMAP. Ideally, p	 cjy;XÞð were

normalized over all
PK

k¼1

m

k

� �
causal configurations.

Unfortunately, this is computationally intractable already for mod-

est values of K > 5. However, as we show in the results section, typ-

ically a large majority of the causal configurations have negligible

posterior probability and hence a good approximation for the

posterior can be achieved by concentrating on only those with non-

negligible probability. We explore the space of causal configurations

with a Shotgun Stochastic Search (SSS) algorithm (Hans et al., 2007)

that rapidly evaluates many configurations and is designed to dis-

cover especially those with highest posterior probability.

3 Shotgun stochastic search

We use SSS to efficiently evaluate many causal configurations and dis-

cover especially those with highest posterior probability. SSS conducts

a pre-defined number of iterations within the space of causal configur-

ations. In each iteration (Fig. 2), the neighborhood of the current

causal configuration is defined by configurations that result from

deleting, changing or adding a causal SNP from the current configur-

ation. The next iteration starts by sampling a new causal configur-

ation from the neighborhood based on p	ðcjy;XÞ normalized within

the neighborhood. All evaluated causal configurations and their

unnormalized posterior probabilities are saved in a list C	 for down-

stream analyses. The aim of the algorithm is that C	 contains all rele-

vant causal configurations, that is, those with non-negligible posterior

probabilities.

The posterior probability that SNPs in configuration c are causal

is computed by normalizing over C	

pðcjy;XÞ ¼ p	ðcjy;XÞ
.X

c2C	
p	ðcjy;XÞ:

We compute the marginal posterior probability that the ‘th SNP is

causal, also called single-SNP inclusion probability, by averaging

over all evaluated configurations

pðc‘ ¼ 1jy;XÞ ¼
X
c2C	

1ðc‘ ¼ 1Þpðcjy;XÞ:

In addition, we compute a single-SNP Bayes factor for assessing the

evidence that the ‘th SNP is causal as

BFðc‘ ¼ 1 : c‘ ¼ 0Þ ¼ pðc‘ ¼ 1jy;XÞ
pðc‘ ¼ 0jy;XÞ

�
pðc‘ ¼ 1Þ
pðc‘ ¼ 0Þ ;

where the prior probability of the ‘th SNP being causal is

pðc‘ ¼ 1Þ ¼
XK

k¼1

k

m

� �
pk:

PAINTOR, CAVIAR and CAVIARBF do not perform a stochas-

tic search but enumerate all causal configurations with k ¼ 1; . . . ;K.

When m is large but there are only few true causal SNPs, the ex-

haustive search is computationally expensive and inefficient since

most configurations make a negligible contribution to the single-

SNP inclusion probabilities.

3.1 Computational implementation
For 1 < k < K, the number of causal configurations to be evaluated

in each iteration is:

• k for deleting,
• kðm� kÞ for changing,
• m – k for adding a causal SNP

Computing p	ðcjy;XÞ requires a Cholesky decomposition with com-

plexity Oðk3Þ that is fast when K << m. Importantly, each unnormal-

ized posterior probability remains fixed throughout the algorithm.

This means that we can use a hash table (std::unordered_map in

Cþþ) to avoid recomputing p	ðcjy;XÞ when already-evaluated con-

figurations appear in another neighborhood. Inserting to and retriev-

ing from the hash table requires constant time on average. Hash table

lookups reduce the dominant computational cost of the algorithm:

exploring the vast space of causal configurations. This renders SSS

computational efficient because it traverses the space of causal

Fig. 2. Shotgun stochastic search rapidly identifies configurations of causal

SNPs with high posterior probability. In each iteration, the neighborhood of

the current causal configuration is defined by configurations that result from

deleting, changing or adding a causal SNP ( ) from the current configuration.

The next iteration starts by sampling a new causal configuration from the

neighborhood based on the scores normalized within the neighborhood. The

unnormalized posterior probabilities remain fixed throughout the algorithm

and can thus be memorized ( ) to avoid recomputation when already-eval-

uated configurations appear in another neighborhood
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configurations by moving back and forth to configurations with high

posterior probability and overlapping neighborhoods.

4 Test data generation

We obtained real genotype data on 18 834 individuals from the

National FINRISK study (Borodulin et al., 2015). The genotype

data comprise a 500 kilobase region centered on rs11591147 in

PCSK9 gene on chromosome 1 with 1920 polymorphic SNPs with

pairwise absolute correlations less than 0.99. To assess the computa-

tional efficiency and fine-mapping accuracy, we considered the fol-

lowing scenarios:

• Scenario A

Increasing number of SNPs ðm ¼ 750; 1000; 1250; 1500Þ con-

sidering causal configurations with up to K ¼ 3 or K ¼ 5 SNPs.

• Scenario B

Fixed number of m ¼ 150 SNPs considering causal configur-

ations with increasing maximum number of SNPs

ðK ¼ 1;2; 3; 4;5Þ.

We generated datasets where causal SNPs had highly correlated

proxies since this is a setting where an in-exhaustive search could

theoretically have problems. Five hundred datasets were generated

under each combination of m and K in scenarios A and B using the

following linear model:

y ¼
X
c2C

bcgc þNð�j0;r2IÞ;

where C is the set of causal SNPs, gc the vector of genotypes at the

cth causal SNP, bc and fc respectively the effect size and minor allele

frequency of the cth causal SNP and r2 ¼ 1�
P

c2C 2fcð1� fcÞb2
c .

The number of causal SNPs was five in scenario A and B. In each

dataset, the causal SNPs were randomly chosen among those vari-

ants that had highly correlated proxies (absolute correlation greater

than 0.5) among the other variants. The effect sizes of the causal

SNPs were specified so that the statistical power at a significance

level of 5� 10�8 was approximately 0.5. Single-SNP testing using a

linear model was performed to compute z-scores. Each set of

z-scores was then analyzed with CAVIARBF (default parameters)

and FINEMAP (100 iterations saving the top 50 000 evaluated

causal configurations). For both methods, the prior standard devi-

ation of the causal effects was set to 0.05 and the prior distribution

of each configuration with k causal SNPs was specified as

pðcÞ / 1

m

� �k m� 1

m

� �m�k

; for k ¼ 1; . . . ;K:

This required excluding the null configuration (k ¼ 0) from the out-

put of CAVIARBF.

5 Results

The main difference between FINEMAP and CAVIARBF is the

search strategy to explore the space of causal configurations. We

compare the computational efficiency and fine-mapping accuracy of

FINEMAP with CAVIARBF to assess the impact of replacing ex-

haustive with stochastic search. We also illustrate FINEMAP on

data from 4q22/SNCA region that contains a complex association

pattern with Parkinson’s disease (UKPDC and WTCCC2, 2011) as

well as on data from 15q21/LIPC region associated with HDL-C

(Surakka et al., 2015).

5.1 Computational efficiency
The top panel of Figure 3 shows that FINEMAP is thousands of

times faster than CAVIARBF when considering causal configur-

ations with up to three SNPs in Scenario A. The difference in pro-

cessing time becomes even larger when the maximum number of

possible causal SNPs increases (Scenario B) in the bottom panel of

Figure 3. CAVIARBF slows down quickly due to the exhaustive

search but FINEMAP’s processing time does not increase consider-

ably with increasing K. Importantly, there is no need to restrict the

number of causal SNPs in FINEMAP to small values (K � 5) as is

necessary for CAVIARBF.

5.2 Fine-mapping accuracy
We computed the maximum absolute differences between the single-

SNP inclusion probabilities in each dataset under scenario B to as-

sess the fine-mapping accuracy of FINEMAP and CAVIARBF

(Table 1). The small differences (max < 0.11, median < 6� 10�4)

show that for practical purposes FINEMAP achieves similar accur-

acy as CAVIARBF despite concentrating only on a small but rele-

vant subset of all possible causal configurations (see Discussion).

Figure 4 shows details of those SNPs in Scenario B for which the dif-

ference between the methods is larger than 0.01. We see that by

ignoring the large majority of very improbable configurations,

FINEMAP slightly overestimates the largest probabilities, that typic-

ally belong to the truly causal SNPs, and underestimates smaller

probabilities, that most often belong to the non-causal SNPs.

In addition to considering only causal configurations with up to

three SNPs under scenario A, we also ran FINEMAP with K ¼ 5 to

demonstrate the increase in fine-mapping performance in this case

750 1000 1250 1500

1s

1min

1h

5h

Number of SNPs m

FINEMAP (K = 5)
FINEMAP (K = 3)
CAVIARBF (K = 3)

1 2 3 4 5
4ms

0.1s

1s

1min

10min
1h
8h

Maximum number of causal SNPs K

FINEMAP (m = 150)
CAVIARBF (m = 150)

Fig. 3. Processing time of one locus with FINEMAP and CAVIARBF on log10

scale. Top panel: Scenario A with increasing number of SNPs allowing K ¼ 3

or K ¼ 5 causal SNPs. Bottom panel: Scenario B with 150 SNPs considering

causal configurations with different maximum numbers of SNPs. All process-

ing times are averaged over 500 datasets using one core of a Intel Haswell

E5-2690v3 processor running at 2.6 GHz
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where the true number of causal SNPs was five. We determined the

proportion of causal SNPs that are included when selecting different

numbers of top SNPs on the basis of ranked single-SNP inclusion

probabilities (Fig. 5). FINEMAP and CAVIARBF had the same per-

formance when considering causal configurations with up to three

SNPs in genomic regions with 1500 SNPs. (Similar performance was

also observed for genomic regions with different numbers of SNPs.)

As expected, FINEMAP showed better fine-mapping performance

when considering causal configurations with up to five SNPs.

5.3 4q22/SNCA association with Parkinson’s disease
Using single-SNP testing, the UKPDC and WTCCC2 (2011) found

evidence for an association with Parkinson’s disease in the 4q22 re-

gion with the lowest P-value at rs356220. A conditional analysis on

rs356220 revealed a second SNP rs7687945 with P-value 3� 10�5

that in the single-SNP testing had only a modest P-value of 0.13.

These two SNPs are in low Linkage Disequilibrium (LD)

(r2 ¼ 0:168 in the original data) but the LD was sufficient enough to

mask the effect of rs7687945 in single-SNP testing. This complex

pattern of association was replicated in an independent French data-

set (UKPDC and WTCCC2, 2011).

To test whether FINEMAP is able to pick up this complex asso-

ciation pattern, we extracted a 2 megabase region centered on

rs356220 with 363 directly genotyped SNPs from the original geno-

type data. Single-SNP testing using a logistic model implemented in

SNPTEST was performed to compute z-scores. The dataset was then

analyzed with FINEMAP using 100 iterations and prior parameter

value of s2
k ¼ 0:052. Top panel of Figure 6 shows that the evidence

that rs356220 and rs7687945 are causal is the largest among all

SNPs. In addition, the causal configuration that simultaneously con-

tains both rs356220 and rs7687945 has the highest posterior prob-

ability (0.132). The second most probable (0.113) causal

configuration contains rs356220 and rs2301134. High correlation

between rs7687945 and rs2301134 (r2 ¼ 0:974) explains why these

two SNPs are difficult to tell apart. We conclude that FINEMAP

was able to identify the complex association pattern at the second

SNP that only became identifiable after the first SNP was included

in the model. As opposed to the standard conditional analysis,

FINEMAP provides posterior probabilities for all SNPs in the region

and is thus able to simultaneously identify many causal variants

without a step-wise procedure.

5.4 15q21/LIPC association with high-density lipoprotein

cholesterol
Using single-SNP testing and conditional analysis, evidence for mul-

tiple independent association signals with high-density lipoprotein

cholesterol was found in the 15q21 region (Holmen et al., 2014;

Surakka et al., 2015). A conditional analysis using genotype data on

19 115 individuals from the National FINRISK study (Borodulin

et al., 2015) revealed three independent associations at rs2043085,

rs1800588 and rs113298164. We extracted a 6 megabase region

centered on rs2043085 with 8612 polymorphic SNPs and pairwise

absolute correlations less than 0.99 from the original genotype data.

Single-SNP testing using a linear model implemented in SNPTEST

was performed to compute z-scores. The dataset was then analyzed

with FINEMAP using 100 iterations allowing for at most five causal

variants and prior parameter value of s2
k ¼ 0:052. Top panel of

Figure 7 shows that the functional lipid SNPs rs113298164 (mis-

sense variant, Durstenfeld et al., 1994) and rs1800588 (affecting

hepatic lipase activity, Deeb and Peng, 2000) are among the vari-

ants with largest evidence of being causal. Rs2043085 that had the

lowest P-value in single-SNP testing showed less evidence of being

causal than rs7350789 (r2 ¼ 0:81). Indeed, there is substantial evi-

dence that the configuration from standard conditional analysis

(rs2043085, rs1800588 and rs113298164) is not the causal one; the

Table 1. Percentiles of absolute maximum differences between

FINEMAP’s and CAVIARBF’s single-SNP inclusion probabilities in

Scenario B

m ¼ 150 jK 1 2 3 4 5a

Max 5e� 7 8e� 3 2e� 2 1e� 1 –

99th percentile 4e� 7 2e� 3 8e� 3 4e� 2 –

95th percentile 3e� 7 5e� 4 3e� 3 1e� 2 –

Median 4e� 8 4e� 7 2e� 5 6e� 4 –

aCAVIARBF could not compute single-SNP inclusion probabilities due to a

memory allocation failure (std::bad_alloc).
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top 3 configurations from FINEMAP have between 50 and 190

times higher likelihood values. This demonstrates the importance of

jointly modeling the SNPs in the region. Given that FINEMAP com-

pletes in less than 30 s (Intel Haswell E5-2690v3 processor running

at 2.6GHz) while the exhaustive search implemented in CAVIARBF

is estimated to run over 300 years on these data, this example dem-

onstrates the utility of FINEMAP as a tool to carry out future fine-

mapping analyses.

6 Discussion

GWAS have linked thousands of genomic regions to complex dis-

eases and traits in humans and in model organisms. Fine-mapping

causal variants in these regions is a high-dimensional variable selec-

tion problem complicated by strong correlations between the vari-

ables. We introduced a software package FINEMAP that

implements an important solution to the problem: a stochastic

search algorithm to circumvent computationally expensive exhaust-

ive search. In all datasets we have tested, FINEMAP achieves similar

accuracy as the exhaustive search but uses only a fraction of process-

ing time. For example, fine-mapping a genomic region with 8612

SNPs allowing for at most five causal variants completes in less than

30 s using FINEMAP while the exhaustive search implemented in

CAVIARBF is estimated to run over 300 years. Computationally ef-

ficient algorithms are a key to handle the ever-increasing amount of

genetic variation captured by emerging sequencing studies as well as

to scale up the analyses to whole chromosomes or even to whole

genomes.

FINEMAP uses a Shotgun Stochastic Search (SSS) algorithm

(Hans et al., 2007). SSS has been inspired by Markov Chain Monte

Carlo (MCMC) algorithms that are widely used for Bayesian infer-

ence. For a review on MCMC, see Andrieu et al. (2003). Standard

MCMC methods, such as the Metropolis-Hastings algorithm

(Hastings, 1970; Metropolis et al., 1953) and Gibbs sampler

(Geman and Geman, 1984), perform a sequence of steps in the par-

ameter space via a stochastic transition mechanism that ensures a

valid approximation to the target distribution. MCMC can often

quickly reach an interesting region of the parameter space, but, at

each step, it only considers one of the possible neighboring states.

This means that MCMC is often slow to explore a high-dimensional

state space. To improve on this, SSS generates a whole set of neigh-

boring configurations at each iteration and saves them all for further

use in probability calculations. This way a large number of param-

eter configurations with relatively high probability is quickly

explored.
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their configuration by . Dashed lines correspond respectively to a single-

SNP Bayes factor of 100 and P-value of 5� 10�8. Squared correlations are

shown with respect to rs356220
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FINEMAP is accurate when the set of causal configurations

explored captures a large majority of the total posterior probability.

Our results show that this is the case in all datasets we have tested:

the maximal error in any single-SNP inclusion probability is smaller

than 0.11 across all 2000 datasets of Scenario B. Using exhaustive

search, we observed in genomic regions with 750 SNPs of which five

were truly causal that on average only the top 123 (median ¼ 14)

causal configurations out of all possible 70:3� 106 already cover

95% of the total posterior probability. (Similar results were also

observed for genomic regions with different numbers of SNPs.) This

explains why an efficient stochastic search can achieve accurate re-

sults in a tiny fraction of the processing time of an exhaustive search.

Our datasets were generated by requiring that the causal SNPs had

highly correlated proxies (absolute correlation greater than 0.5)

among the other variants. The high accuracy of FINEMAP through-

out these tests makes us believe that FINEMAP is accurate in typical

GWAS data with complex correlation structure among the SNPs.

Although we have not encountered any dataset where FINEMAP

would not have performed well, theoretically, it remains possible

that an in-exhaustive search could miss some relevant causal config-

urations. A simple way to assess possible problems is to run many

searches in parallel and compare and combine their outcomes.

Another way is parallel tempering (Geyer, 1991) where several

searches are run in parallel in different ‘temperatures’. Intuitively,

increasing temperature flattens the likelihood function and hence a

search in a higher temperature moves around more freely than one

in a colder temperature. Such an approach, together with complex

global transition mechanisms to escape from local modes, was intro-

duced in an evolutionary stochastic search algorithm by Bottolo and

Richardson (2010) that was later tailored for genetic analyses of

multiple SNPs and multivariate phenotypes in the software package

GUESS (Bottolo et al., 2013). These two papers could give ideas

how FINEMAP could be further modified if trapping into local

modes of the search space were encountered in real data analyses of

GWAS regions.

Summary data based fine-mapping methods require a high-

quality correlation estimate. Ideally, the correlation matrix is com-

puted from the same genotype data from which the z-scores origin-

ate. In that case, for quantitative traits, the equations in Section 2.1

connecting original genotype-phenotype data and GWAS summary

data are exact and hence no information is lost by working with

summary data. For case-control data, a normal approximation to

the logistic likelihood causes some difference between the two

approaches but the difference is expected to be small with current

GWAS sample sizes (Pirinen et al., 2013). For some populations,

sequencing of many thousands of individuals have either already

been carried out or will complete soon. Such reference data allow re-

liable fine-mapping down to low-frequency variants also when the

original genotype data are not available. A more challenging prob-

lem is large meta-analyses that combine individuals from varying

ancestries. Assuming that the causal variants are included in the

data and have the same effect sizes across the ancestral backgrounds,

FINEMAP can be run with the sample size weighted SNP correl-

ation matrix. If these assumptions are not met, then a hierarchical

model allowing separate SNP correlation structures in each ancestry

would perform better (Kichaev and Pasaniuc, 2015).

Summary data based fine-mapping methods assume that the

causal variants are included in the data. Recent advances in z-score

imputation (Lee et al., 2013; Pasaniuc et al., 2014) help to satisfy

this requirement also when a causal variant might not be genotyped.

However, some SNPs are difficult to impute because they are not

tagged well by the SNPs in the data. We do not expect to capture

well the association signal from such SNPs either through imput-

ation or indirectly through other SNPs in the data.

The output from FINEMAP is a list of possible causal configur-

ations together with their posterior probabilities and Bayes factors

similar to CAVIARBF. These probabilities contain all the informa-

tion from the model needed for downstream analyses. Examples of

useful derived quantities are the single-SNP inclusion probabilities,

single-SNP Bayes factors, credible sets of causal variants (WTCCC

et al., 2012) and a regional Bayes factor to assess the evidence

against the null model where none of the SNPs are causal (Chen

et al., 2015). We believe that FINEMAP, or related future applica-

tions of shotgun stochastic search to GWAS summary data, enables

unprecedented opportunities to reveal valuable information that

could otherwise remain undetected due to computational limitations

of the existing fine-mapping methods.
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