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Abstract

Physiological indicators of social and nutritional stress can provide insight into the responses of species to changes in food
availability. In coastal British Columbia, Canada, grizzly bears evolved with spawning salmon as an abundant but spatially
and temporally constrained food source. Recent and dramatic declines in salmon might have negative consequences on
bear health and ultimately fitness. To examine broadly the chronic endocrine effects of a salmon niche, we compared
cortisol, progesterone, and testosterone levels in hair from salmon-eating bears from coastal BC (n = 75) with the levels in a
reference population from interior BC lacking access to salmon (n = 42). As predicted, testosterone was higher in coastal
bears of both sexes relative to interior bears, possibly reflecting higher social density on the coast mediated by salmon
availability. We also investigated associations between the amount of salmon individual bears consumed (as measured by
stable isotope analysis) and cortisol and testosterone in hair. Also as predicted, cortisol decreased with increasing dietary
salmon and was higher after a year of low dietary salmon than after a year of high dietary salmon. These findings at two
spatial scales suggest that coastal bears might experience nutritional or social stress in response to on-going salmon
declines, providing novel insights into the effects of resource availability on fitness-related physiology.
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Introduction

Understanding the physiological responses of organisms to

stressors is essential in predicting long-term consequences of

environmental change [1–3]. Food limitation is a stressor that can

directly affect population productivity by altering survival and

reproduction [4]. Moreover, the distribution, abundance, and

quality of food affect populations by mediating social structure and

behavior [5]. Monitoring physiological indicators of nutritional

and social stress may provide an early warning of population-level

responses to environmental change [6]; this approach is particu-

larly valuable in taxa such as ursids where long-term population

productivity is difficult or impossible to quantify.

Hair provides an excellent approach for examining physiolog-

ical responses to food resource shortages as it can be chemically

analyzed to determine both diet and steroid hormone levels. In

contrast with serum and feces, which are commonly used for

measuring steroid hormones in wildlife and reflect time periods of

minutes to hours, hair reflects endocrine activity integrated over

several months. Consequently, steroids in hair are insensitive to

short-term stressors [7] and can be related to longer-term life

history events and stages [8]. Steroid hormones are incorporated

into growing hair via the blood vessel that feeds the hair follicle

and/or from the follicle itself, which can synthesize steroids locally

[8–10].

An increasing number of studies, most focusing on the

glucocorticoid stress hormone, cortisol, have shown that steroid

measurements from hair provide biologically meaningful infor-

mation in humans, captive animals and wildlife [7,11–18].

Recently, several studies have provided biological validation in

ursids, including grizzly bears [17,19], polar bears (Ursus maritimus)

[16,18,20,21], and Asiatic black bears (Ursus thibetanus) [22].

Notably, MacBeth [23] found relatively high levels of cortisol in

hair from an emaciated grizzly and an emaciated black bear (Ursus

americanus) compared with 151 other grizzly bears. Similarly,
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Malcolm et al. [22] documented higher cortisol in hair of Asiatic

black bears kept under stressful conditions on a bile farm and those

recently admitted to a shelter compared with bears already living

at the shelter. Moreover, paired samples showed that cortisol in

hair decreased as bears acclimatized to the shelter [22].

As a long-lived species that is acutely sensitive to large-scale

anthropogenic disturbances [24,25], grizzly bears serve as a model

system for understanding the physiological effects of food resource

declines. For millenia, grizzly bears (Ursus arctos) in coastal British

Columbia, Canada, and beyond have evolved with abundant

Pacific salmon (Oncorhynchus spp.) that becomes available each year

during the autumn spawning event [26,27]. Salmon allows bears

to meet their energetic requirements more efficiently than a diet of

plants alone [28–30]. Moreover, nutrients from salmon come at a

critical time before hibernation when pre-denning fat reserves are

positively correlated with over-winter survival and reproduction in

the following year [31–33]. Among populations, grizzly bears with

access to salmon have higher population density, body size and

litter size [34].

Historically, salmon returns have been a relatively predictable

annual event for coastal bears, though the number and timing of

spawners varies among years and streams [35]. Despite some

exceptions, there have been widespread or regional declines in

salmon abundance through much of coastal British Columbia [36–

38]. Today, fewer than 4% of streams monitored in coastal BC

consistently meet their salmon escapement targets (i.e., number of

salmon that escape human fishing nets and return to their natal

streams to spawn) [39]. Notably, the hair of bears in North

America grows for approximately six months from spring to fall

[40–42], during which salmon are consumed for three months

[Table 1].

To examine whether endocrine levels are potentially influenced

by variation in salmon availability and consumption, we compared

hormone levels in a population of coastal bears with access to

salmon with an interior population without access to salmon.

Among coastal bears only, we examined the relationship between

hormones and salmon consumption (determined by stable isotope

analysis). Between regions, we predicted that cortisol, as a general

indicator of physiological stress, would be elevated in response to

nutritional stress [43,44] or social instability [45]. Among coastal

bears, we predicted a negative relationship between cortisol and

salmon consumption, reflecting either a nutritional or social

benefit of access to more salmon.

To date, no studies have examined testosterone and progester-

one in bear hair. Testosterone plays an important role in

reproduction and also varies in relation to the social competitive

environment above levels required for reproduction [46–49]. In

particular, testosterone facilitates behavioral and physical traits

necessary to win social conflicts in fitness-enhancing situations

[49,50]. Therefore, we predicted that testosterone would be

elevated in coastal bears, where population density is higher and

social interactions occur over temporally and spatially constrained

salmon runs. Among coastal males, we predicted higher testoster-

one in males that consume more salmon, possibly reflecting a

nutritional benefit of eating salmon or higher social density in

areas where more salmon is available to be eaten.

Progesterone, which is elevated in females during pregnancy

and pseudopregnancy, should be positively associated with

population-level reproductive activity [51], because hair grows

over the time interval that incorporates follicular development,

ovulation, and mating. Given the higher productivity of bear

populations with access to salmon [29], we predicted that

progesterone would be higher in coastal compared with interior

females.

Materials and Methods

Ethics statement
Samples were collected under animal care protocols approved

by the Chancellor’s Animal Research Committee at the University

of California Santa Cruz (WILMc0904) and the Animal Care

Committee at the University of Calgary (BI10R-01). Our sampling

sites occurred in the traditional territory of the Heiltsuk Nation as

well as in provincial parks. Permission to collect samples from

these areas was granted by the Heiltsuk Integrated Resource

Management Department and BC Parks (Park Use Permit

Number 103586).

Study areas and sample collection
We collected bear hair samples from coastal and interior BC

(Fig. 1). On the coast, our core study area was located near Bella

Bella (52̊13915.8’’N, 127̊45928.4’’W) where we collected hair

samples using standard, grid-based DNA mark-recapture methods

[52–54]. In a 2009 pilot year, we sampled over 2500 km2 at 92

barbed-wire hair-snagging stations placed within 565 km grid

cells. In 2010 and 2011, we expanded the area to 5000 km2 with

71 snag stations in 767 km cells. We obtained additional hair

from archived samples of grizzly bears killed in coastal BC in the

springs of 2004–2009. These samples came from a larger area

extending from Knight Inlet in the south (50̊29944.5’’N,

131̊36930.5’’W) to the Khutzeymateen (54̊59928.6’’N,

122̊36913.8’’W) grizzly bear management unit in the north [55].

Coastal bears assimilate a substantial portion of their yearly dietary

protein from salmon [56]. These bears inhabit the coastal western

hemlock biogeoclimatic zone of BC, which is characterized by

high precipitation (average 2228 mm/year) and a temperature

averaging 8uC [57].

For comparison with coastal bears, we obtained archived hair

from bears in the interior of BC. The sampling extent ranged from

the Moberly grizzly bear management unit in the south

Table 1. Approximate time line of hair growth and corresponding yearly natural history events of grizzly bears.

May-October November-April

Hair Growth Hair grows, incorporating steroid hormones & isotopic dietary
information [40–42]. May: old hair shed, new coat starts to grow.1

Hair stops growing over winter & does not incorporate steroid hormones or
dietary information.

Bear Biology May-July: Bears eat mainly vegetation & some terrestrial meat
[61,105]. Breeding season, increases in male-male aggressive
interactions[79]. Aug.-Oct: Coastal bears aggregate on salmon streams.
Bears gain body mass for over-winter survival & reproduction [31–33].

Hibernation. Cubs born. Bears may lose .30% of their body mass [31]

1All hair samples collected in May were grown in the previous year.
doi:10.1371/journal.pone.0080537.t001

Ecophysiology of a Salmon Foraging Niche
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(55̊32925.4’’N, 129̊37930.6’’W) to the Hyland and Muskwa units in

the north (59̊4698.6’’N, 126̊4092.3’’W). Bears in these regions eat

plants and terrestrial meat and do not have access to anadromous

salmon or kokanee [56]. In contrast with coastal bears, interior

bears inhabit a region with lower precipitation (330–570 mm/

year) and a continental climate characterized by warm summers,

cool winters, and an average yearly temperature between -3 and

3uC [57,58].

Regarding human interactions, both bear populations have

coexisted with local First Nations for thousands of years; today, the

human population density in both areas is relatively low compared

with elsewhere in the province [58,59]. Industrial activities such as

logging occur in both areas but the extent of human activity,

particularly road density, is higher in the interior [57,60].

All hair samples were collected in spring and therefore reflected

hair grown from spring to fall of the previous year (Table 1).

Notably, bear hair grows—and incorporates hormones—at

approximately one cm/month over the six month period when

bears are most active [61]. We stored the samples in paper

envelopes at room temperature in a dark, dry environment [28].

Genetic Analyses
After collection, we sent all samples to a commercial laboratory

(Wildlife Genetics International, Nelson, BC, Canada) where

seven microsatellite markers were used to identify individual bears

as well as their species and sex [62]. We used the remaining hair

shafts for stable isotope analysis and hormone assays. When

multiple samples collected from single or different snag stations

were identified genetically as being from one individual in the

same year, we pooled samples to obtain enough material for

hormone assays.

Stable isotope analysis to quantify salmon consumption
We prepared samples for stable isotope analysis as previously

described [63,64]. Subsequently, we sent the samples to the

University of Saskatchewan’s stable isotope facility where the

ratios of nitrogen (15N/14N) and carbon (13C/12C) stable isotopes

were measured using gas chromatography mass spectrometry. To

estimate the proportion of salmon in the diet of each bear, we used

a Bayesian mixing model [65,66]. Following other studies of

coastal grizzly bears, we assumed that bears’ diets consist only of

plant or salmon-based protein [56]. We used previously published

estimates of anadromous salmon and plant stable isotope

signatures, standard deviations, and fractionation rates [56].

Analysis of steroids in hair
Our protocol for analyzing steroids in hair was similar to that

previously published [67]. Additional details on hormonal assays

and validations are provided as supporting information (Fig. S1,

Table S1, Text S1).

Bear density estimates
Across the province, we classified bear density in coastal and

interior bears based on government estimates for each of the grizzly

bear management units of BC [55]. In the grid-based coastal study

area, we divided the study area into 10 units of 342–900 km2 each

Figure 1. Bear hair collection areas. We collected grizzly bear hair samples (circles) from coastal and interior British Columbia (BC) in the springs
of 2004–2011. The samples came either from government archives of hunted bears or hair snagging stations on the central coast of BC. The bottom
left inset shows the coastal study area where we sampled from hair snagging stations in springs of 2009–2011.
doi:10.1371/journal.pone.0080537.g001

Ecophysiology of a Salmon Foraging Niche
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based on BC’s conservation landscape units [68]. We estimated

bear density within a landscape unit by dividing the number of

genetically unique individuals detected in 2010 and 2011 by the

number of hair snag stations (all sampled with the same effort) in

that landscape unit. We used this approach to provide a generalized

indicator of density based on bear detections at several nearby snag

stations. Therefore, we used number of hair snags rather than unit

area as our denominator in this calculation. Bear density estimates

fit naturally into high and low classifications.

Data Analysis
All analyses were conducted in R [69]. Before analysis, we

removed outliers falling .2 SD from the mean for cortisol and/or

testosterone (n = 4). Three of these samples had extreme values

that were 15–37 times higher than the mean and were beyond the

range of the hormone assays prior to dilution. The fourth sample

was a multivariate outlier for cortisol and testosterone, identified

using the gap test [70]. In future, and if similar outliers are a

consistent finding, they may be an interesting subset to consider,

possibly reflecting high physiological stress. However, they might

also be caused by extreme cases of external contamination not

removed by our wash procedure or an unidentified error in the

laboratory. Here, we assumed the latter possibility and excluded

these individuals from statistical analysis. One coastal bear was

excluded for having a non-coastal dietary salmon signature; we

suspected this was due to an error or mix-up in the database. To

improve normality, we applied a negative reciprocal transforma-

tion to cortisol and testosterone and an arcsin transformation to

our proportion of salmon in diet metric [71]. Progesterone did not

require a transformation, possibly because of few samples from

female bears (n = 21). We used t-tests to check for differences in

samples collected from hunters and hair snags in coastal BC.

Comparison of coastal and interior bear

populations. We developed candidate linear regression models

to examine the effects of region, sex, and bear density on cortisol

and testosterone. Model sets for both hormones included an

interaction between region and sex because we predicted that

males and females might respond differently to salmon availability

across regions as well as a null model containing a constant. We

ranked models using Akaike information criterion, corrected for

small sample size (AICc), and considered our top model set to

include all candidate models with a DAICc score ,2. To assess the

adequacy of top models, we plotted histograms of the residuals,

residuals versus predictors and residuals versus predicted values. In

addition, we examined Cook’s distance as an indicator of

influential observations. Variance inflation factors for top models

ranged from 1.0 to 2.0 indicating low collinearity among variables.

For comparisons of progesterone, we used a linear model to

compare coastal (n = 15) to interior females (n = 9) and a t-test to

examine differences between females (n = 21) and males (n = 4).

Salmon-hormone relationships in coastal male

bears. For these analyses, we excluded female bears because

of their small sample size (n = 15 of 70 bears). We first explored

our prediction of a direct relationship between cortisol or

testosterone and salmon consumption among all coastal bears

(n = 55) using linear regression. In addition, we posited that the

amount of salmon bears consumed in autumn would influence

their nutritional and physiological state emerging from hibernation

in the following year; therefore, we examined whether there was a

lag between hormone levels and salmon consumption by

examining trends over time. To address this question, we focused

on cortisol and testosterone in coastal males from our grid-based

study area (n = 28; where we had a field-based measure of relative

density) to compare the effects of salmon consumption, year, and

bear density using linear models, as described above. We centred

and scaled the salmon consumption metric so that parameter

estimates of variables would be comparable. Variance inflation

factors for all models ranged from 1.0 to 1.4. Finally, we used f-

tests and paired t-tests to examine trends in individuals detected

(and measured with hormonal and isotopic assays) in two years of

the study (n = 7).

Results

General patterns
Overall, the median cortisol concentration was 8.1 pg/mg

[range: 5.3–26.1] in 113 hair samples, the median testosterone was

5.6 pg/mg [range: 3.1–21.1] in 112 samples, and the median

progesterone was 26.2 pg/mg [range: 9.1–46.2] in 27 samples.

Among coastal bears, cortisol and testosterone were similar in hair

samples collected from hunters and snag stations so samples were

pooled in subsequent analyses (cortisol: t = 0.27, df = 66, p = 0.79;

testosterone: t = 20.23, df = 67, p = 0.82).

Comparison of hormones in coastal and interior bear
populations

The most striking difference between regions was higher

testosterone in coastal bears of both sexes, which is consistent

with our prediction of higher social density among bears with

access to salmon (Fig. 2B; Table 2). As expected, the top model

also revealed higher testosterone in males than females (Fig. 2B;

Table 2). By contrast, the top model for cortisol was the null

model, suggesting no differences between coastal and interior bear

populations or sexes (Fig. 2A; Table 2). Notably, bear density was

not an important predictor of cortisol or testosterone (Table 2).

Progesterone did not differ between regions (Fig. 2C; Table 2) and

was higher in females (t = 26.2, df = 15, p,0.001; Fig. 2C).

Salmon-hormone relationships in coastal male bears
As predicted among all coastal males (n = 55), hair cortisol

decreased with increasing dietary salmon, though very marginally

(adj R2 = 0.06, F1,53 = 4.2, p = 0.046; Fig. 3A). In the smaller

coastal study area that we sampled consistently in three years

(n = 28), our model selection approach identified the effects of

salmon consumption and year as being important predictors of

cortisol (Table 3). Similar to the trend in the larger dataset, cortisol

decreased marginally with increasing salmon consumption.

Moreover, the top model set revealed that cortisol was higher in

2008 and 2009 after years of low average salmon consumption

compared with 2010 after a year of higher salmon consumption

(Fig. 3B; Table 3).

In contrast with our prediction, there was no evidence of a

relationship between testosterone and dietary salmon among all

coastal males (adj R2 = 0, F1,53 = 0.97, p = 0.33). In the grid-based

coastal study area, the top model for testosterone was the null,

revealing that the variables we examined explained little of the

variability in hair testosterone. However, the top model set

included weak effects of bear density and salmon consumption

(Table 3). In contrast with our predictions, testosterone decreased

with increasing salmon consumption and was lower in areas of

high bear density.

Trends in the seven bears sampled in both years reflected those

at the population level; these bears had more variable cortisol in

2009 than in 2010 (F5,5 = 25.3, p = 0.003; Fig. 4A). Cortisol levels

in several bears were lower in 2010 than 2009, but the difference

was not significant (paired t = 1.80, df = 5, p = 0.13). Testosterone

did not show a consistent trend between years (t = 0.03, df = 5,

p = 0.98; Fig. 4B).

Ecophysiology of a Salmon Foraging Niche
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Discussion

General patterns
Hormone measurements in hair—which reflect long-term

endocrine information—provide novel insights into the physio-

logical responses of wildlife to environmental change [8,16–

18,20,21]. Interestingly, the cortisol values in our study (median:

8.1 pg/mg, range: 5.3–26.1) were higher than those previously

reported in 151 live-captured grizzly bears from Alberta, Canada

(median: 2.8 pg/mg, range: 0.6–43.3 pg/mg; [17]). These differ-

ences are probably methodological but could also relate to

differences in population densities, habitat, genetics, or the

dynamics of natural and anthropogenic stressors.

Our findings show that immunoreactive progesterone and

testosterone can be measured relatively easily in addition to

cortisol from the same hair sample. Moreover, hormone concen-

trations revealed expected differences between sexes. Elevated

testosterone in hair of males reflects higher testosterone levels in

males during the breeding season, which occurs in June and July

[72]. Similarly, progesterone is elevated in female bears following

fertilization, which occurs in spring or early summer [73]. Though

the corpora lutea are mostly dormant until implantation occurs in

late fall, they produce enough progesterone that levels are elevated

above baseline in pregnant and pseudo-pregnant females [74,75].

Comparison of coastal and interior bear populations
This study also provides insight into the physiological implica-

tions of living in an environment with a nutritious but seasonally

and spatially constrained resource. Salmon provides nutritional

benefits to bears [31,32,34]; however, higher testosterone in

coastal bears could have fitness costs such as increased energetic

expenditure and risk of injury from intraspecific interactions, as

well as impaired immunity [47,48]. Differences in testosterone

between coastal and interior bears could also relate directly to diet.

Spawning salmon have high levels of androgens, which could

potentially increase circulating testosterone levels in bears, which

have access to salmon for approximately three of the six months of

hair growth [76]. However, we found no support for this

possibility as dietary salmon and testosterone were not correlated

in coastal males. Moreover, cortisol was not higher in coastal

bears, even though spawning salmon have extremely high levels of

glucocorticoids [77].

The higher testosterone levels of coastal bears might relate to

their larger body size compared with interior bears. Previous

studies of bears have shown that testosterone is positively linked

with body size in males during the breeding season [78,79];

however, it is not clear whether the same trend would occur

between populations differing in average size or whether the

relationship would be detectable in hair, which integrates

endocrine activity during the breeding and non-breeding periods.

Our findings show that testosterone did not vary with provincial

estimates of bear density. It is possible that the spatiotemporal

distribution of resources at scales smaller than region is a more

important mediator of social interactions than the number of bears

in a region [80,81]. Indeed, several characteristics of habitat and

resource availability would affect the frequency and type of social

interactions (i.e., social density) between regions. Whereas interior

bears use a variety of habitats from the treeline to the alpine

[58,82], coastal bears spend most of their time along valley

bottoms due to less usable habitat on the coast [83]. Food sources

also differ; interior bears feed on vegetation and opportunistically

on ungulates [58,80,84]. These bears use productive habitats such

as burns and berry patches but the feeding aggregations are less

pronounced compared with those on spawning salmon streams

[85,86]. Indeed, well-described social interactions over access to

salmon often lead to aggressive encounters and the establishment

of dominance hierarchies [80,86]. An influx of bears from the

interior to salmon spawning streams in the fall would make the

social dynamics particularly intense.

In coastal female bears, higher testosterone compared with

interior females might reflect higher reproductive rates. However,

Figure 2. Mean and standard error for cortisol (A), testosterone
(B), and progesterone (C) across regions and sexes. (A) Cortisol
was similar between sexes and regions in grizzly bears. (B) Testosterone
was higher in males and coastal bears. (C) Progesterone was higher in
females. Cortisol and testosterone were reciprocal transformed (-1/x) to
improve normality; progesterone is expressed in pg/mg of hair. Sample
sizes are displayed below the error bars.
doi:10.1371/journal.pone.0080537.g002

Ecophysiology of a Salmon Foraging Niche
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this is unlikely the only explanation as the latter stages of

pregnancy—when testosterone levels are highest—occur in winter

when hair is not growing and does not incorporate steroid

hormones. Alternatively, higher testosterone in coastal females

might be modulated by social conditions. Though usually

considered with respect to reproductive traits in males, testoster-

one in females has been linked with defending resources and

acquiring food [87,88]. In female bears, elevated testosterone

might be advantageous in obtaining salmon, a food that increases

reproductive success but that can be difficult to obtain because of

intense competition with other bears [34,86]. Testosterone in

female bears could also relate to aggressive encounters to prevent

infanticide by males or other females on salmon spawning streams

[89,90]. Additional studies of female bears with and without cubs

would be helpful in understanding factors affecting testosterone

levels in females.

In contrast with testosterone, cortisol was similar between

regions, suggesting that coastal and interior bears experience

similar levels of physiological stress or have different baseline

cortisol levels. One possible explanation for the lack of a difference

is that the nutritional benefit of access to salmon is overwhelmed

by costs imposed by higher social density among coastal bears.

Similarly, there was no evidence that progesterone differed

between populations, possibly because we were not able to

account for age, reproductive history (e.g., inter-birth interval and

presence of cubs) or reproductive success (i.e., successful versus

pseudo-pregnancies).

Table 2. Estimates and standard error (in parentheses) of parameters in the top models (DAICc#2) describing cortisol,
testosterone and progesterone in hair of coastal (n = 70) and interior (n = 42) grizzly bears.

Response (models compared) Intercept Sex = Female Region = Interior Sex* Region Bear Densitya

Cortisol (10) 20.119* (0.003) – – – –

Testosterone (8) 20.161* (0.007) 20.031* (0.013) 20.028* (0.011) – –

Progesteroneb (2) 29.2* (1.67) Sc – NEd NEd

*Significant at a= 0.05
aBased on government estimates of density in grizzly bear management units
bFemales only
cSignificant, a separate t-test showed that females (n = 21) had higher progesterone than males (n = 4)
dNot examined
doi:10.1371/journal.pone.0080537.t002

Figure 3. Evidence suggesting a relationship between cortisol and dietary salmon in male coastal grizzly bears. (A) Across all coastal
males (n = 55), cortisol was weakly but negatively correlated with dietary salmon. (B) In the smaller, grid-based study area, mean cortisol was lower in
2010 following a year of high population-level dietary salmon than in 2009 following a year when bears ate less salmon. Note that we have no dietary
salmon data from 2007, which might influence cortisol in 2008. (B). Letters above the error bars show significantly different groups. Error bars
represent standard error. Sample sizes are presented below the error bars. To improve normality of residuals, cortisol was reciprocal-transformed (-1/
x) and dietary salmon was arcsin transformed.
doi:10.1371/journal.pone.0080537.g003

Ecophysiology of a Salmon Foraging Niche
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Relationships between hormones and salmon
consumption among coastal bears

Two lines of evidence support our prediction that cortisol would

be higher in coastal bears that eat less salmon. Among coastal

males, there was a weak but significant negative relationship

between cortisol and dietary salmon. Elevated cortisol could be an

adaptive response to food shortage to mobilize fat [73]. Cortisol

might also play a role in bone resorption during periods of

nutritional stress [91] or affect the amount and type of foods

consumed [92]. Moderately elevated glucocorticoid levels could

also improve foraging efficiency during reduced food availability

by enhancing spatial memory [93], increasing exploratory

behavior [94], or promoting innovation of novel foraging

approaches [95].

The negative association between diet and cortisol could also

reflect lower social tension when there are more salmon to eat.

Grizzly bears in coastal areas have a social hierarchy with larger,

older males being dominant over smaller, younger males [86].

Bears would be more tolerant of each other and would not have to

vie for access to salmon when they are abundant [96].

Additional evidence of a direct relationship between cortisol and

dietary salmon comes from our grid-based study area where we

sampled consistently over three years. Cortisol was higher in 2008

and 2009 after years of low dietary salmon than in 2010 after a

year of higher dietary salmon. This suggests that the amount of

salmon bears consume in fall influences circulating cortisol and

therefore deposition in hair in the following spring. Previous

studies have established that bears entering hibernation in poor

body condition have lower body mass and reproductive success in

the following year [31–33]. Elevated cortisol in spring might play a

role in minimizing further weight loss after a year of low dietary

salmon by maximizing energy intake from low-fat, herbaceous

foods, which are available in spring [97,98].

More data over several years, especially on individuals sampled

multiple times, would help determine whether cortisol levels in

hair relate to dietary salmon in the year of hair growth or during

the spawning salmon season in the previous year. It would also be

possible to segment hair corresponding to spring and fall periods in

Table 3. Estimates and standard error (in parentheses) of parameters in the top models (DAICc#2) describing relationships
between hormones and variables relating to salmon consumption among coastal male bears (n = 28).

Response (models
compared) DAICc Intercept Salmon Consumption Yeara (2008) Yeara (2009)

Bear Densityb

( = High)

Cortisol (8) 0 20.131 (0.007) 20.011 (0.006) 0.026 (0.015) 0.030* (0.010) –

0.86 20.133 (0.007) – 0.042* (0.013) 0.027* (0.013) –

Testosterone (8) 0 20.161 (0.011) – – – –

0.76 20.125 (0.023) 20.022 (0.012) – – 20.049 (0.028)

1.25 20.161 (0.011) 20.012 (0.011) – – –

1.44 20.142 (0.022) – – – 20.025 (0.025)

*Significant at a= 0.05
a2010 is the reference category
bBased on field estimates of bear density; low bear density is the reference category.
doi:10.1371/journal.pone.0080537.t003

Figure 4. Hormones in male bears detected in 2009 and 2010 reflected trends at the population level. Cortisol was generally higher and
more variable in 2009 following a year of low salmon abundance compared with 2010 after a year of relatively high salmon abundance (A).
Testosterone did not show a consistent trend between years (B). Each line type and point symbol represents an individual bear. No data were
included from 2008 because none of the samples from recaptured bears in that year had sufficient material for hormonal analysis.
doi:10.1371/journal.pone.0080537.g004
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order to partition whether cortisol relates to the previous or the

same-year dietary salmon [99,100]. In future studies, it will be

important to monitor factors such as temperature, productivity of

herbaceous foods, and precipitation, which could affect hormone

levels and vary among years [101]. More studies are required to

determine whether elevated cortisol has negative fitness conse-

quences for bears, as has been shown for corticosteroids deposited

into hair of polar bears [16] and feathers of sparrows [102].

Contrary to our prediction, we found only weak evidence of a

relationship between testosterone and salmon consumption and

the trend was opposite to our initial prediction. The negative

association between testosterone and salmon consumption might

occur if there is less competition for salmon when more salmon is

available. This possibility could be further explored by examining

the effect of salmon availability, which would influence social

conditions, in addition to salmon consumption.

Conclusion

This work shows that variation in salmon abundance and

consumption affects bears by altering nutritional and/or socially-

mediated physiology. If salmon returns consistently decline in the

future, grizzly bears that do not obtain enough salmon might

experience chronically elevated cortisol and testosterone via

increased nutritional and/or social stress, with unknown, but

probably adverse, fitness costs. Moreover, our findings underscore

the importance of considering implications for wildlife that share

resources with humans as part of ecosystem-based fisheries

management strategies [103,104]. Ultimately, this work adds to

a growing understanding of the value of measuring stress and

reproductive measures in wildlife hair as indicators of broader

population health and processes [8,16,19].
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