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Abstract: Antagonism of transient receptor potential vanniloid-1 (TRPV1) and desensitization of
transient receptor potential ankyrin-1 (TRPA1) nociceptors alleviate inflammatory bowel diseases
(IBD)-associated chronic pain. However, there is limited literature available about their role in
regulating the mucosal layer, its interaction with host physiology, and luminal microbial community.
The present study focuses on the effects’ intra rectal administration of capsazepine (modulator
of TRPA1/TRPV1 expressing peptidergic sensory neurons) on colonic mucus production and gut
health. We performed histological analysis, gut permeability alteration, gene expression changes,
metabolite profiling, and gut microbial abundance in the ileum, colon, and cecum content of these
animals. Intra rectal administration of capsazepine modulates TRPA1/TRPV1-positive nociceptors
(behavioral pain assays) and resulted in damaged mucosal lining, increased gut permeability, and
altered transcriptional profile of genes for goblet cell markers, mucus regulation, immune response,
and tight junction proteins. The damage to mucosal lining prevented its role in enterosyne (short
chain fatty acids) actions. These results suggest that caution must be exercised before employing
TRPA1/TRPV1 modulation as a therapeutic option to alleviate pain caused due to IBD.

Keywords: capsazepine; mucin; nociceptors; TRPA1; TRPV1

1. Introduction

Sensory neurons innervating the gastrointestinal tract play a significant role in IBD [1].
The release of neuropeptides, calcitonin gene-related peptide (CGRP), and substance P (SP),
from sensory neurons, induce vasodilation and activation of immune cells [2]. Transient
receptor potential (TRP) ion channels, particularly Vanilloid-1 (V1) and Ankyrin-1 (A1),
have a significant expression in sensory neurons. Recently, efforts to classify colonic sensory
neurons using single-cell RNA sequencing analysis suggest a high percentage of TRPA1+ve

sensory peptidergic neurons that innervates the colon [3]. Moreover, it has been reported
that TRPA1 selectively co-expresses over a larger subset of sensory neurons that express
TRPV1 [4] and are found to be involved in symptoms of IBD [1,5] or colonic distension pain
in rodents [6]. In the rodent model of dextran sodium sulfate (DSS)-induced colitis, neuronal
TRPA1 sensitization in the colon resulted in SP release that contributes to inflammation [1].
In the same study, TRPA1 agonist 2,4,6-trinitrobenzene-sulfonic-acid (TNBS) was used
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for induction of colitis in mice [1]. Evidence exists on the use of TRPA1 agonists, Allyl
isothiocyanate (AITC), and formalin, to induce colitis in rodents [7,8]. Similarly, TRPV1
antagonism has also been proven to attenuate disease severity in mouse and rat models for
colitis [9,10]. Given the importance of TRPA1 and TRPV1 nociceptive sensory neurons in
colitis-mediated nociception [1,10–13], the targeted inhibition of these nociceptors can be a
promising therapeutic strategy for alleviation of IBD-associated pain.

Capsazepine (CPZ) is a selective inhibitor for TRPV1 channel and have been employed
as a treatment to reduce severity of colitis in pre-clinical models [9,10,13]. An intriguing
study by Kistner et al. in 2016 proposed an additional mechanism of CPZ. They claimed that
CPZ activates TRPA1 in DRG neurons and the rectal administration of CPZ systemically
desensitizes TRPA1/TRPV1 expressing peptidergic sensory neurons and attenuates pain
and DSS-induced colitis in mice [12]. Though CPZ has been employed as a strategy to
ameliorate colitis related pain, its physiological effects on gut health and involvement of its
key targets (TRPA1/TRPV1 sensory neurons) still remains elusive.

The intestinal mucus layer protects against mechanical, chemical, and biological
attacks and contributes to the maintenance of intestinal homeostasis [14] as an interplay
between host and microbe. Alterations like a decrease in the mucin layer can induce gut
dysfunction [15]. There is limited evidence available for the effects of CPZ as well as the
involvement of TRPA1 and TRPV1 expressing sensory neurons in intestinal mucosal health.
Only a short study by Kawabata and group reported that subcutaneous treatment of CPZ
antagonized the TRPV1 channel expressed on sensory neurons, which in-turn inhibited the
PAR2 mediated gastric mucus secretion [16]. Regarding the involvement of TRPA1 and
TRPV1 channel, a single study demonstrated that TRPA1 agonist cinnamaldehyde induces
HCO3− secretion in colon, which is essential for mucus release [17]. Recently published
work from our laboratory reported that systemic TRPV1 ablation leads to impaired mucus
secretion and causes dysbiosis in the gut [18]. Considering the mucus lowering effects of
CPZ and importance of TRPA1 and TRPV1 in the gut mucin-immune axis, we hypothesize
that using CPZ (for inhibiting or desensitizing TRPV1 and TRPA1 nociceptors) as a strategy
for the treatment of IBD-associated pain might impair colonic mucin homeostasis, leading
to increased gut permeability and dysbiosis.

Short-chain fatty acids (SCFAs), the enterosyne released from anaerobic bacterial fer-
mentation of dietary substrates (mainly prebiotic containing indigestible carbohydrates)
mboxciteB19-ijms-1812823,B20-ijms-1812823,B21-ijms-1812823, possess gut modulatory
properties. They are significantly involved in the maintenance of colonic mucus production,
intestinal barrier integrity, and also have anti-inflammatory and immunomodulatory prop-
erties [22–25]. The association between SCFAs and IBD is well known. Low levels of SCFAs
in feces are correlated with an increased risk of IBD [26]. Several studies have reported the
use of SCFAs rectal enema in the improvement of IBD symptoms in humans [27–29] and
rats. In addition, intracolonic infusion of SCFAs is also reported to increase colonic crypt
length, mucosal generation, and DNA content in colonocytes [30]. Overall, SCFAs improve
colonic mucosal health and play a key role in the protection of the gut against IBDs.

Sensing the significance of TRPA1 and TRPV1 co-expression [4,31], their high abun-
dance in colonic peptidergic sensory neurons, and modulatory effect of CPZ on the activity
of these nociceptors, the present study was designed to investigate the impact of intrarectal
CPZ administration (through modulation of TRPA1/TRPV1 sensory neurons) on gut mu-
cosal health [12]. In addition, considering the protective effects of SCFAs in the colon, we
further sought to explore whether these nociceptive neurons have a modulatory role in the
action of SCFAs. These findings will serve to inform considerations on unwanted effects of
CPZ (viaTRPA1/TRPV1 modulation) as a treatment strategy for IBD-induced pain.

2. Results
2.1. Rectal Administration of CPZ Inhibits TRPA1 and TRPV1 Mediated Nociceptive Responses
and Modulates the Expression of Peptidergic Genes in DRGs

Rectal administration of CPZ significantly altered TRPA1 associated nociception as
evident from reduced AITC-induced eye wipes and elevated tail withdrawal latency time
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at 4 ◦C (Figure S1A) as compared to control animals. These effects were constant up to
the end of the study (day-14) (Figure S1B). On day-14, the TRPV1-associated nociceptive
behavioral assay showed that there was also a significant decrease in capsaicin (selective
TRPV1 agonist) induced eye wipes and significant increase in tail withdrawal latency at
42 ◦C as compared to control group (Figure S1C), suggesting sustained modulation of
TRPA1 and TRPV1 expressing sensory neurons. The representative figure from the study of
Hockley et al. [3] shows that 49% of TRPA1 expressing colonic sensory neurons belong to
mPeptidergic-type-b (mPEPb) class (Figure S1D). CPZ treatment significantly reduced the
expression levels of Spp1, Trpa1, Th, and Calca genes (Figure S1E) as compared to control
animals, which are specifically expressed in the mPEPb class of colonic sensory neurons.

2.2. Intrarectal CPZ Administration Negatively Regulates Mucus Homeostasis

Histological analysis of the colon on day 14 revealed that CPZ administration markedly
reduced the thickness of the mucus layer in lumen of the proximal and distal colon
(Figure 1A–C) as compared to control animals. In addition to this, in distal colon, a
significant decrease in goblet cell numbers, as well as alcian blue (AB) and high iron
diamine (HID) stain intensity (as a measure of diminished sialomucins and sulfomucins),
was observed after CPZ treatment (Figure 1A). Ileum did not show any morphological
changes. SEM analysis showed a major decrease in the number of mucus extrusions (M)
from goblet cells (GC) and crypts (C) of the colon indicating reduced mucus release after
CPZ treatment. In addition, the mucosal architecture with a smooth velvet appearance in
the control group was lost upon CPZ treatment (Figure 1D,E). Substantiating these findings,
expression levels of genes involved in goblet cell functioning—Cdx2, Dll1, Foxa2, Tff3,
Vamp8, and Prkd1—were downregulated in the distal colon following CPZ administration
(Figure 1F). The difference was observable in genes Dll4 and Foxa3 but was statistically
insignificant (Figure 1F). Genes involved in colonic mucus production—Muc2 and Muc3—
were repressed in the distal colon of CPZ-treated animals (Figure 1G). Alternatively, the
expression of Muc15 was significantly elevated (Figure 1G). Another set of genes involved
in the immune response—Nlrp3, Nod2, and Tnfα—were significantly upregulated, while
Fcgbp expression level was reduced with CPZ treatment (Figure 1H).

2.3. Rectal Administration of CPZ Increases Intestinal Permeability and Compromises Gut
Barrier Function

In-vitro intestinal permeability was evaluated by time-dependent fluorescent imaging.
In this study, the diffused FITC-loaded nanoparticle samples withdrawn at different time
points were imaged and analyzed for membrane barrier function. We have observed intense
fluorescent intensity in the CPZ group as compared with the control group (Figure 2A,B).
Furthermore, the area under curve (AUC) in CPZ treated animals indicated a higher
diffusion rate of FITC-loaded nanoparticles from the colon and suggested a compromised
intestinal permeability (Figure 2C). It has also been observed that the expressions of Tight
Junction Proteins (TJPs; Zona occludens-1 (ZO-1), Occludin (OCC), and Claudin-1 (CLDN-
1)) in colon sections were downregulated in the CPZ group as compared to the control
group as indicated by immunohistochemical evaluation (Figure 2D–F). Gene expression
studies also indicated a similar trend of reduction in expression of Cdh, Cldn-1, Zo-1, and
Occ in the colon of CPZ-treated animals as compared to the control group (Figure 2G).
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Figure 1. Effect of CPZ rectal administration on colonic mucus production. Histology representative
images of (A) Hematoxylin and Eosin—Alcian blue staining in ileum, proximal, and distal colon
(n = 3), High iron diamine—Alcian blue staining in distal colon (n = 3), (B) thickness of mucus layer
in proximal colon, (C) thickness of mucus layer in distal colon. (D) representative images for SEM of
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colon tissues and (E) number of colonic mucus extrusion (n = 3). Gene expression analysis for
(F) Goblet cell markers, (G) mucin genes and (H) immune response/mucus regulation in colon
(n = 6). Mice were divided into two groups—Control (administered vehicle rectally) and CPZ
(administered 531 µM CPZ rectally). Treatment was given for two weeks. After sacrifice, colon tissues
were fixed in Carnoy’s solution, subjected to serial dehydration with gradient ethanol (25%, 50%,
75%, 90% and twice in 100%) 2 h each followed by clearing in xylene (1 h twice). The colon tissues
were embedded in paraffin and 5 µm sections were cut. For staining, the sections were deparaffinized
in xylene (5 min, twice) followed by rehydration in gradient ethanol (100% twice, 90%, 70%, 50%,
25% and PBS, 2 min each). The samples were treated with respective stains (HE: 2 min each, AB:
15 min, HID: 18 h, AB: 30 min) followed by washing (5 min, thrice after each stain) in water. Sections
were dehydrated, treated with xylene, and mounted with DPX mounting medium. Microscopy was
performed for imaging and mucus thickness was measured using Imagescope. For HE-AB staining,
images were captured at 10× and, for HID-AB staining, images were captured at 20×. The mucus
layer in HE-AB stain tissues is presented with red arrows in the figure. For SEM, colon sections were
cut open (lumen was exposed) and fixed in 2.5% glutaraldehyde. Then, the tissues were washed with
PBS (15 min, thrice at 4 ◦C). The tissues were post-fixed in 1% osmium tetroxide for 2 h and again
washed with PBS (15 min, thrice at 4 ◦C). The tissues were then serial dehydrated in acetone (30%,
50%, 70%, 90%, 95%, 100%, 30 min at 4 ◦C). The samples were air dried and spur-coated with gold
(10 nm) images were taken on a scanning electron microscope at 1000×. In SEM image analysis, (M
in red) depicts colonic mucus extrusions, (GC in green) depicts goblet cells, and (C in yellow) depicts
crypts of the colon. The mucus extrusions were counted using Imagescope. For gene expression
studies, RNA was extracted from colon tissues and gene expression was performed for goblet cell
markers, mucin genes, and genes involved in immune response and mucus regulation using an
Nanostring nCounter multiplex gene expression assay. All data are represented as mean ± SEM.
Intergroup variations were assessed using a Student’s unpaired t-test. * p 0.05, ** p 0.01, *** p 0.001
versus Control.
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Figure 2. Effect of CPZ rectal administration on intestinal permeability and tight junction proteins.
(A) in-vitro intestinal permeability—representative images for release of FITC-loaded nanoparticles
from colon at different time points (n = 3), (B) time-based plot for radiance efficiency and (C) AUC of



Int. J. Mol. Sci. 2022, 23, 9577 6 of 20

the radiance efficiency. Representative images for immunofluorescence in colon tissues for expression
of—(D) Zona occludens-1 (ZO-1), (E) Occludin (OCC), and (F) Claudin-1 (CLDN-1) (n = 3). Fluores-
cence intensity was measured using ImageJ, and data are presented after normalization with DAPI;
(G) gene expression analysis for tight junction proteins. Mice were divided into two groups—Control
(administered vehicle rectally) and CPZ (administered 531 µM CPZ rectally). Treatment was given
for two weeks. After sacrifice, colon tissues (n = 3) were fixed in carnoy fixative, paraffin embedded
moulds were prepared, and 5 µm sections were obtained. The sections were subjected to IHC with
antigen retrieval using citrate buffer pH 6.0 (90 ◦C, 60 min) followed by blocking in 5% goat serum
in PBS-Tween20, overnight incubation in primary antibodies, secondary antibody treatment for 2 h
and DAPI for 30–60 s. High resolution images at 40× magnification were obtained using a confocal
microscope, and florescence intensity was measured using ImageJ. For gene expression studies, RNA
was extracted from colon tissues, and gene expression was performed for tight junction proteins using
a Nanostring nCounter multiplex gene expression assay. All data are represented as mean ± SEM.
Intergroup variations were assessed using a Student’s unpaired t-test. * p 0.05, ** p 0.01, *** p 0.001
versus Control.

2.4. Rectal CPZ Treatment Alters Mucus Associated Cecal Metabolites and Mucin
Glycosylation Enzymes

The GC-MS-based metabolome of cecal content displayed significantly lower levels
of mucus-related glycans (fructose, ribose, xylose, xylulose, glucose, and arabinose) and
proline, one of the core amino acids of PTS domain in mucin for its structural integrity
(Figure S2A). In addition, most of the genes for enzymes involved in mucus glycosylation—
B4galnt-2, C3gnt-1, St3gal4—were also significantly downregulated in the CPZ group as
compared to control. On the other hand, there were also glycosylation genes—Galnt-1 and
Galnt-3—that were upregulated compared to Control (Figure S2B).

2.5. Intrarectal Administration of CPZ Induced Gut Microbiota Changes

CPZ treatment increased the abundance of Gram+ve bacteria—Roseburia, Lactobacillus,
Akkermansia, Fecalibacterium, Eubacteria, Ruminococci, Butyricicoccus pullicaecorum, Clostridium
coccoides, Anaerostipes butyraticus, Lachnospiraceae, and Firmicutes significantly (Figure 3A,B).
However, the abundance of Gram−ve bacteria–Butyrivibrio fibrisolvens, Bacteroides fragilis,
Prevotella copri, Bacteroidetes, Bacteroides, and Fusobacteria remained unaltered with CPZ
treatment (Figure 3C). Only Cronobacteria was increased in a significant manner as com-
pared to the control group (Figure 3C). The Firmicutes–Bacteroides ratio was significantly
higher in CPZ-treated animals (Figure 3D). Furthermore, to evaluate host-independent
effects of CPZ on gut microbiota, fresh feces from normal mice were subjected to in-vitro
fermentation in the presence of CPZ for 48 h. qRT-PCR analysis revealed that abundances of
Gram−ve bacteria—Butyrivibrio fibrisolvens, Prevotella, Bacteroidetes, Fusobacteria, Bacteroides,
Cronobacteria, and Firmicutes were significantly reduced in CPZ treated animals as compared
to Control (Figure S3A). Out of Gram+ve bacteria, the abundance of Roseburia was reduced,
and the abundance of Lactobacillus was elevated with CPZ treatment as compared to control
(Figure S3B). No effect was observed on other Gram+ve genera–Akkermansia, Fecalibacterium,
Eubacteria, Ruminococci, and Anaerostipes butyraticus in the presence of CPZ.
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Figure 3. Effect of CPZ rectal administration on gut microbiota. (A,B) Relative bacterial abundances
of Gram+ve bacteria in cecum, (C) relative bacterial abundances of Gram−ve bacteria in cecum and
(D) relative abundance of firmicutes and bacteroidetes in cecum (n = 3). Mice were divided into
two groups—Control (administered vehicle rectally) and CPZ (administered 531 µM CPZ rectally).
Treatment was given for two weeks. After sacrifice, the cecum content was collected, weighed and
bacterial DNA was isolated using a commercial kit. The DNA quantity was measured, and quality
was assessed with agarose gel electrophoresis. The DNA was subjected to qRT-PCR based changes
in gene expression of various gut bacteria. The data were normalized with total bacteria as internal
control and presented in the form of relative fold change. All data are represented as mean ± SEM.
Intergroup variations were assessed using a Student’s unpaired t-test. * p 0.05, ** p 0.01, *** p 0.001
versus Control.

2.6. Rectal Co-Administration of SCFA Mix Fails to Prevent CPZ—Induced Compromise in
Colonic Mucin Homeostasis

Rectal administration of SCFA mix per se increased the thickness of the mucus layer, as
well as sialomucins and sulfomucins content in goblet cells. However, its co-administration
with CPZ is unable to prevent the CPZ-mediated reduction in goblet cells’ differentiation
and mucus production (Figure 4A–C). Colon tissues from SCFA per se treated mice dis-
played a significant increase in mucus extrusions (M) from goblet cells (GC) and crypts
(C) of colon, but a minimal effect was observed upon their co-administration with CPZ. In
addition, SCFA co-administration was unable to reverse the CPZ-induced morphological
alteration in mucosal architecture (Figure 4D,E). Furthermore, the SCFA mix intervention
increased the expression of TJPs—ZO-1, OCC, and CLDN-1—but CPZ-induced downregu-
lation in these proteins was unaffected with SCFA mix co-administration (Figure 4F–H).
Similarly, qRT-PCR results of Cldn-1 and Zo-1 displayed a similar trend but were statistically
non-significant (Figure 4I).
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Figure 4. Effect of rectal co-administration of SCFAs on CPZ-induced alterations in colonic mucus
production and tight junction proteins. Histology representative images of (A) Hematoxylin and
Eosin—Alcian blue staining in ileum, proximal, and distal colon (n = 3), High iron diamine—Alcian
blue staining in distal colon (n = 3), (B) thickness of mucus layer in proximal colon, (C) thickness of
mucus layer in distal colon, (D) representative images for SEM of colon tissues, and (E) number of
colonic mucus extrusion (n = 3). Representative images for immunofluorescence in colon tissues for
expression of—(F) Zona occludens-1 (ZO-1), (G) Occludin (OCC), and (H) Claudin-1 (CLDN-1) along
with their fluorescence intensities (n = 3). Fluorescence intensity was measured using ImageJ and data
are presented after normalization with DAPI, (I) gene expression analysis for tight junction proteins
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(n = 6). For Histology, mice were divided into two groups (n = 6): SCFA (treated with rectal
administration 200µL SCFA mix [180 mM Acetic acid + 60 mM Propionic acid + 60 mM Butyric
acid for 14 days]) and CPZ + SCFA (initially treated with 531 µM CPZ twice daily for seven days
followed by once daily dose of 531 µM CPZ along with rectal administration of SCFA mix for the
next seven days). For staining, the sections were deparaffinized in xylene (5 min, twice) followed by
rehydration in gradient ethanol (100% twice, 90%, 70%, 50%, 25% and PBS, 2 min each). The samples
were treated with respective stains (HE: 2 min each, AB: 15 min, HID: 24 h) followed by washing
(5 min, thrice after each stain) in water. Sections were dehydrated, treated with xylene and mounted
with DPX mounting medium. Microscopy was performed for imaging and mucus thickness was
measured using Imagescope. For HE-AB staining, images were captured at 10× and for HID-AB
staining, images were captured at 20×. The mucus layer in HE-AB stain tissues is presented with
red arrows in the figure. For SEM, colon sections were cut open (lumen was exposed) and fixed in
2.5% glutaraldehyde. Then, the tissues were washed with PBS (15 min, thrice at 4 ◦C). The tissues
were post-fixed in 1%osmium tetroxide for 2 h and again washed with PBS (15 min, thrice at 4 ◦C).
The tissues were then serial dehydrated in acetone (30%, 50%, 70%, 90%, 95%, 100%, 30 min at 4 ◦C).
The samples were air dried and spur-coated with gold (10 nm) and images were taken on a scanning
electron microscope at 1000×. In SEM image analysis, (M in red) depicts colonic mucus extrusions,
(GC in green) depicts goblet cells, and (C in yellow) depicts crypts of the colon. The mucus extrusions
were counted using Imagescope (version 12.1.0.5029, Leica Biosystems, Wetzlar, Germany). For IHC,
colon tissues (n = 3) were fixed in carnoy fixative, paraffin embedded moulds were prepared, and
5 µm sections were obtained. The sections were subjected to IHC with antigen retrieval using citrate
buffer pH 6.0 (90 ◦C, 60 min) followed by blocking in 5% goat serum in PBS-Tween20, overnight
incubation in primary antibodies, secondary antibody treatment for 2 h and DAPI for 30–60 s. High
resolution images were obtained at 40× magnification using confocal microscope and florescence
intensity were measured using ImageJ (version-1.52, NIH, Bethesda, MD, USA). For gene expression
studies, RNA was extracted from colon tissues, and gene expression was performed for tight junction
proteins using a Nanostring nCounter multiplex gene expression assay. All data are represented
as mean ± SEM. Intergroup variations were assessed using the Student’s unpaired t-test. # p 0.05,
## p 0.01, ### p 0.001 versus SCFA.

2.7. Principal Component and Correlation Analysis

The PC analysis revealed that the control group clustered separately from the CPZ
group indicating a distinctly altered gut microbial abundance, metabolites, and host gene
expression profile of the CPZ group from that of the control group (Figure S4A–C). Addition-
ally, most of the parameters assessed displayed a negative correlation between themselves
and other parameters between the Control and CPZ groups (Figure S4D). Similarly, the
PCA of SCFA and CPZ-SCFA groups showed distinct clustering of the groups based on
gut microbiota and metabolites (Figure S5A,B). However, in the PCA based on host gene
expressions, the groups showed only a slight dissimilarity (Figure S5C), indicating that CPZ
treatment inhibits the beneficial effects of SCFAs in the colon. In addition, the pattern in
the correlation matrix displayed a negative correlation in most of the parameters between
both of the groups (Figure S5D).

3. Discussion

Nociceptors, in particular TRPA1 and TRPV1 expressing peptidergic sensory neurons,
regulate epithelial cell function (including goblet cells) owing to their involvement in
neurogenic inflammation [12,32]. There are numerous reports delineating their role in
various gut-related diseases [1,9,13,33,34]. The release of these mediators and changes in
mucus production in the gut epithelial layer, in response to nociceptor activation, have an
ability to affect the microbial population cyclically. Moreover, there is literature describing
the reciprocal relationship between the gut microbial population and its role in mucin
secretion, which influences not only mucus layer formation but also its regulation [35,36].
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In our study, rectal administration of CPZ caused a loss of mucin layer, prominently in the
colon. Both forms of mucin (sialomucin and sulfomucin) were found to be significantly
decreased. According to the findings of a brief investigation by Kawabata et al., our
observation of decreased mucus secretion is strongly corroborated. They demonstrated
that subcutaneous administration of CPZ antagonizes the TRPV1 channel expressed on
sensory neurons and reduces the PAR-2 mediated gastric mucus secretion [16]. In our
previous studies, we also found that capsaicin induced activation of TRPV1 promotes
mucus secretion in the gut and resiniferatoxin-mediated chemodenervation of the TRPV1
expressing sensory neurons severely impairs gut mucus production and promotes gut
dysbiosis [18,37] Moreover, Kistner et al. demonstrated that CPZ rectal administration
desensitizes TRPA1/TRPV1 expressing sensory neurons [12]. With support of available
literature, we argue that CPZ-induced alterations in colonic mucosal health will be mediated
through TRPV1 and TRPV1 channels. Even if CPZ desensitizes only TRPA1, there is a
possibility that both TRPA1 and TRPV1 are not functional now as they both co-express on
the same neuron [4]. Hence, our argument that CPZ induced changes are mediated through
A1, and V1 is a possibility. We did not do knockout studies, but we performed nociceptive
behavioral assays using agonists specific to these channels (AITC and Capsaicin) and
temperature mediated pain behavior selective to these channels. Our observations of loss
of TRPA1 and TRPV1 mediated nociceptive responses (both chemical and temperature)
are consistent with the study by Kistner et al. [12]. Hence, there is a strong possibility that
the CPZ actions are mediated through TRPA1 and TRPV1 channels. The expression of
these channels can still be there due to their presence in any other cell type. Though the
study presents the idea of CPZ-induced modulation of TRPA1 and TRPV1, the specific
interactions and mechanisms are still in infancy and an interesting area for further research.
Mice treated with CPZ had significantly enhanced gut permeability as studied by the
in-vitro nanoparticle diffusion approach through the colon. In CPZ-treated animals, both
protein and gene expression for tight-junction proteins (TJP)s were significantly decreased
suggesting both translational and transcriptional decrease in tight junction morphology.
These findings are of significance because CPZ treatment prevented the SCFA effect in
these animals [25,38–40], hence suggesting that the intact mucin layer is important for the
effects of healthy microbial metabolites in the host gut.

Muc3 and Muc2 genes were significantly decreased in CPZ treated animals. In studies
on Muc2 knockout animals, increased intestinal permeability has been shown to trigger a
cascade of events leading to secondary organ inflammation and translocation of bacterial
metabolites and bacteria per se leading to sepsis [41,42]. Different goblet cell markers (Cdx2,
Dll1, Foxa2, Tff3, Dll4, Vamp8, Prkd1, and Foxa3) and Fcgbp were significantly decreased
in the CPZ group. A decrease in Muc3 (a major transmembrane mucin present on the
N-terminal of extracellular mucin domain tip of the enterocyte microvilli) points to compro-
mised cell protection (due to its role in densely glycosylated glycocalyx) and altered signal
transduction pathways associated with the microbe: host interactions [43]. In contrast,
another cell surface associated with Muc15 was significantly higher in the colon of CPZ
treated mice and has a role in carcinogenesis and protein metabolism [44]. Alteration in
levels of these mucin secreting and transmembrane genes is suggestive of compromised
mucin homeostasis, overall making the animals in the CPZ group prone to disorders. This
is reflected in the increase in the expression of genes related to immune response activa-
tion (Nlrp3, Nod2, Tnfα) [45,46]. Nlrp3 and Tnfα are very well known for their role in the
disruption of intestinal permeability [25,47–49]. Thereby, the increased expression of these
inflammatory genes can be directly related to increased intestinal permeability in CPZ
treated animals. In contrast, the Nod2 gene has been reported to be associated with im-
provement in colonic mucus production, intestinal permeability, and inflammation [50,51].
The increased expression levels of Nod2 in our findings might suggest a compensatory
reflex mechanism to reverse the colonic alterations developed due to CPZ treatment.

The mucin layer is a source of nutrition and provider of attachment sites for gut
microbes [52]. In the absence of the mucin layer (decrease in glycosylation marker genes)
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in CPZ treated mice, colonic bacteria are deprived of both nutrients and their attachment
sites forcing them to rely more on diet-extracted nutrition. A major part of the diet com-
prises plant dietary fiber, i.e., high molecular weight carbohydrates (polysaccharides).
Metabolite analysis in cecal samples showed a decrease in the monomeric metabolites
of these polysaccharides in CPZ treated animals indicating greater utilization of these
by local microbiota as a nutrient source. During bacterial profiling in these samples, the
increase in the (a) levels of Firmicutes and (b) ratio of Firmicutes/Bacteroidetes suggests
increased extraction of energy from the dietary sources [53]. Intestinal mucus requires the
presence of bacteria for its function. Hence, the significant increase in good commensal
bacteria (Lactobacillus, Fecalibacterium, and Akkermensia, etc.) as well as SCFA producing
bacteria—Roseburia, Lactobacillus, Fecalibacterium, Eubacteria, Ruminococci, Butyricicoccus
pullicaecorum, Clostridium coccoides, Anaerostipes butyraticus, etc. [54] in CPZ treated animals
suggests their adaptive response towards reduction in the mucin layer to support and main-
tain colonic mucosal health as we did not see any significant effect of CPZ in most of the
individual groups of these bacteria during in-vitro fecal batch fermentation. Overall, the PC
and correlation analysis indicate that (a) Rectal administration of CPZ caused considerable
changes in overall microbiota, metabolite, and gene expression profile and (b) prevented
beneficial effects of SCFAs. However, it is still unclear whether the altering effects on
colonic mucosa were attributed selectively to TRPA1 and TRPV1 nociceptive sensory neu-
rons modulation or the CPZ treatment or both. Moreover, the reduced abundance of some
gut bacteria during in-vitro fermentation experiments points toward the direct effect of
CPZ on the gut microbial community. Thus, using an additional selective approach for the
non-functionalization of TRPA1 and TRPV1 might give a clearer picture of the exact role of
these nociceptors on colonic mucosal alterations. We have planned for in-vivo follow-up
studies in the mouse model of IBD (colitis) (using global and tissue-specific TRPA1 and
TRPV1 knock out animals or TRPA1/V1 double knock out and, TRPA1/TRPV1 silencing
approach in primary cells) to establish an exact role of neuronal nociceptive TRPA1 and
TRPV1 channels in colonic mucosal alterations, especially in IBD conditions. Additionally,
the number of animals used per group are limited (n = 5–6). In our future studies with IBD
model (colitis), we will address this.

4. Materials and Methods
4.1. Animals

Six–eight weeks-old male C57BL/6J mice (25–30 g) (n = 24), procured from IMTech
Center for Animal Resources and Experimentation (iCARE; 55/GO/Re/Rc/Bi/Bt/S/99/
CPCSEA), Chandigarh, India, and housed (temperature, 24 ± 2 ◦C; humidity, 55–65%,
12 h light-dark cycle) in Animal Experimentation Facility (2039/GO/RBi/S/18/CPCSEA),
National Agri-Food Biotechnology Institute (NABI), Mohali, India. Animals were provided
with water and a normal pellet diet (Hylasco Biotechnology Pvt. Ltd., Hyderabad, India) ad
libitum. The study was conducted according to the guidelines of the Declaration of Helsinki,
and study protocol was approved by the Institutional Animal Ethics Committee (IAEC) of
NABI (Approval No. NABI/2039/CPCSEA/IAEC/2019/16). Committee for the Purpose
of Control and Supervision on Experiments on Animals (CPCSEA) guidelines on the use
and care of experimental animals were followed throughout the experiment.

4.2. Intrarectal Administration of CPZ, TRPA1 and TRPV1-Mediated Nociceptive Behavioral
Confirmatory Tests and SCFA Mix Treatment

After 1 week of acclimatization, animals were divided into 4 groups—Control, Cap-
sazepine (CPZ), SCFA (Short-chain fatty acids), and CPZ + SCFA (n = 6 each housed in one
cage). Intrarectal administration of CPZ was done as per previously described method with
slight modification [12]. Rectal administration of 531 µM Capsazepine (CPZ) (200 µL) (Cat.
No. C191-25MG, Sigma-Aldrich, St. Louis, MO, USA) enemas was given to 12 animals
twice daily for seven days followed by once-daily administration for the next seven days
for its maintenance under brief isoflurane anesthesia. Control animals received 200 µL
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PBS rectally as the vehicle. Modulation of TRPA1 activity was confirmed by a loss of
nociceptive physiological responses after 7 days using tail-flick test and eye wipe test as a
primary measure. For the tail-flick test, the tip of the tail of mice was dipped in cold water
(4 ◦C) and the time taken to withdraw the tail was noted as a pain response (cut-off time of
30 s). Experiments were repeated 3 times/animal, at intervals of 5 min. For the eye-wipe
test, 1 mM AITC solution (Cat. No. 377430; Sigma-Aldrich, St. Louis, MO, USA) was
instilled into the eye of the animal, and the number of wipes was recorded for 30 s. After
7 days, the animals receiving CPZ were divided into two groups—one group (CPZ + SCFA)
received a 200 µL SCFA mix (180 mM Acetic acid + 60 mM Propionic acid + 60 mM Butyric
acid (neutralized to pH 6.5); Cat. No. A6283, 402907, B103500; Sigma-Aldrich, USA, St.
Louis, MO, USA) rectally, once a day along with once-daily dose of 200 µL of 531 µM CPZ
rectal administration. The dose and composition of SCFA was decided as per previously
published literature and a physiological ratio of SCFAs present in the gastrointestinal
tract [38,39,55–58]. The other group (CPZ) only received once-daily administration of
200 µL 531 µM CPZ as a maintenance dose for the next 7 days. Simultaneously, another
set of animals was also receiving rectal administration of 200 µL SCFA mix (SCFA group),
once a day alone as respective treatment control. The dose and route of administration
of SCFA mix was based on previous studies [39,55,59]. At the termination of the study,
TRPA1-associated nociceptive behavioral assays (tail-flick test and eye-wipe test) were
performed again for the confirmation of the loss of TRPA1 associated nociceptive responses
till the end of the study (Day-14). On the same day, TRPV1 associated behavioral tests
were also performed. Selective TRPV1 agonist induced eye-wipe test (0.02% w/v capsaicin
solution (Cat. No. 360376; Sigma Aldrich, St. Louis, MO, USA) and tail-flick test (in water
kept at 42 ◦C) were employed for the confirmation of loss of TRPV1 activity. Replicates for
each animal were taken using both eyes separately. The plan of experiment is explained
in Figure 5.
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4.3. In-Vitro Gut Permeability Assay Using FITC Loaded Solid-Lipid Nanoparticle
4.3.1. Formulation of FITC Loaded Solid-Lipid Nanoparticle

The fluorescent nanoparticle was prepared according to Ahmad et al. [60]. Briefly,
140 mg of glyceryl monostearate (GMS) (Cat. No. G0085; TCI Chemicals, Tokyo, Japan) and
5 mg of fluorescein isothiocyanate (FITC) (Cat. No. F0784; TCI Chemicals, Tokyo, Japan)
were melted above 10 ◦C of their melting points. The aqueous surfactant PF-127 (Cat. No.
P2443; Sigma Aldrich, St. Louis, MO, USA) 2% w/v (200 mg) was dissolved in 10 mL of
distilled water at the same temperature. The aqueous phase was incorporated drop-by-
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drop into the oil phase over constant stirring of 1500 rpm and kept for 1 h, followed by
sonication using a probe sonicator for 10 min (5 s each on and off-cycle at 40 Hz frequency).
FITC-nanoparticles were lyophilized and dispersed in milli-Q water before administration.

4.3.2. In-Vitro Gut Permeability Assay

Determination of colon permeability was assessed as a previously reported method [61]
with some modification. In brief, the distal colon (2 cm) was excised and carefully flushed
with normal saline, after that one end of the colon was ligated with the silk thread and
70 µL of FITC loaded nanoparticles were filled into the colon and the other end of the colon
was also secured with silk thread. This assembly was then placed in a beaker filled with
150 mL of PBS buffer (pH 7.4), maintained at 37 ◦C, and stirred at mild constant RPM
(200 rpm). In addition, 1 mL of sample was withdrawn at pre-defined time intervals (0, 15,
30, 45, 60, 75, and 90 min) and replaced with fresh 1 mL of PBS to maintain sink condition.
The withdrawn samples were analyzed and imaged for fluorescent intensity by using IVIS
Lumina Series-III (Perkin Elmer, Waltham, MA, USA) and analyzed using living image
5.0 software (Perkin Elmer, Waltham, MA, USA).

4.4. Gene Expression Analysis in DRGs and NanoString nCounter Multiplex Gene
Expression Assay

Total RNA was extracted from dorsal root ganglion (DRGs) using the TRIzol RNA
extraction reagent-based method. Isolated RNA was transcribed into cDNA using the
Revert Aid cDNA synthesis kit (Cat. No. K1622; Thermo Fischer Scientific, Waltham, MA,
USA). The synthesized cDNA was then used to perform gene expression of specific markers
of peptidergic sensory neurons [3] by qRT-PCR using SYBR Green (Cat. No. L001752; Bio-
Rad Laboratories, Hercules, CA, USA). The conditions were at 95 ◦C for 2 min, followed by
40 cycles of annealing and elongation at 60 ◦C for 30 s and denaturation at 95 ◦C for 5 s.
Analysis of relative change in gene expression was done using the 2−∆∆Ct method [62]. Ct
values were normalized to the β-actin (housekeeping) gene, and values were expressed in
the terms of fold change with reference to control.

For transcriptional studies in colons, a customized Nanostring nCounter GX CodeSet
gene expression panel (ILS_Bishnoi/C8788X1; NanoString Technologies, Seattle, WA, USA),
comprising genes of goblet cell differentiation (Cdx2, Dll1, Dll4, Foxa1, Foxa2, Foxa3, Klf1,
Prkd1, Tff3, Vamp8)/tight junction protein (TJPs) (Cdh1, Cldn1, Cldn4, Occ, Zo1, Zo2)/mucin
production (Muc15, Muc2, Muc20, Muc3, Muc4, Muc5b)/glycosylation enzyme (B4galnt1,
B4galnt2, C1galt1, C3gnt1, Fut2, Galnt1, Galnt2, Galnt3, St3gal4)/immune response (Defb2,
Dmbt1, Fcgbp, Nlrp3, Nod2, Reg3g, Src3, Tnfa, Xbp1)/4 housekeeping genes (Actb, B2m,
Gapdh, Ubc) was used. Furthermore, 50 ng of extracted RNA sample were hybridized with
unique probes using the NanoString nCounter prep station and placed into the cartridge
(NanoString Technologies, Seattle, WA, USA). A NanoString nCounter digital analyzer
(NanoString Technologies, Seattle, WA, USA) was employed for the detection and counting
of hybridized probes. The data were analyzed using nSolver 4.0 software (NanoString
Technologies, Seattle, WA, USA).

4.5. Histology and Immunohistochemistry Analysis

Ileum, proximal and distal colon were fixed in Carnoy’s solution (60% ethanol + 30%
chloroform + 10% glacial acetic acid) and stored in the same until processed. Fixed tissues
were serially dehydrated, cleared, and embedded using gradient ethanol, xylene, and
molten paraffin, respectively. In addition, 5-µm-thick sections were prepared, deparaf-
finized in xylene, and rehydrated in gradient ethanol. For staining, Hematoxylin-Eosin (HE)
(Cat. No. S034, S007; Hi-media Laboratories, Mumbai, India) and Alcian blue (AB) (Cat. No.
B8438; Hi-media Laboratories, Mumbai, India) were used for 30 s, 15 s, and 15 min, respec-
tively. Slides were mounted using DPX mounting medium (Cat. No. GRM655; Hi-media
Laboratories, Mumbai, India). Images were captured at 10× on a bright-field microscope
(Leica CTR6, Leica Biosystems, Wetzlar, Germany), and the thickness of the mucus layer
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was measured using Imagescope (Version 12.1.0.5029, Leica Biosystems, Wetzlar, Germany)
manually. For high iron diamine (HID) staining for sulfomucins, rehydrated tissue sections
were stained with HID solution for 18 h at room temperature in the dark followed by
washing with distilled water 3 times. The sections were then stained with alcian blue for
30 min, washed 3 times with distilled water, and mounted with DPX mounting medium.
Images were captured at 20× on the bright-field microscope (Leica CTR6, Leica Biosystems,
Wetzlar, Germany).

For immunohistochemistry, 5-µm rehydrated sections were treated for antigen re-
trieval using citrate buffer (pH 6.0), blocked in 5% goat serum for 1 h followed by incubation
in primary antibodies, Zona occludens-1 (Zo1)- (1:200 prepared in 2.5% goat serum, Cat.
No. ab216880 Abcam, Cambridge, United Kingdom), Occludin (Occ) (1:200 prepared in
2.5% goat serum, Cat. No. ab222691 Abcam, Cambridge, United Kingdom), Claudin-1
(Cldn-1) (1:200 prepared in 2.5% goat serum, Cat. No. ab15098; Abcam, Cambridge, United
Kingdom) for overnight at 4 ◦C. Finally, the sections were incubated with Alexa fluor
488 (1:1000 prepared in goat serum; Cell Signaling Technology, Danvers, MA, USA) sec-
ondary antibody for 2 h at room temperature. DAPI stain was used to stain nuclei. Images
were taken under a confocal microscope (Carl Zeiss LSM-880, Carl Zeiss, Oberkochen,
Germany) and all the images were captured at 40x magnification. Images were analyzed
using ImageJ software (Public domain software, version 1.52, NIH, Bethesda, MD, USA).

4.6. Scanning Electron Microscopy

For Scanning Electron Microscopic (SEM) analysis, small fragments of distal colon
were fixed in 2.5% glutaraldehyde solution (Cat. No. G5882; Sigma Aldrich, St. Louis, MO,
USA) in PBS (pH 7.4) for 6 h at 4 ◦C. The tissues were washed with PBS, post-fixed in 1%
osmium tetroxide (Cat. No. 201030; Sigma Aldrich, St. Louis, MO, USA) in PBS (pH 7.4) for
2 h at 4 ◦C. Tissues were washed with PBS and dehydrated through the serial application of
increasing concentration of acetone (Cat. No. 20003; SDFCL, Chennai, India) viz. 30%, 50%,
70%, 90%, 95%, 100% to remove water at 4 ◦C for a 30 min period. Samples were air-dried
and spur-coated with gold (10 nm). Images were acquired using Apreo S SEM (Thermo
Fischer Scientific, Waltham, MA, USA).

4.7. Analysis of Microbial Abundance in Cecal Content

DNA was isolated from 100 mg cecal content, using Nucleospin DNA Stool Genomic
DNA Purification Kit (Cat. No. 740472; Macherey-Nagel, Düren, Germany), as per the
manufacturer’s instruction. DNA was quantified on a spectrophotometer (Nanodrop,
Thermo Scientific, Waltham, MA, USA) and run on 0.8% agarose gel electrophoresis for
integrity. qRT-PCR was performed as per the protocol detailed in Section 4.4 using bacterial
primers (Table 1). Analysis of relative change in the abundance was calculated using the
2−∆∆Ct method [62]. Ct values were normalized to Total Bacteria (Internal control), and
values were expressed in the terms of fold change with reference to control.

Table 1. List of bacterial primers.

Sr. No. Bacterial Primer Forward Sequence Reverse Sequence

1. Total Bacteria ACTCCTACGGGAGGCAGCAGT ATTACCGCGGCTGCTGGC

2. Butyrivibrio
fibrisolvens CTAACACATGCAAGTCGAACG CCGTGTCTCAGTCCCAAT

3. Bacteroides fragilis GGCGCACGGGTGAGTAACA CAATATTCCTCACTGCTGC

4. Prevotella copri CCGGACTCCTGCCCCTGCAA GTTGCGCCAGGCACTGCGAT

5. Clostridium leptum CCGCATAAGACCTCAGTACCGC GGGATTTGCTTGCCTTCACAGGG

6. Clostridium coccoides ACTCCTACGGGAGGCAGC GCTTCTTAGTCARGTACCG
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Table 1. Cont.

Sr. No. Bacterial Primer Forward Sequence Reverse Sequence

7. Lactobacillus CACCGCTACACATGGAG AGCAGTAGGGAATCTTCCA

8. Bacteroides TCCTACGGGAGGCAGCAGT CAATCGGAGTTCTTCGTG

9. Bifidobacterium TCGCGTCYGGTGTGAAAG CCACATCCAGCRTCCAC

10. Akkermansia
muciniphila CAGCACGTGAAGGTGGGGAC CCTTGCGGTTGGCTTCAGAT

11. Butyricicoccus
pullicaecorum AGTACGGCCGCAAGGTTGAAA CTGCCATTGTAGTACGTGTG

12. Anaerostipes
butyraticus CACCATGTCATTTACTCAAGAATATCAGA TTATTTGTTAGATCTTCTCCAGATGTTAGC

13. Roseburia spp. GCGGTRCGGCAAGTCTGA CCTCCGACACTCTAGTMCGA

14. Fecalibacterium GGAGGAAGAAGGTCTTCGG AATTCCGCCTACCTCTGCACT

15. Ruminococci GGCGGCYTRCTGGGCTTT CCAGGTGGATWACTTATTGTGTTAA

16. Eubacteria ACTCCTACGGGAGGCAGCAG ATTACCGCGGCTGCTGG

17. Methanobrevibacter CCGGGTATCTAATCCGGTTC CTCCCAGGGTAGAGGTGAAA

18. Bacteroidetes ACGCTAGCTACAGGCTTAACA ACGCTACTTGGCTGGTTCA

19. Firmicutes GCGTGAGTGAAGAAGT CTACGCTCCCTTTACAC

20. Lachnospiraceae CGGTACCTGACTAAGAAGC AGTTTYATTCTTGCGAACG

4.8. Untargeted Metabolome Profiling of Cecal Content

Gas chromatography-mass spectrophotometry (GC-MS) was employed for metabolite
analysis. Briefly, 80 mg of cecal content was treated with methanol, chloroform, and water
(in a 2.5:1:1 ratio) at 4 ◦C, overnight with shaking. Samples were centrifuged (3000 rpm)
and the supernatant was lyophilized. For derivatization, lyophilized samples were treated
with 90 µL N, O-bis(trimethylsilyl)tri-fluoroacetamide (BSTFA), 1% trimethylchlorosilane
(TMCS) (Cat. No. B-023; Merck Co., Kenilworth, NJ, USA), and 30 µL of pyridine (Cat.
No. 029707; Central Drug House, New Delhi, India) and incubated for 4 h at 70 ◦C. The
samples were diluted up to 500 µL with dichloromethane (DCM) (Cat. No. 508705; Central
Drug House, New Delhi, India), and 5 µL were injected into GC-MS through an automatic
sampler. An Agilent 7870A chromatograph (Agilent technologies, Santa Clara, CA, USA)
equipped with an Agilent triple-quadrupole 7000 mass spectrometer (Agilent technologies,
Santa Clara, CA, USA) was employed for performing analysis. A DB-5 column (Agilent,
60 m × 250 µm ID × 0.25 µm) was used for the separation of derivatized molecules before
reaching the MS chamber for their efficient identification. The column oven temperature
was initially set at 80 ◦C for 2 min, then increased to 140 ◦C at 10 ◦C/min, and then increased
from 140 to 250 ◦C at 5 ◦C/min. The helium carrier gas flow was set at 1.5 mL/min in
spitless mode. For MS, the source temperature was set at 230 ◦C, electron ionization was set
at −70 eV, the scan range was kept at 30–500 m/z, the gain factor was set at 10, and thermal
auxiliary temperatures 1 and 2 were set at 150 and 280 ◦C, respectively. Mass fragmentation
of each peak of the MS spectrum was matched with the NIST-MS library (version 2.0) for
identifying metabolites and were reported in the form of percent change.

4.9. In Vitro Mouse Fecal Batch Fermentation with CPZ and Relative Bacterial Abundances

Slurry from freshly collected fecal samples (10% w/v) was prepared in 1X PBS con-
taining cysteine with homogenization. Fecal batch fermentation was done with 531 µM
CPZ and glucose (1% w/v) (Cat. No. MB-037; Himedia Laboratories, Mumbai, India) for
48 h. Basal growth media of the following composition were used (composition (g/L) pep-
tone water 2 g/L, yeast extract 2 g/L, NaCl 0.1 g/L, K2HPO4 0.04 g/L, KH2PO4 0.04 g/L,
MgSO4·7H2O 0.01 g/L, CaCl2·6H2O 0.01 g/L, NaHCO3 2 g/L, Tween 80 2 mL, hemin
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0.02 g/L, vitamin k1 10 mL, cysteine HCl 0.5 g/L, pH 7.0) (Himedia Laboratories, Mumbai
India). Initial pH was maintained at 7. Bacterial DNA extraction was done after 48 h of fer-
mentation using a Nucleospin DNA Stool Genomic DNA Purification Kit (Macherey-Nagel,
Duren, Germany), and the relative abundance of selected gut bacteria was determined by
qRT-PCR similar to Section 4.7.

4.10. Statistics

Data were analyzed using Graphpad Prism 8 software (Graphpad, San Diego, CA,
USA). All the data are presented as mean ± SEM. Student’s unpaired t-test was employed
to assess the statistical differences between the groups. p 0.05 was considered significant in
all data. The principal component analysis was carried out using the adegenet (version
1.3-1) package in R [63], while the correlation analysis (using Pearson correlation coefficient)
was carried out using the corrplot package in R. The PCA and correlation analysis was
carried out using the gut microbial abundance, metabolite levels, and gene expression
levels of the different animal groups viz. Control, CPZ, SCFA, and CPZ-SCFA.

5. Conclusions

In conclusion, the present study suggests the significance of CPZ treatment for pain
and its unwanted effects (possibly via TRPA1/TRPV1 modulation) on mucosal health
(Figure 6). However, it is still not sufficiently clear whether side effects presented here
are detrimental (mucous layer loss) or beneficial (adaptive response of increase in the gut
microbial ecosystem). These studies are of potential clinical applications as TRPA1/TRPV1
antagonism and desensitization are marked as promising therapeutic approaches for the
alleviation of pain associated with IBD and caution may be exercised before employing
these approaches as a therapeutic option for the same. Following our evidence presented
here, we suggest further exploration into the role of nociceptors in mucin health and host:
microbe interactions for better understanding of side effect profiles of these approaches
before taking them to clinical practice.
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