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Background: Chimeric antigen receptor (CAR)-modified T cells have successfully

harnessed T cell immunity against malignancies, but they are by no means the only cell

therapies in development for cancer.

Main Text Summary: Systemic immunity is thought to play a key role in combatting

neoplastic disease; in this vein, genetic modificationsmeant to explore other components

of T cell immunity are being evaluated. In addition, other immune cells—from both

the innate and adaptive compartments—are in various stages of clinical application.

In this review, we focus on these non-CAR T cell immunotherapeutic approaches

for malignancy. The first section describes engineering T cells to express non-CAR

constructs, and the second section describes other gene-modified cells used to

target malignancy.

Conclusions: CAR T cell therapies have demonstrated the clinical benefits of

harnessing our body’s own defenses to combat tumor cells. Similar research is being

conducted on lesser known modifications and gene-modified immune cells, which we

highlight in this review.

Keywords: cell therapy, gene modified cells, immunotherapy, gamma delta T cells, NK cells, NKT cells, dendritic

cells

INTRODUCTION

Chimeric antigen receptors and engineered T cell receptors (based on previously identified
high affinity T cell receptors) function by redirecting T cells to a predefined tumor-specific
(or tumor-associated) target. Most of these modifications use retroviral or lentiviral vectors to
integrate the construct, and most of the receptors feature a costimulatory signal—enhancing T
cell activation following recognition of the target antigen. These modified T cells have collectively
shown promising success rates, particularly against hematologic malignancies (1), with growing
excitement for these novel treatments (2). Pioneering work at the NIH resulted in promising
therapies for melanoma (3) and synovial sarcoma (4). Some of these therapies have been approved
as licensed drugs.

CAR T cells targeting commonly overexpressed leukemia and lymphomamarkers such as CD19
have shown promise in the prevention and treatment of malignancies such as Acute Lymphoblastic
Leukemia (ALL), Chronic Lymphocytic Leukemia (CLL), Non-Hodgkin’s lymphoma (NHL),
Diffuse Large B cell lymphoma (DLBCL), and other B cell malignancies (5–8). These CD19-CAR
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Phase I and II trials have demonstrated safety and efficacy,
with substantial partial and complete response rates (PR and
CR, respectively). There are however, important concerns
about toxicity—as resulting from on target off tumor effects,
cytokine release syndromes, and neurotoxicity (9). Current CAR
clinical trials are expanding to target other tumor-associated
markers including GD2 (10), BCMA (11), CD20, CD30, CD33,
CD7, HER2 (human epidermal growth factor receptor 2), and
mesothelin (12–17). CAR T cells have been highlighted as
Advance of the Year, by the American Society of Clinical
Oncology in 2018 (18). A similar technology involves using
high affinity T cell receptors (TCRs) and introducing these into
cells (19). In the hopes of extending this success, other immune
cell-based therapies are in current development.

The first group, non-CAR/non-TCR gene modified cell
therapies for cancer, incorporates methods to overcome the
barriers presented by cancer and the tumor microenvironment,
as well as strategies for enhancing potency of T cell therapies.
The second group focuses on immunotherapies generated from
less frequently studied cell types including gamma-delta T cells,
invariant natural killer T (iNKT) cells, natural killer (NK), and
dendritic cells.

This review explores these lesser known cancer cell
immunotherapy strategies, highlighting advances that have
been made in recent preclinical and clinical efforts, and presents
platforms for which they could demonstrate efficacy and may be
critical for treating different cancer subtypes.

NON-CAR/TCR MODIFICATION OF T
CELLS

The ease by which T cells can be genetically modified has
led to other gene modifications that aim to further enhance
activity of T cells [a strategy that some groups have labeled
as “armored” CARs (20), initially dubbed as “TRUCKS”
(21)], including modifications to introduce dominant negative
receptors, chemokine receptors, cytokines, cytokine receptors,
and checkpoint inhibitors Figure 1.

Dominant Negative Receptors
Translation of successful T cell therapies to solid tumors has been
hampered by the immunosuppressive tumor microenvironment.
Cancers secrete immunosuppressive cytokines which impair
immune cell proliferation and function, and recruit regulatory T
cells. These cytokines include TGFβ which inhibits the function
of host immune cells (even those that successfully infiltrate

Abbreviations:ALL, Acute lymphocytic leukemia; AML, Acute myeloid leukemia;

BCR, B cell Receptor; BMT, Bone Marrow Transplant; CAR, Chimeric Antigen

Receptors; CLL, Chronic lymphocytic leukemia; CRISPR, Clustered Regularly

Interspaced Short Palindromic Repeats; DC, Dendritic Cell; DLBCL, Diffuse

Large B Cell Lymphoma; DNR, Double Negative Receptor; ESC, Embryonic Stem

Cell; FcR, Fc Receptor; HLA, Human Leukocyte Antigen; HSCT, Hematopoietic

Stem Cell Transplant; iPSC, Induced Pluripotent Stem Cell; MHC, Major

Histocompatability Complex; mRCC, metastatic renal cell carcinoma; NHL, Non-

Hodgkin’s Lymphoma; NK,Natural Killer Cell; NKT,Natural Killer TCell; TALEN,

Transcription Activator-Like Effector Nuclease; TCR, T cell Receptor; ZFN, Zinc

Finger Nuclease.

the tumor), and induces epithelial-to-mesenchymal transition
leading to cancer metastasis. Upregulation of TGFβ in the
tumor microenvironment has been described in many aggressive
malignancies including those of the brain, gastrointestinal tract,
bone, breast, lung, and pancreas (22). TGFβ downregulates
the secretion of critical Th1 cytokines, such as IFNγ, and
impairs T cell and natural killer (NK) cell cytolytic activity and
proliferation (23, 24).

A mutated form of the TGFβ receptor has previously been
shown to exert a dominant-negative effect by abrogating the
negative signaling cascade in cells that express this protein (25).
This dominant negative receptor of the type II subunit (TGFβRII
DNR) encompass the extracellular and transmembrane region
of the endogenous cytokine receptor but exclude intracellular
signaling domains, preventing downstream signaling when
bound to ligand. Expression of this DNR has led to decrease
in downstream signaling following TGFβ ligation—for example
SMAD phosphorylation in the presence of TGFβ is abrogated
by this receptor (26). T cells genetically engineered to express
a TGFβRII dominant negative receptor (DNR) are resistant to
the antiproliferative and anti-cytolytic effects of this cytokine
(27). Genetically modified tumor antigen-associated T cells (in
this case directed against Epstein-Barr virus antigens) expressing
DNR show enhanced persistence and activity, resulting in
superior antitumor activity (28). In this study, TGFβRII
DNR restored proliferation of EBV-specific T cells in the
presence of TGFβ, restored cytotoxicity against EBV-expressing
lymphoblastoid cell lines, and demonstrated greater antitumor
activity and migration in vivo (28). Other studies have also
demonstrated the benefits of this DNR on the activity of T cells
(see Table 1) (27, 29, 30, 32–34).

A dose escalation study (using TGFβRII DNR antigen-
specific T cells directed against EBV) of patients with EBV-
positive lymphoma showed that these T cells were resistant to
the inhibitory cytokine, with increased signals from peripheral
blood, corresponding to increased frequencies of T cells.
Persistence extended to more than 4 years, and four of seven
evaluable patients had clinical responses (28). Other clinical
trials incorporating TGFβRII DNR expressing cells have targeted
a number of cancers including nasopharyngeal carcinoma
(using antigen-specific T cells directed against EBV), metastatic
melanoma (using tumor infiltrating lymphocytes TILs), EBV-
positive Hodgkin disease and non-Hodgkin lymphoma using
antigen-specific T cells directed against EBV), and HER2+ breast
cancer (using chimeric antigen receptors directed against HER2)
(see Table 2).

It is important to note that there may potentially be
unintended consequences of conferring resistance to a regulatory
cytokine: disruption of normal T cell homeostasis may result
from expression of TGFβRII DNR. A study by Lucas et al. show
that expression of the dominant negative receptor resulted in
massive expansion of CD8T cells in lymphoid organs (36). So
far, no dysfunction has been observed in patients (28).

Cytokine Receptors
Besides TGFβ, other negative/regulatory cytokines in the tumor
environment limit T cell persistence and activity—these include
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FIGURE 1 | Schematic of a T cell (purple) and various modification - clockwise from left: forcibly expressed chemokine receptors (blue star) that help the cell migrate

down the relevant chemokine gradient secreted by the tumor, secreted checkpoint inhibitors (green Ys) that bind to the checkpoint receptors on T cells (blue

diamonds), abrogating their inhibitory function, a dominant negative receptor (black no sign) that helps block immune suppressive effects of cytokines like TGF-beta,

and cytokines (yellow) that help stimulate the T cells in an autocrine function.

TABLE 1 | Examples of preclinical research evaluating DNR-expressing T cells for the treatment of malignancies.

Disease Effector cell Observed effects References

Prostate cancer PSMA CAR T cells Specific lysis of tumor, insensitivity to TGF-beta (29)

EBV-positive lymphoma EBV-specific T cells Resist inhibitory effects of TGF-beta in vitro and in vivo, enhanced antitumor activity in vivo (27)

Advanced prostate cancer TCR-modified T cells Complete and sustained tumor regression, enhanced cell survival, restored differentiation of

prostate epithelium

(30)

Prostate cancer PSMA CAR T cell Increased proliferation, enhanced cytokine secretion, resistance to exhaustion, in vivo persistence,

induction of tumor eradication in aggressive prostate cancer

(31)

IL10, IL13, and IL4. Another approach to reversing the
immunosuppressive effects of these cytokines are chimeric
cytokine receptors (CcR) (37). CcR’s use the extracellular
binding domain of an immunosuppressive cytokine bound to the
intracellular signaling domain of an immune-activating cytokine
to reverse its signaling effects. The first use of a chimeric IL4
cytokine receptor was described by Wilkie et al. where a fusion
of IL4 receptor alpha ectodomain was fused to the subunit used
by IL-2 and IL-15; this resulted in expansion and enhanced
killing of MUC1 CAR T cells (38). In another study combining
the extracellular domain of IL-4 cytokine receptor and the
intracellular signaling domain of IL-7 cytokine receptor, CcRs
restored the anti-tumor cytotoxicity of autologous T cells against
EBV-transformed B cell tumors in vivo (37). In this study, CcR
expression induced phosphorylation of STAT5 (part of the native
signaling cascade in IL7 signaling) after ligation with tumor-
secreted IL4, and restored T cell proliferation in the presence of
the cytokine (37). This chimeric cytokine receptor also showed
efficacy in a pancreatic cancer model: T cells modified to express
a chimeric antigen receptor targeting prostate stem cell antigen
(PSCA), found in pancreatic tumors, maintained their antitumor
activity in an IL4-rich tumor microenvironment when they are

co-transduced with the IL4/IL7 CcR (39). Another example uses a
tumor-derived cytokine, CSF-1, to stimulate T cells by modifying
these cells to express CSF-1R. Acquired responsiveness to CSF-1
allowed for improved chemotaxis and proliferation (40).

A simpler construct involves overexpression of a native
cytokine receptor to allow for improved persistence following
exogenous administration of the cytokine. One of the major
challenges in T cell therapies is enhancing persistence of
the cells in vivo. Previously, IL2 was administered to
maintain T cell proliferation and activity (41), but IL2
is also associated with adverse effects (42)—limiting its
applicability. IL7, on the other hand, provides the same
effects without the unwanted toxicities. T cells, however,
lose expression of the IL7 receptor after prolonged culture.
In one study, genetic modification of EBV-specific CTLs
to forcibly express IL-7 receptor α chain (IL-7Rα) led
to restoration of CTL responsiveness to IL-7, and their
antitumor activity sustained in vivo and in vitro without the
unwanted toxicities related to IL-2 administration (43). In
another study, cytokine feedback loops were used to improve
efficacy of T cells by modifying these cells to express IL-7 and
IL-21 (44).
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TABLE 2 | Examples of clinical trials using various DNR-expressing T cells for the treatment of malignancies (35).

Trial ID Disease Product

NCT02065362 EBV-positive Nasopharyngeal carcinoma TGFβ-resistant EBV-specific Cytotoxic T-lymphocytes +/– Cyclophosphamide and Fludarabine

NCT01955460 Metastatic melanoma TGFβ-resistant T cells + Cytoxan, Fludarabine, Mesna, and Interleukin-2

NCT00368082 Relapsed EBV+ Lymphoma TGFβ-resistant LMP-specific Cytotoxic T-lymphocytes (CTLs)

NCT00889954 HER2+ malignancies TGFβ-resistant HER2/EBV-T cells

Cytokines
Select cytokines, like IL2, IL15, and IL12 perform stimulatory
functions for T cells; in theory, autocrine secretion of these
cytokines should help keep these cells persisting in vivo, even in
the face of a hostile tumor environment (20).

In an example of this approach, CD19-CAR-specific T cells
were modified to secrete IL15, and its anti-tumor efficacy
evaluated using a xenogeneic model of lymphoma (45). In this
study, IL-15 modified CD19 CAR T cells secreted IL15 following
antigen stimulation, showed enhanced survival as a result of the
transgenic cytokine, expanded better in vivo, and have better
in vivo anti-tumor activity (45).

Other cell therapies incorporating cytokine secretion are listed
inTable 3. One study, by Koneru et al. looked atMUC-16 specific
T cells secreting IL12. Promising preclinical results (enhanced
lysis of tumors and persistence in vivo) (49) led to its subsequent
use in a phase I clinical trial for recurrent platinum-resistant
ovarian cancer (50).

Chemokine Receptors
One relatively underappreciated requirement for improving T
cell therapies is successful migration to the site of disease
(51). In the setting of malignancies, a possible avenue for
improvement relies on the fact that tumors secrete chemokines
that can potentially be harnessed to lead T cells to the tumor
site. Chemokine receptors corresponding to the chemokines
that are secreted by tumor cells have been introduced into T
cells, which maximized efficacy of these therapies by improving
localization (51).

The first chemokine receptor-engineered T cells redirected
cells using CXCR2: these allowed cells to migrate toward the
Gro-alpha chemokine gradient, and induced interferon gamma
secretion from transduced T cells (52).

Moon et al. transduced the chemokine receptor CCR2b
into mesoCAR T cells to treat tumors that express CCL2
and mesothelin (53). These modified T cells improved tumor
localization, a limitation of CAR-based approaches, and showed
enhanced anti-tumor activity. Craddock et al showed that in
neuroblastoma cell lines derived from six patients, modified
activated T cells showed a 60% increase in the expression of
CCR2b and co-expressed CCR2b and GD2-CAR showed a 10-
fold improvement in migration to the tumor site compared
to CCR2 negative activated T cells (54). Using the transgenic
adenocarcinoma of mouse prostate (TRAMP) model, Garetto
et al. (55) showed that expressing chemokine receptors on T cells
tailored for chemokines that are strongly secreted in the tumor
milieu can be used to improve targeting of T cells.

Additional examples are listed in Table 4.

Checkpoint Inhibitors
In addition to T cell therapies, the introduction of
checkpoint inhibitors has been responsible for the interest
in immunotherapies. These molecules, typically antibodies
directed against checkpoint receptors expressed on T cells,
inhibit negative regulation of these cells—removing the “brakes”
to their activity. Combinations of T cell therapies and checkpoint
inhibitors are therefore particularly attractive. Administration of
a PD-1 blocking antibody enhanced CAR T cell function against
established tumors (58).

One way to coordinate spatiotemporal activity of these
therapeutics is to have T cells directly secrete these inhibitors.
One group engineered CD19 CAR T cells to secrete single
chain variable fragments targeting PD1. T cells were shown
to secrete functional anti-PD1 scFv (∼600 ng/mL), capable of
reversing PD1/PDL1 interactions and their negative effects on
T cell function. This allowed for enhanced T cell expansion and
effector function in vitro and in vivo (59). Another group also
modified various CAR T cells to secrete PD1 blocking scFV and
showed improved antitumor activity, as well as bystander tumor-
specific T cell activity, in syngeneic and xenogeneic murine
models of tumors expressing PDL1 (60). Other groups knocked
down expression of PD-1 (61) or components of PD-1 signaling,
to improve function of adoptively transferred cells (62).

OTHER IMMUNE CELLS

Although the specific, direct actions of gene-modified T cells are
mostly responsible for the promising clinical results—indirect
effects mediated through other immune cells also contributed
to efficacy. In addition, there is an increasing body of evidence
that suggests engagement of multiple arms of immunity are key
toward longer lasting resolution of tumor.

The use of other immune cells as immunotherapies for
cancer is therefore a necessary adjunct to the existing T cell
therapies. Some of the more commonly studied cells include
gamma-delta (γδ) T cells, invariant natural killer T (iNKT) cells,
natural killer (NK), and dendritic cells. We limit this section
to these endogenously occurring cells, though acknowledge
that other cells that can be expanded ex vivo—e.g., cytokine
induced killer cells (CIK)—may form a potentially efficacious
immune therapeutic (Figure 2).

Gamma-Delta T Cells
γδ T cells are a small subset of cells, whose functions make them
attractive candidates for potential immunotherapies. γδ T cells
have many innate like properties, and similar to other innate
cells, such as NKs, γδ T cells express NK receptor NKG2D and

Frontiers in Oncology | www.frontiersin.org 4 April 2019 | Volume 9 | Article 196

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Patel et al. Beyond CAR T Cells

TABLE 3 | Examples of preclinical research evaluating T cells expressing cytokines for the treatment of malignancies.

Cytokine Effector cell Observed effects References

IL2 SWM specific T cell line 14.1 Autocrine growth without tumor formation, antigen specificity retained (46)

IL12 Pmel-1 T cells Enhanced lysis of established melanoma, no toxicities (47)

IL15 Activated CD4+ and CD8+ lymphocytes Continued proliferation after cytokine withdrawal, resistance to apoptosis (48)

TABLE 4 | Examples of preclinical research evaluating T cells expressing chemokine receptors for the treatment of malignancies.

Chemokine receptor Effector cell Observed effects References

CX3CR1 Activated T cells Enhanced lymphocyte migration and tumor trafficking, significant inhibition of tumor growth (56)

CCR2 WT1-TCR-modified T cells CCL2-tropic tumor trafficking, cytocidal reactivity against WT1-expressing cells, augmentation

of TCR signaling

(57)

CCR4 CD30 CAR T cells Enhanced migration to Hodgkin lymphoma cells, sustained cytotoxic function and cytokine

secretion in vitro, enhanced tumor control in vivo

(51)

show cytotoxicity to tumor cells (63). Two groups of γδ T cells
are recognized, based on the TCR V delta usage: V delta 1 cells
are located in mucosal tissue, and V delta 2 cells are located
in the peripheral blood (64). V delta 2 cells are a source of
proinflammatory cytokines once activated, including TNF- α and
IFN-γ (64). Themechanisms by which γδT cells recognize cancer
are not fully understood. They can recognize tumor antigens via
their TCRs and NK receptors, but it is unclear what specific
antigens they respond to (65). γδ2 T cells typically recognize
pyrophospate antigens produced by bacteria, while γδ1 T cells
recognize MHC class I related molecules like MICA/MICB (64).
In the cancer setting, it is thought that γδ T cells recognize stress
induced self-like antigens, typically expressed by malignant cells
and found to infiltrate tumors in some cases (66). These cells
appear to mediate a graft vs. tumor response without eliciting
GVHD (67).

In pre-clinical studies, γδ T cells have been expanded and have
demonstrated cytotoxicity to a variety of tumor cell lines derived
from lung carcinoma, liver cancer, and breast cancer, in anMHC-
unrestricted manner (66). Deniger et al. demonstrated that they
were able to see a 107-fold increase in γδ T cell numbers, despite
a small starting population, suggesting it is possible to expand
to clinically relevant numbers (68). Another study by Liu et al.
show that γδ T cells have the ability to recognize and kill some
forms of prostate cancer in vitro via innate mechanisms (69). In
other preclinical studies, it was demonstrated that γδT cells could
be transduced to generate CAR-T cell products that maintained
their natural tumor infiltration and killing abilities (70).

Some clinical trials using these cells are already underway
In a Phase I study, autologous γδ T cells were infused in
combination with IL-2 into 10 patients with metastatic renal
cell carcinoma (mRCC) (71). This trial demonstrated safety, as
infusions were tolerated with few serious adverse events related to
the immunotherapy, with six patients showing stable disease. In
another study, patients with hepatocellular carcinoma were given
an injection of γδ T cells (NCT00562666).

Although γδ T cells have been well-tolerated in cancer
patients, they are limited by difficulties in their isolation (65),
and some questions surround their potential tumor-promoting
effects (effects on angiogenesis and secretion of IL-17) (72, 73).

Natural Killer Cells
Natural killer cells were initially identified for their ability to
target and kill tumor cells (74). They exhibit cytolytic function
through the release of perforin and granzyme B as well as
through FasL-TRAIL-mediated pathways, and NK cell activity
is governed by a balance of signals from both activating and
inhibitory receptors (75–78). NK cells are an possible option
for adoptive immunotherapy because they do not require prior
antigen exposure to elicit cytotoxicity. In addition, NK cells have
limited persistence in vivo, a feature that appeals to clinicians and
scientists alike. There is preclinical and clinical evidence that NK
cells do not cause graft vs. host disease (GVHD) (79–83) or result
in systemic toxicities associated with “cytokine storms” seen in T
cell therapies (84–86). Similar to other new immunotherapies, an
initial roadblock to the clinical use of NK cells was the inability to
expand NK cells to clinically relevant numbers.

An additional challenge facing NK cells for adoptive therapy
is the immunosuppressive tumor microenvironment, which
directly nullifies the cytotoxicity of NK cells (87). Specifically,
there is an abundance of immunosuppressive cell types such
as myeloid-derived suppressor cells (MDSC) (88–90), tumor-
associate macrophages (TAM) (91), and regulatory T cells (Treg)
(26, 92–95), as well as cytokines such as transforming growth
factor beta (TGFβ) and indoleamine 2,3 dioxygenase (IDO)
(26, 96), that have been shown to interact with NK cells and
cause phenotypic and functional dysfunction. Many groups have
performed preclinical work in order to exploit the anti-tumor,
cytotoxic, capabilities of NK cells, while addressing the challenges
faced by adoptive cell therapy. For instance, Mentlik et al.
focused on these combining NK cell therapy with monoclonal
antibodies, boosting NK cell’s ability to conduct ADCC (97);
these combination therapies with antibodies or cytokines are the
focus of other preclinical efforts (98).

Extensive effort has been put into generating and
characterizing NK cells for adoptive cell therapy from both
primary donor and immortalized NK line donor sources, with
mixed results (Table 5). As with T cells, there is tremendous
appeal for equipping cytotoxic cells with the ability to specifically
recognize and kill a given tumor target—as such, there have
been multiple attempts at generating CAR-NKs, that retain

Frontiers in Oncology | www.frontiersin.org 5 April 2019 | Volume 9 | Article 196

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Patel et al. Beyond CAR T Cells

FIGURE 2 | Schematic of various other cells and their effects on the tumor – clockwise from left: (A) natural killer (NK) cells, which lyse tumors without the need for

identifying a known antigen, working through a balance of inhibitory and activating receptors (and also amenable to transduction with chimeric antigen receptors), as

well as secrete cytokines that activate other components of the immune response, (B) natural killer T (NKT cells, which recognize lipid antigens and also help

orchestrate the immune response, (C) dendritic cells (DC) which present antigen to T cells and help jump start immune responses like a vaccine.

their cytotoxicity but are instead directed toward a specific
antigen (122). CAR-NKs targeting B cell malignancies have
demonstrated impressive in vivo cytolytic efficacy (123–126), and
represent a promising transition of the technology to the clinic.
Other modifications have been incorporated in NK cells—in one
such study, cord blood NK cells engineered to express IL15 and
a CD19 CAR showed marked increase in survival in a xenograft
lymphoma model (127).

To date, three trials with genetically modified primary NK
cells, and are currently active (NCT03056339, NCT00995137,
NCT01974479). Existing clinical CAR-NK therapies borrow
directly from the manufacturing schemes in the CAR-T cell
field. One new approach involves substitution of the CD3ζ
domain, which initiates TCR-based activation in T cells,
with an intracellular domain that is specifically involved in
NK cell activation. Indeed, NK-specific activation domains
DNAX Activating Protein 10 (DAP10) and 12 (DAP12)
have been introduced as the intracellular component in a
CAR-NK in preclinical work, and promising results have
demonstrated enhanced NK activation and function with this
modification (128, 129).

In addition to the abovementioned CAR-NK clinical efforts,
multiple clinical trials are underway using infusions of either
autologous or allogenic NKs, with more promising results
occurring in patients treated with allogenic NKs [reviewed in
(130, 131)]. A study by Burns et al. using ex vivo activated NKs
for treating patients with Hodgkin’s and renal cell carcinoma
was unable to demonstrate clinical efficacy (132), perhaps due
to the autologous donor source. Furthering this claim were

the results from multiple groups that demonstrated enhanced
NK cell cytotoxicity occurring in patients if there was a killer
immunoglobulin receptor-human leukocyte antigen (KIR-HLA)
mismatch between donor and recipient cells (83, 93). One of the
outstanding challenges for the use of adoptive NK cell therapy
pertains to the cells’ innate sensitivity to the freeze-thaw process.
Indeed, preclinical reports have demonstrated impaired viability
and cytotoxicity following cryopreservation (133, 134).

In addition to improving the manufacture end of NK cells
therapies, developments are underway that aim to enhance the
functionality and persistence of these therapies. For instance,
focus for NK cell as well as other cell therapies has shifted
toward modulating the suppressive tumor microenvironment
concurrently with cell therapy in order to enhance efficacy
(26). Moreover, a class of immunomodulatory drugs, such
as thalidomide, have been found to modify the NK cells in
the tumor environment by upregulating surface expression of
TRAIL, which may increase NK-mediated apoptosis of target
tumor cells (135–137). Miller et al. are developing bi-specific
killer engagers (BiKEs) and tri-specific killer engagers (TriKEs)
that can address many of the challenges facing NK cell therapy
all in one construct (138–141). They have developed a platform
by which NK cells are rendered specific for a given target
antigen, while simultaneously increasing NK cell potency and
persistence by incorporating CD16 single chain variable fragment
(to increase ADCC-associated signaling) and an IL15 moiety
(to increase NK activation and thus persistence). These findings
that BiKE and TriKE-modified NK cells delivered potent anti-
tumor responses in the setting of AML, ALL, and CLL, as well
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TABLE 5 | NK cell production methods.

Donor source Cell population NK purity Cell expansion method References

Umbilical cord blood CD34+ hematopoietic stem cells >90% Differentiation and expansion in bioreactor with GM-CSF,

G-CSF, IL-6, IL-7, SCF, IL-15, and IL-2

(99, 100)

Umbilical cord blood CD34+ hematopoietic stem cells Differentiated and cultured with IL-15 and MS-5 or OP9

stromal feeder cells

(101)

Umbilical cord blood CD34+ hematopoietic stem cells >90% Cultured with StemRegenin-1,IL-7, SCF, IL-15, and IL-12 (102)

Umbilical cord blood CD34+ hematopoietic stem cells >80% Cultured with high dose cytokine cocktail and OP9 or

M2-10B4 feeder cells

(103)

Umbilical cord blood Total mononuclear cells 90% Cultured with K562 Clone 9.mbIL21 feeder cells, IL-2,

IL-12, IL-15, and IL-18

(104)

Umbilical cord blood CD56+ NK cells Cultured with irradiated feeder cells (K562-C9), IL-15,

and IL-2

(26)

Peripheral blood Total PBMC >80% Cultured with irradiated feeder cells (K562-C9) (105)

Peripheral blood Total PBMC >55% Cultured with IL-2 and OKT3 (106–109)

Peripheral blood Total PBMC 90% Cultured with OK432, IL-2, and modified FN-CH296

induced T cells

(110)

Peripheral blood Total PBMC >80% Cultured with low dose IL-2 and RPMI 8866 feeder cells (111, 112)

Peripheral blood Total PBMC >90% Cultured with IL-2 and LAZ388 feeder cells (113)

Peripheral blood CD56+ NK cells Cultured with IL-15 and IL-2 (114)

Peripheral blood CD5 and CD8 depleted PBMC >88% Cultured with high dose IL-2 (115, 116)

NK-92 Cell line Immortalized NK cell line 100% Cultured with IL-2 (117, 118)

KHYG-1 Cell line Immortalized NK cell line 100% Cultured with IL-2 (119)

NK-YS Cell line Immortalized NK cell line 100% Cultured with IL-2 and SPY3-2 feeder cells (120)

haNK Cell Line Immortalized NK cell line (based on NK-92) 100% Cultured with IL-2 (121)

as the extensive number of ongoing clinical trials are only one
example of how the field of immunotherapy is rapidly expanding
to include a variety of non-T cell-based immunotherapies.

Natural Killer T Cells
NKTs represent an important link between the innate and
adaptive immune system, as they can be activated by both antigen
dependent and antigen-independent mechanisms. Divided into
invariant (iNKT) or diverse (dNKT) subsets, they have a
highly restricted TCR repertoire, only recognizing antigen in
the context of the MHC class I-like CD1d molecule (142),
and are uniquely classified by their ability to rapidly produce
regulatory cytokines such as IFNγ, IL4, IL10, IL13, IL-17, GM-
CSF, and TNFα in large quantities (143). These characteristics
together contribute to the appeal of this cell subset as a form
of immunotherapy. Although populations of iNKT cells isolated
from cancer patients have been found to be decreased in
quantity and defective (144–146), many groups have shown
that this impaired phenotype is in fact reversible ex vivo
(147–150). Additionally, preclinical studies have supported
the promise of NKT therapy as a multimodal platform—the
glycolipid alpha-galactosylceramide (αGalCer) can reactivate
impaired NKTs ex vivo to result in restored cytokine production
and anti-tumor responses (151–154). Further, inhibition of
tumor progression has been demonstrated in models of colon
carcinoma, lymphomas, sarcoma, melanoma, prostate cancer,
and lung cancer, leading to resurgence of optimism in iNKT cells
as agents of immunotherapy.

NKTs are of particular interest as a possible cell for
CAR modification for two main reasons: first, because

clinical data has indicated better outcomes occurring in
patients with higher NKT cell tumor infiltrate (155, 156),
and second because the CD1d restricted nature of NKT
antigen recognition is able to limit the potential off-target
toxicity and increase potential applicability in both the
autologous and allogeneic setting (157). Because NKTs
secrete a wide range of regulatory cytokines, they are able
to both activate antigen presenting cells such as dendritic
cells as well as cytotoxic cells such as CD8+ T cells and
NK cells—further increasing their value as an agent of
immunotherapy (Figure 2) (158–163). Heczey et al. generated
CAR-modified NKT cells to target neuroblastoma (aGD2
CAR) and lymphoma (aCD19 CAR), with marked success.
They found that their CAR NKT cells had highly potent
and selective cytotoxic activity against tumor target antigen-
expressing cells, and were able to efficiently proliferate and
produce large amounts of cytokines in the tumor environment,
thus mediating their efficacy (164). Rotolo et al. generated
CAR CD19-modified NKT cells to better target CD19-
expressing lymphomas that also express CD1d, the ligand
for NKT (165).

Many attempts have been made to directly target and
restore function to patients’ endogenous NKT cells, and
current trials are summarized in Table 6. This avenue has
focused on the infusion of NKT cell activating or stimulating
agents, largely αGalCer (166), or by combining these agents
with APCs such as dendritic cells to enhance immune
activation at the suppressed tumor site (167–173). Dendritic
cells can be pulsed with glycolipid and reintroduced into
patients, a strategy regularly used in vaccine development,
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TABLE 6 | Examples of clinical trials with iNKT cells (35).

Trial ID Disease Product

NCT00003985 Solid Tumors KRN7000 (alpha gal-cer)

NCT00698776 Myeloma Combination of Lenalidomide and dendritic cells loaded with KRN7000

(alpha gal-cer)

NCT03093688 Advanced Solid Tumors Infusion of iNKT cells and CD8+T cells

NCT02562963 Non-small cell lung cancer, gastric cancer, hepatocellular carcinoma,

colorectal cancer

NKT cells expanded from PBMC

NCT01801852 Breast Cancer, Glioma, Hepatocellular Cancer, Squamous Cell Lung

Cancer, Pancreatic Cancer, Colon Cancer, Prostate Cancer

Autologous NKT cells

NCT03198923 Non-small cell lung cancer NK and NKT cells

NCT03294954 Neuroblastoma NKT cells genetically modified to express a GD2-CAR

NCT00909558 Breast Cancer, Glioma, Hepatocellular Cancer, Squamous Cell Lung

Cancer, pancreatic Cancer, Colon Cancer, Prostate Cancer

Autologous NK or NKT cells

NCT01235845 Malignant Glioma DC-activated NKT cells and DCs

TABLE 7 | Examples of clinical trials with dendritic cells (35).

Trial ID Disease Product

NCT01875653 Metastatic melanoma Autologous dendritic cells loaded with irradiated autologous tumor cells in

GM-CSF

NCT00005947, NCT01133704 Metastatic prostate cancer that has not responded to

hormone therapy

Sipuleucel-T

NCT00065442 Metastatic prostate cancer that has not responded to

hormone therapy

Sipuleucel-T

NCT00779402 Early stage, non-metastatic prostate cancer Sipuleucel-T

NCT01582672 Renal cell carcinoma AGS-003 (Autologous dendritic cell product)

NCT00045968 Glioblastoma multiforme DCVax-L

NCT01067287 Multiple myeloma Pidilizumab (CT-011) + Dendritic cell-myeloma fusion vaccine

NCT01096602 Acute myelogenous leukemia (AML) Dendritic cell-AML fusion vaccine

NCT01441765 Renal cell carcinoma Pidilizumab (CT-011) + Dendritic cell-renal cell carcinoma fusion vaccine

which has been proven to induce activation and restore
function to endogenous NKT cells in a range of cancer types
(167, 174–176).

The largest challenge facing the advancement of CAR and
non-CAR NKT cell therapies is that of persistence; tumor
progression negatively correlates with NKT cell functionality.
Attempts to subvert this impairment in NKT function include
efforts where autologous NKTs are expanded ex vivo with
αGalCer prior to reinfusion, as previously described (177).
Attempts have been made to classify the phenotype of
NKT cells during tumor progression, and CD62L has been
identified as a potential indicator of NKT cells most likely to
demonstrate enhanced anti-tumor activity (178). Moreover, new
approaches to drug or glycolipid delivery systems are currently
in development, which aim to package agents causing activation
of NKTs in enhanced nanoparticle-based constructs. Examples of
this novel immunotherapy “associated agent,” such as αGalCer
packaged into microspheres or liposomes, have demonstrated
enhanced NKT functional responses as compared to the agent
alone (179–182). These modifications to CAR and non-CAR
NKTs speak to the tremendous promise of generating enhanced
clinical NKT therapies.

Dendritic Cells
Dendritic cells (DCs), one of the professional antigen-presenting
cells of the immune system, efficiently process antigens for
presentation to T cells in order to activate the adaptive immune
system (183). DCs naturally play a role in the control of immune
responses and immune tolerance, both critical in anti-tumor
immunity (183–185). Pre-clinical in vivomouse models of cancer
have demonstrated that DCs have the ability to home to tumor
sites and capture tumor-associated antigens for processing. These
DCs subsequently travel to nearby lymph nodes, where they
present tumor antigens to T cells, generating tumor-specific T
cells that can lead to clearance or tumor rejection (184, 185).
Furthermore, DCs have the unique role of interacting with
several subsets of the immune system, including both CD4 and
CD8T cell subsets in lymph nodes, resulting in downstream B
cell activation into antibody-secreting cells, as well as activation
of NKs and phagocytes. For example, in a murine model of
melanoma, it was demonstrated that DCs interact with both
cytotoxic T cells and NK cells to mediate tumor elimination
(186, 187). However, NK depletion resulted in no tumor
elimination, emphasizing the importance of DC-NK interactions
in anti-tumor immunity (186, 187). This ability to interact with
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and regulate multiple immune cells make DCs an interesting
candidate cell subset to be used in immunotherapy trials.

Due to their natural role in antigen processing and
presentation, dendritic cells have been used in multiple
Phase III clinical trials as an adjuvant or therapeutic vaccine for
certain cancers including metastatic melanoma (NCT01875653),
prostate cancer (below), renal cell carcinoma (NCT01582672),
and glioblastoma multiforme (NCT00045968) (188, 189)
(Table 7). The main objective of these studies was to deliver
tumor antigens via DCs to stimulate and activate anti-
tumor antigen-specific T cells, which subsequently eliminate
cancerous cells and provide immunological memory to
prevent tumor relapse. Furthermore, it has been demonstrated
that the induction of anti-tumor T cell responses from
DC-immunotherapies concurrently enhances natural killer
immunity (187), underscoring the importance of DCs in
regulating multiple immune cell subsets (Figure 2).

One of the significant advantages with DC-based
immunotherapies is the demonstration of safety across multiple
clinical trials (188–191), with promising efficacy shown in certain
cancer settings. For example, in a Phase 3 IMPACT study for
prostate cancer, DC-based therapy, sipuleucel-T, demonstrated
significantly better survival by 4 months, for patients with
metastatic hormone-resistant prostate cancer compared to the
placebo group (191). Multiple Phase 3 prostate cancer studies
(NCT00005947, NCT00065442, NCT00779402, NCT01133704)
with DC-immunotherapy sipuleucel-T have shown induction
of antigen-specific immune responses correlate with better
survival in patients (190–194) (Table 7). Because of observed
improvements in survival, sipuleucel-T was FDA approved
in 2010. It is interesting to note that this coincides with <5%
patients achieving an objective response, or tumor reduction
over time.

Current clinical strategies are looking to optimize DC
immunotherapy through combinations with other agents,
in an effort to improve tumor burden. For example, the
immunosuppressive tumor environment may prevent DCs
from effectively activating cytotoxic T cells and NK cells
to eliminate the tumor. Consequently, immune checkpoint
inhibitors such as pidilizumab, are currently being explored
in combination with DC immunotherapies (NCT01067287,

NCT01096602, NCT01441765) for multiple myeloma, acute
myelogenous leukemia (AML), and renal cell carcinoma, in an
effort to enhance activation of tumor-specific cytotoxic T cells by
DCs (195, 196) (Table 7). Ultimately, DC immunotherapies have
shown promise in certain cancer settings, and have the advantage
of interacting with numerous immune cell subsets to mediate
anti-tumor immunity. The efficacy of these DC immunotherapies
may be improved upon through combination strategies with
other agents and the targeting of immunosuppressive barriers to
tumor eradication.

CONCLUSIONS

CAR T cell therapies have demonstrated the clinical benefits
of harnessing our body’s own defenses to combat tumor

cells. Similar research is being conducted on lesser known
modifications and gene-modified immune cells. Promising
preclinical and clinical results point to a likely establishment
of these therapeutics as another treatment modality against
cancer. Because the field is a recent one, it is necessarily
disjointed: different groups focus on their preferred immune
effector and seldom compare efficacy with others, much less
look at potential combinations. By presenting this review,
the authors hope that researchers become more familiar with
what is out there—and hope that more efforts at head-to-
head comparisons between therapies and combination therapies
(which is how the immune system is supposed to act)
be explored.
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