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Impact of language on functional 
connectivity for audiovisual speech 
integration
Jun Shinozaki1,*, Nobuo Hiroe2, Masa-aki Sato2, Takashi Nagamine1 & Kaoru Sekiyama3,*

Visual information about lip and facial movements plays a role in audiovisual (AV) speech perception. 
Although this has been widely confirmed, previous behavioural studies have shown interlanguage 
differences, that is, native Japanese speakers do not integrate auditory and visual speech as closely 
as native English speakers. To elucidate the neural basis of such interlanguage differences, 22 native 
English speakers and 24 native Japanese speakers were examined in behavioural or functional Magnetic 
Resonance Imaging (fMRI) experiments while mono-syllabic speech was presented under AV, auditory-
only, or visual-only conditions for speech identification. Behavioural results indicated that the English 
speakers identified visual speech more quickly than the Japanese speakers, and that the temporal 
facilitation effect of congruent visual speech was significant in the English speakers but not in the 
Japanese speakers. Using fMRI data, we examined the functional connectivity among brain regions 
important for auditory-visual interplay. The results indicated that the English speakers had significantly 
stronger connectivity between the visual motion area MT and the Heschl’s gyrus compared with the 
Japanese speakers, which may subserve lower-level visual influences on speech perception in English 
speakers in a multisensory environment. These results suggested that linguistic experience strongly 
affects neural connectivity involved in AV speech integration.

Visual information about lip and facial movements plays a large role in vocal speech perception. This has been 
shown to have an enhancing effect for audiovisual (AV) congruent speech (e.g., Sumby, 1954)1, and a disrupting 
effect for AV incongruent speech, such as in the McGurk illusion2. This enhancement includes not only increased 
accuracy in noisy circumstances1, but also increased speed in perceiving congruent AV speech compared with 
auditory-only (AO) speech in quiet circumstances3,4. Such a temporal facilitation is thought to be due to orofacial 
movements starting slightly before the auditory onset in natural speech production3,5. This time lag may allow the 
brain to anticipate auditory signals based on visual information3–5. On the other hand, incongruent AV speech 
often induces the McGurk illusion, in which the percept is different from that for AO speech, for example, a com-
bination of the auditory /ba/ and the visual /ga/ may be perceived as /da/2,6.

Both the enhancing and disrupting effects of AV speech have contributed to the documentation of the mul-
tisensory nature of speech perception, that is, how closely auditory and visual speech are processed together. 
However, several previous studies have found that this close coupling may not be universal, for example, native 
speakers of Japanese show a much weaker McGurk effect than those of English7–11. One characteristic of Japanese 
speakers experiencing AV incongruent speech stimuli is that they rely on auditory speech and perceive mouth 
movements as “incongruent with the real speech”. This is in contrast with English speakers who easily integrate 
auditory and visual speech and do not notice the incongruity7.

It has also been shown that it is between ages 6 and 8 years old when these interlanguage differences between 
English and Japanese become developmentally apparent in AV speech perception10. Although pre-lingual 
infants recognize voice-mouth matching for vowels12,13 and may show some early signs for the occurrence of the 
McGurk effect14,15 (also see Desjardins (2004)16), preschool and school-age young children still tend to rely on 
auditory speech more so than adults for the McGurk-type incongruent AV speech2,10,17–19. Thus, young children 
still require time to achieve AV speech integration to attain the level of adult native English speakers. This is 
presumably related to the fact that lipreading is very difficult for young children10,17,18. Therefore, returning to 
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the cross-linguistic developmental study by Sekiyama and Burnham10, the 6-year-olds’ lipreading abilities may 
have not been high enough to have had an effect on auditory processing, which would have yielded only a weak 
McGurk effect irrespective of their language background. However, it was striking that Japanese adults remained 
at a level similar to 6-year-olds in integrating auditory and visual speech, in spite of their increased lipreading 
ability10. It may be that the Japanese language has some characteristics that do not promote the use of visual 
articulatory information. In consonants, English has 6 visemes20,21 while Japanese has 3 visemes22. A viseme, an 
analogy of phoneme, is a category within which perceivers cannot further categorize speech sounds due to visual 
similarity for lipreading. Defining number of visemes as informative, Japanese has a smaller number of phonemes 
and less informative visual speech20–22. Due to such factors, the development of neural connectivity among differ-
ent brain regions for AV speech perception may be quite different between native speakers of Japanese and those 
of English. This study investigated these interlanguage differences in neural connectivity.

Previous functional neuroimaging studies on AV integration have shown that the left Superior Temporal 
Sulcus (STS) is persistently activated for AV integration of speech under various experimental settings6,23–29. This 
is reasonable because the STS is one of the major “higher-order” multisensory convergence zones (Driver (2008) 
for review30). Previous studies in nonhuman primates have shown that the STS receives input from both the 
auditory cortex and visual cortex31,32. Nath and Beauchamp (2011) have shown that noisy visual stimuli decrease 
the input from the visual cortex to the STS, while noisy auditory stimuli decrease the input from the auditory 
cortex to the STS in audiovisual speech perception33. These studies suggested that the STS receives input from 
both the auditory cortex and visual cortex in humans. It seems that the auditory input via the auditory association 
cortex and the visual input via the middle temporal visual area (MT) may converge in the STS for perceiving AV 
integrated speech.

On the other hand, there is increasing evidence for an early influence of visual input on the auditory cortex in 
multisensory processing, perhaps not mediated by the higher-order multisensory convergence zone (Ghazanfar 
(2006), Driver (2008), Schroeder (2008) for review30,34,35). A direct anatomical route from visual cortex to audi-
tory cortex has been reported in non-human primates36–40. In human intracranial electrophysiological study, 
mouth movement in the AV stimuli activate auditory cortex, 10 ms after the activation of MT41, supporting 
an early influence of visual input on the auditory cortex. A few recent neuroimaging studies have proposed a 
dual-route model of AV speech perception; in addition to the convergence of afferent sensory inputs in the STS, 
there is a more direct pathway that allows quick visual influence on auditory speech processing29,42.

To date, only one neuroimaging study has tested native speakers of Japanese for speech perception by facial 
and vocal stimuli25. The results suggested that the Japanese had little multisensory integration for AV incongruent 
(McGurk-type) speech presented under a relatively high auditory signal-to-noise ratio. On the other hand, they 
did integrate AV speech when the auditory signal-to-noise ratio was lower, with substantial occurrence of the 
McGurk effect and left STS activation.

In order to compare native speakers of Japanese and English, the present study focused on the temporal facil-
itation effect for AV congruent speech, rather than the McGurk effect for AV incongruent speech. This is because 
a previous study indicated that neural responses for multisensory integration may be more clearly observed for 
AV congruent than incongruent speech3. On the other hand, focusing on the temporal facilitation effect for AV 
congruent speech can avoid very noisy conditions for capturing AV integration in Japanese speakers, which is 
important to make a fair comparison between native speakers of Japanese and English, because interlanguage dif-
ferences tend to be clearer when auditory speech is intelligible8. With the AV congruent speech stimuli, we com-
pared functional connectivity among brain regions between native speakers of Japanese and English. Based on 
the previous behavioural findings, we predicted a smaller temporal facilitation effect of congruent visual speech, 
as well as less/weaker brain functional connectivity between auditory and visual regions for native speakers of 
Japanese than those of English.

Results
Behavioural experiment.  The task of the participant was to decide what he/she perceived by choosing from 
“ba”, “da”, and “ga”, and pressing one of three buttons with the left hand as accurately and quickly as possible. There 
were three conditions (AV, AO, and visual only (VO)).

To investigate the degree of audiovisual integration, we defined temporal facilitation by visual speech by sub-
tracting the RTs of AV from AO in each group (pooled talker’s effect). The temporal facilitation was 50 ±​ 13 ms 
(mean ±​ standard error) for the English speakers. A one-sample t-test showed a significant temporal facilitation 
compared with zero (t19 =​ 3.907, p =​ 0.001, Cohen’s d =​ 0.87). In Japanese speakers, temporal facilitation was 
9 ±​ 22 ms, and a one-sample t-test did not show a significant temporal facilitation (t21 =​ 0.396, p =​ 0.696, d =​ 0.08) 
(Fig. 1a).

We tested whether lipreading was faster in English speakers than in Japanese speakers. A two-sample t-test 
(pooled talker’s effect) showed that lipreading was significantly faster in English speakers than in Japanese speak-
ers (t40 =​ 2.894, p =​ 0.006, d =​ 0.89) (Fig. 1b).

To summarize, the temporal facilitation effect of congruent visual speech (i.e., AV condition) was significant 
only in English speakers, but not in Japanese speakers, and English speakers were much quicker than Japanese 
speakers at lipreading (VO condition) (by 160 ms on average).

The accuracy was high in both groups. In English speakers, the accuracies and standard errors were 
97.4 ±​ 0.5%, 96.6 ±​ 0.9%, and 86.6 ±​ 1.2% in the AV, AO, and VO conditions, respectively. In Japanese speakers, 
the accuracies and standard errors were 97.2 ±​ 0.7%, 97.1 ±​ 0.4%, and 82.6 ±​ 2.3% in the AV, AO, and VO condi-
tions, respectively (Fig. 1c).

Additional analyses were conducted to investigate subgroup differences (Caucasian versus Asian) in English 
speakers. The RTs were essentially the same between Caucasian English-speakers and Asian English-speakers (see 
Supplementary Information). We also compared the behavioural data collected inside and outside the scanner 
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(i.e., between the fMRI and behavioural experiments). The RTs did not significantly differ between behavioural 
experiments and fMRI experiments (see Supplementary Information).

fMRI experiment.  Multisensory and unisensory responses.  Stimuli were the same as in the behavioural 
experiment except only two syllables (/ba/ and /ga/) were used in the fMRI experiment. Figure 2a and Table 1 
show areas activated under the AV condition in native English and Japanese speakers. The AV condition involved 
the bilateral superior temporal gyri, and the occipital cortex including the fusiform gyrus (Fusiform Face Area 
(FFA)43) in both native English and Japanese speakers, while activity in the MT was found only in Japanese speak-
ers. Neural activity in the right precentral gyrus (primary motor cortex (M1)) and medial frontal gyrus (sup-
plementary motor area (SMA)) was also observed, perhaps due to the manual response (Table 1). Significantly 
greater activity was observed in the posterior cingulate in native English than in Japanese speakers (Table 1), 
and in the left inferior temporal gyrus including MT in native Japanese than in English speakers in group 
comparisons.

Figure 2b and Table 1 show areas activated by AO unistimulation in native English and Japanese speakers. The 
AO stimuli, which consisted of unisensory audio stimuli with a still face, activated the bilateral superior temporal 
gyri, the visual area including the FFA, and motor related areas including the right M1 and SMA. In group com-
parisons, a few regions showed significant group differences (Table 1), but their cluster sizes were relatively small.

VO unistimulation induced neural activity in the visual cortex including FFA, superior/middle temporal 
gyrus, and premotor cortex in both groups (Fig. 2c, Table 1). Only limited areas showed greater activation for 
English than Japanese speakers (Table 1), while various regions showed greater activation for Japanese than for 

Figure 1.  Behavioural results. The temporal facilitation of visual speech (shorter RTs for the AV than the AO 
condition) was found only in English speakers (a). Lipreading was significantly faster in English speakers than 
in Japanese speakers (b). The proportion of correct responses was relatively high in all conditions, but those in 
the VO condition were less than those in the other two conditions (c). Eng; native English speakers. Jpn; native 
Japanese speakers. Error bars mean standard errors. *​*​p <​ 0.01, *​p <​ 0.05, n.s.; not significant.
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English speakers (Fig. 2c): these regions included the bilateral inferior/middle temporal gyrus including MT, 
posterior parietal cortex (PPC), a few regions in prefrontal cortex (PFC), and cerebellum.

Functional connectivity.  AV condition.  In English speakers, Heschl-centred connectivities were observed, 
that is, significant MT-Heschl (p <​ 0.001, Z =​ 0.27 (Z: Fisher’s Z-transformation of correlation coefficients r)), 
Calcarine-Heschl (p =​ 0.036, Z =​ 0.10), and Heschl-STS (p =​ 0.001, Z =​ 0.17) connectivities. Inconsistent with 
a model of integration in the STS29, the MT-STS connectivity was not significant (p =​ 0.157, Z =​ 0.05). In con-
trast, Japanese speakers showed STS-centred connectivities (Calcarine-STS (p =​ 0.046, Z =​ 0.09), MT-STS 
(p =​ 0.006, Z =​ 0.12), and Heschl-STS (p <​ 0.001, Z =​ 0.19)) as well as a visual connectivity (Calcarine-MT 

Figure 2.  Brain areas activated under AV, AO, and VO conditions. Brain areas activated under the AV 
condition in native English speakers and native Japanese speakers (voxel level p <​ 0.001, uncorrected; cluster 
level p <​ 0.05, corrected), and those showing greater activation in native English speakers than Japanese 
speakers, and those vice versa (a) (voxel level p <​ 0.001, uncorrected). The left inferior temporal gyrus, 
including MT, showed greater activity in native Japanese speakers than in native English speakers. Note that 
activity in the right hemisphere or medial region is not shown here; instead, they are shown in Table 1. Brain 
areas activated by AO stimuli in native English speakers and native Japanese speakers (voxel level p <​ 0.001, 
uncorrected; cluster level p <​ 0.05, corrected), and those showing greater activation in native English speakers 
than Japanese speakers, and those vice versa (b) (voxel level p <​ 0.001, uncorrected). There was no significant 
difference between groups in activity in the lateral left hemisphere. Note that activity in the right hemisphere 
or medial region is not shown here; instead, they are listed in Table 1. Brain areas activated by VO stimuli in 
native English speakers and native Japanese speakers (voxel level p <​ 0.001, uncorrected; cluster level p <​ 0.05, 
corrected), and those showing greater activity in native English speakers than in native Japanese speakers, and 
those vice versa (c) (voxel level p <​ 0.001, uncorrected). There was no significantly greater activity in the lateral 
left hemisphere in native English speakers than in native Japanese speakers, except in the left posterior superior 
temporal gyrus. The left PPC, PFC, and inferior/middle temporal gyrus including MT, as well as cerebellum 
showed greater activity in native Japanese speakers than in native English speakers. PPC; posterior parietal 
cortex. PFC; prefrontal cortex.
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Cluster Size Locations (Brodmann area) x y z Z-Value

Brain areas activated by AV stimuli in native English speakers*​

5551 L. Cuneus (18) −​6 −​102 −​6 6.58

L. Cuneus (17) −​9 −​99 −​9 6.54

R. Lingual Gyrus (18) 3 −​84 −​9 6.27

R. Middle Temporal Gyrus (21) 57 −​18 −​3 6.06

R. Inferior Occipital Gyrus (19) 36 −​81 −​9 5.74

L. Middle Temporal Gyrus (22) −​54 −​33 6 5.50

R. Putamen 27 −​9 −​6 5.45

R. Superior Temporal Gyrus (41) 51 −​33 9 5.41

R. Superior Temporal Gyrus (22) 66 −​36 6 5.25

L. Superior Temporal Gyrus (22) −​66 −​39 6 5.13

450 R. Precentral Gyrus (6) 45 −​21 66 5.62

209 L. Medial Frontal Gyrus (6) −​6 3 57 4.87

R. Medial Frontal Gyrus (6) 9 3 54 4.16

64 L. Cerebellum −​12 −​63 −​45 4.53

Brain areas activated by AV stimuli in native Japanese speakers*​

3664 L. Cuneus (18) −​15 −​102 3 7.10

R. Cuneus (17) 12 −​99 0 6.31

L. Inferior Occipital Gyrus (17) −​12 −​90 −​15 5.90

R. Fusiform Gyrus (37) 42 −​48 −​18 5.45

R. Middle Occipital Gyrus (37) 39 −​69 −​3 5.28

L. Superior Temporal Gyrus (13) −​51 −​42 15 5.10

L. Fusiform Gyrus (37) −​45 −​57 −​24 5.07

L. Superior Temporal Gyrus (22) −​60 −​42 9 4.98

L. Superior Temporal Gyrus (41) −​42 −​36 9 4.97

1241 R. Superior Temporal Gyrus (22) 66 −​36 15 6.06

R. Superior Temporal Gyrus (41) 54 −​30 12 5.99

398 R. Precentral Gyrus (4) 33 −​27 57 5.97

289 R. Medial Frontal Gyrus (6) 9 −​6 60 5.06

L. Medial Frontal Gyrus (6) −​12 0 57 4.50

Brain areas showing greater activation in native English speakers than in native Japanese speakers under the AV 
condition*​*​

No suprathreshold voxels

Brain areas showing greater activation in native Japanese speakers than in native English speakers under the AV 
condition*​*​

29 L. Inferior Temporal Gyrus (37) −​51 −​69 −​3 3.40

Brain areas activated by AO stimuli in native English speakers*​

1736 L. Cuneus (17) −​9 −​99 −​6 6.64

R. Cuneus (18) 12 −​102 6 6.39

L. Cuneus (18) −​12 −​105 6 6.38

R. Lingual Gyrus (17) 6 −​93 −​9 6.10

L. Fusiform Gyrus (37) −​39 −​51 −​24 4.18

706 R. Middle Temporal Gyrus (21) 57 −​30 0 5.79

R. Superior Temporal Gyrus (22) 66 −​36 6 5.45

564 L. Superior Temporal Gyrus (22) −​57 −​27 6 5.40

L. Superior Temporal Gyrus (41) −​39 −​36 3 3.99

368 R. Precentral Gyrus (4) 42 −​21 69 5.24

216 L. Superior Frontal Gyrus (6) −​6 6 57 4.82

R. Medial Frontal Gyrus (6) 9 −​9 54 3.15

76 R. Putamen 24 −​3 12 4.41

72 R. Cerebellum 42 −​51 −​33 4.15

Brain areas activated by AO stimuli in native Japanese speakers*​

1366 R. Lingual Gyrus (18) 9 −​87 −​9 5.93

L. Cuneus (18) −​15 −​102 3 5.48

L. Fusiform Gyrus (37) −​42 −​54 −​21 4.42

563 R. Superior Temporal Gyrus (22) 63 −​33 9 5.07

Continued
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Cluster Size Locations (Brodmann area) x y z Z-Value

R. Superior Temporal Gyrus (41) 57 −​21 3 4.90

349 R. Precentral Gyrus (4) 30 −​27 66 5.06

295 L. Medial Frontal Gyrus (32) −​6 6 51 4.81

R. Medial Frontal Gyrus (6) 6 −​6 60 4.53

L. Medial Frontal Gyrus (6) −​6 −​9 66 4.02

336 L. Superior Temporal Gyrus (22) −​57 −​45 9 4.53

L. Superior Temporal Gyrus (42) −​60 −​30 6 4.02

185 R. Fusiform Gyrus (37) 42 −​48 −​18 4.46

Brain areas showing greater activation in native English speakers than in native Japanese speakers under the AO 
condition*​*​

27 L. Anterior Cingulate (24) −​6 36 9 3.76

Brain areas showing greater activation in native Japanese speakers than in native English speakers under the AO 
condition*​*​

10 R. Middle Occipital Gyrus (19) 36 −​87 6 3.57

Brain areas activated by VO stimuli in native English speakers*​

2368 L. Cuneus (17) −​9 −​99 −​9 6.50

R. Lingual Gyrus (18) 15 −​87 −​12 6.39

L. Cuneus (18) −​9 −​105 3 6.34

R. Lingual Gyrus (17) 9 −​96 −​9 5.94

R. Fusiform Gyrus (37) 42 −​51 −​18 5.05

L. Fusiform Gyrus (37) −​42 −​54 −​24 4.85

R. Middle Temporal Gyrus (19) 51 −​69 6 4.75

470 R. Precentral Gyrus (6) 36 −​18 72 5.71

R. Precentral Gyrus (4) 42 −​24 66 5.60

291 R. Superior Frontal Gyrus (6) 3 6 60 5.25

196 R. Middle Temporal Gyrus (22) 54 −​39 6 4.71

65 L. Caudate −​6 6 18 4.66

83 L. Precentral Gyrus (6) −​54 −​3 48 4.55

84 R. Putamen 30 0 −​3 4.38

51 L. Caudate −​18 −​27 27 4.03

Brain areas activated by VO stimuli in native Japanese speakers*​

3681 R. Lingual Gyrus (18) 6 −​87 −​9 6.45

L. Cuneus (18) −​15 −​102 3 6.28

R. Fusiform Gyrus (37) 42 −​48 −​18 6.19

L. Middle Occipital Gyrus (37) −​51 −​72 0 6.07

L. Fusiform Gyrus (37) −​42 −​51 −​21 5.63

R. Middle Occipital Gyrus (37) 54 −​69 0 4.90

R. Superior Temporal Gyrus (22) 54 −​39 9 4.49

575 L. Medial Frontal Gyrus (32) −​6 6 51 6.06

R. Medial Frontal Gyrus (6) 6 −​6 60 5.56

L. Superior Frontal Gyrus (6) −​6 −​6 66 4.97

908 L. Precentral Gyrus (6) −​54 −​3 48 5.67

1210 R. Precentral Gyrus (4) 30 −​27 66 5.23

116 L. Putamen −​21 −​3 18 5.05

351 L. Superior Parietal Lobule −​33 −​57 48 4.94

94 L. Cerebellum −​21 −​60 −​51 4.89

154 R. Inferior Parietal Lobule 33 −​54 45 4.73

68 R. Cerebellum 21 −​69 −​48 4.40

Brain areas showing greater activation in native English speakers than in native Japanese speakers under the VO 
condition*​*​

86 L. Medial Frontal Gyrus (10) −​12 42 12 3.99

Brain areas showing greater activation in Japanese native speakers than in native English speakers under the VO 
condition*​*​

127 L. Inferior Temporal Gyrus (37) −​54 −​69 −​3 4.38

85 R. Middle Temporal Gyrus (37) 54 −​57 3 4.15

76 L. Superior Parietal Lobule (7) −​30 −​57 54 4.01

46 R. Superior Occipital Gyrus (19) 39 −​81 24 3.93

Continued
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(p =​ 0.001, Z =​ 0.14)). The analysis of group differences showed that English speakers had a stronger low-level 
cortico-cortical connectivity in MT-Heschl than Japanese speakers (p <​ 0.001, Z =​ 0.21) (Fig. 3a).

AO condition.  In English speakers, the same Heschl-centred connectivities as the AV condition were observed 
(MT-Heschl (p <​ 0.001, Z =​ 0.24), Calcarine-Heschl (p <​ 0.001, Z =​ 0.13), and Heschl-STS (p <​ 0.001, Z =​ 0.17)). 
In Japanese speakers, similar to the AV condition, STS-centred connectivities were found (Calcarine-STS 
(p =​ 0.024, Z =​ 0.07), MT-STS (p =​ 0.034, Z =​ 0.07), and Heschl-STS (p <​ 0.001, Z =​ 0.19)), with a non-significant 
visual connectivity (Calcarine-MT (p =​ 0.107, Z =​ 0.10)). Consistent with the AV condition, the MT-Heschl con-
nectivity was stronger in English speakers than Japanese speakers (p =​ 0.001, Z =​ 0.19) (Fig. 3b).

VO condition.  In English speakers, visual connectivity (Calcarine-MT (p =​ 0.043, Z =​ 0.09)) was added 
to the Heschl-centred connectivities found in AV and AO conditions (MT-Heschl (p <​ 0.001, Z =​ 0.22), 
Calcarine-Heschl (p =​ 0.001, Z =​ 0.10), and Heschl-STS (p =​ 0.001, Z =​ 0.15)). In Japanese speakers, the pattern 
of significant connectivities was similar to the AV condition (MT-STS (p <​ 0.001, Z =​ 0.13), and Heschl-STS 
(p <​ 0.001, Z =​ 0.17)), with non-significant Calcarine-STS connectivity (p =​ 0.161, Z =​ 0.05). The MT-Heschl and 
Calcarine-Heschl connectivities were stronger in English speakers than Japanese speakers (p <​ 0.001, Z =​ 0.27 
and p =​ 0.046, Z =​ 0.10, respectively) (Fig. 3c).

Apart from these connectivities, BOLD responses in these ROIs are shown as the percent signal changes in the 
AV condition (in Supplementary Information).

Discussion
This study investigated the neural basis of interlanguage differences between native speakers of English and 
Japanese in AV speech perception. We predicted a smaller temporal facilitation effect of congruent visual speech, 
as well as less/weaker brain functional connectivity between auditory and visual regions for native speakers of 
Japanese than those of English. We used AV congruent stimuli and examined 1) the visual facilitation effect in 
reaction times as a behavioural measure, and 2) the functional connectivity among the different brain regions. 
Consistent with a previous study10, the behavioural experiment showed a visual facilitation effect on reaction time 
in native English speakers, but not in native Japanese speakers.

The functional connectivity analysis in the present study indicated that low level connectivity between the 
visual cortex (Calcarine/MT) and auditory cortex (Heschl) was observed only in English speakers under AV, AO, 
and VO conditions, suggesting that early visual input to Heschl may occur only for English speakers in audiovis-
ual speech perception. Such low level connectivity may be realized via thalamus, the sub-cortical relay centre for 
various modalities of signalling44,45, and may contribute to multisensory processing46. Consistent with this view, 
an additional functional connectivity analysis including Thalamus ROI showed significant Thalamus-Calcarine, 
Thalamus-Heschl, and Thalamus-MT connectivities in English speakers under AV conditions (FDR corrected 
p <​ 0.05 (two-tailed)), while in Japanese speakers, such connectivities were not significant (see Supplementary 
Information (Fig. S2)). Therefore, the low-level areas such as the Heschl and Thalamus may have a larger role in 
English speakers’ audiovisual interaction, whereas, Japanese speakers may merge visual and auditory information 
only at the STS, a higher integration site, via cortico-cortical connectivity (Calcarine/MT-STS connectivity and 
Heschl-STS connectivity). Although significant STS-centred connectivities were found in Japanese speakers, the 
effect sizes of visual-related connectivities were relatively small47 (e.g., Z =​ 0.12 for MT-STS under AV condition), 
suggesting that visual input to the STS may be weak and STS-centred connectivities in Japanese speakers may be 
moderately tied.

The STS is a core region for AV integration in humans6,23,25,26,33,48–55. Consistent with this view, Japanese speak-
ers showed the STS-centred connectivities, that is, Calcarine/MT-STS connectivity and Heschl-STS connectivity 
in the present study. Thus, the cortico-cortical network may contribute to audiovisual integration in the STS. 
However, in English speakers, the functional connectivity analysis did not find significant Calcarine/MT-STS 
connectivity. Rather, significant Heschl-centred connectivities were observed. This is consistent with the observa-
tion of the early influence of visual input on the auditory cortex (from Calcarine/MT to Heschl) in multisensory 
processing, possibly not mediated by the STS30,34,35. This low-level connectivity may have realized the greater 
visual temporal facilitation in English speakers we observed. Furthermore, this early AV interplay in the auditory 
cortex in English speakers is consistent with a previous report on AV interaction in the auditory cortex in native 
English speakers42. In Japanese speakers, we could not observe significant direct connectivity from the visual 
area to the auditory area, instead, the convergence of auditory and visual inputs seemed to occur only in the STS. 
This manner of connectivities in Japanese speakers may have caused non-significant temporal facilitation during 
audiovisual integration.

Cluster Size Locations (Brodmann area) x y z Z-Value

75 R. Middle Frontal Gyrus (8) 51 9 45 3.89

24 R. Superior Parietal Lobule (7) 33 −​57 63 3.80

16 L. Inferior Frontal Gyrus (46) −​48 30 12 3.63

10 L. Cuneus (17) −​24 −​84 9 3.54

11 L. Cerebellum −​24 −​69 −​48 3.35

Table 1.   Brain areas activated under the AV, AO, and VO conditions. *​Significant at p <​ 0.05 (cluster-level, 
family-wise error corrected for multiple comparisons) at p <​ 0.001 (voxel-level, uncorrected). *​*​Significant at 
p <​ 0.001 (voxel-level, uncorrected). Cluster size =​ number of voxels; x, y, z =​ MNI coordinates.
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Consistent with a previous study25 showing that AV stimuli activated the left MT in native Japanese speakers, 
the left MT showed significantly greater activation in Japanese speakers’ visual-related speech perception (AV 
and VO), compared with English speakers. This left MT activity in Japanese speakers may be related to their 
large dependence on a relatively higher-level connectivity (MT-STS) in visual speech processing, whereas English 
speakers’ visual speech processing is distributed to lower-level connectivities (MT-Heschl, Calcarine-Heschl) 
including Thalamus (Fig. S2). As another possibility, the greater left MT activation in Japanese speakers may be 
related to their relatively greater difficulty in handling lipreading information. In the behavioural experiment, the 
English speakers were much quicker than the Japanese speakers in lipreading. The slower (more difficult) lipread-
ing in Japanese participants may be associated with the much more widely spread brain activation, including in 
the MT, PPC, PFC, and cerebellum, compared with English participants.

One of the possible reasons for the differences in observed functional connectivity between the English and 
Japanese speakers may be the difference in language characteristics, such as the greater number of phonemes (14 
vowels in English versus 5 vowels in Japanese) and more informative visual speech (6 visemes in English versus 3 
visemes in Japanese) in English than in Japanese20–22. Such language characteristics (more useful visual cues, more 
ambiguous auditory cues) in everyday life may foster more significant calcarine/MT-Heschl connectivity for effi-
cient AV speech processing in English speakers as they develop into adults. The present study showed significant 
Calcarine/MT-Heschl connectivity only in English speakers, suggesting that the functional strength of this low 
level network may be modulated by language characteristics30,34,35.

Conclusion
We observed that the level of processing at which visual input influences auditory speech processing may dif-
fer between native English speakers and native Japanese speakers. Only English speakers showed significant 
MT-Heschl connectivity, which may be related to the greater temporal facilitation of visual speech compared with 
Japanese speakers, suggesting that the language environment during development may alter the brain network.

Methods
Participants.  Native speakers of English (22 young adults) (English-speaker GROUP) and Japanese  
(24 young adults) (Japanese-speaker GROUP) were recruited from the Kyoto area in Japan through campus 
advertisement at several universities. Most of the English speakers were Caucasian, and all of Japanese speakers 
were Japanese. After excluding a few participants with low accuracy (lower than 0.67 in proportion correct) or 
response bias (no accurate responses for /ga/) in lipreading (two English and two Japanese speakers), the behav-
ioural data were analysed for twenty English speakers (10 males and 10 females, 15 Caucasians and 5 Asians, 
mean age was 22.4 years, median length of stay in Japan was 6 months) and 22 Japanese speakers (12 males and 10 
females, all of them were Japanese, mean age was 23.9 years, without experience of staying abroad for more than 
3 months). For the fMRI experiment, 21 native English speakers (11 males and 10 females, 16 Caucasians and 5 
Asians, average age was 22.1 years, median length of stay in Japan was 6 months) and 19 native Japanese speakers 
(10 males and 9 females, all of them were Japanese, average age was 24.0 years, without experience of staying 
abroad for more than 3 months) were included for the data analysis. All participants were right-handed, had nor-
mal hearing, and normal or corrected to normal vision, and few of them were proficient in their second language 
(Japanese or English). No English speakers could understand the instructions well in Japanese, and vice versa. We 
instructed in English (Japanese) for English (Japanese) speakers, that is, in a participant’s native language.

Ethics Statements.  The experimental protocol was approved by the ethical committee of Advanced 
Telecommunications Research Institute International (ATR), and was in accordance with the Declaration of 
Helsinki. Written informed consent was obtained from each participant.

Behavioural experiment.  Stimuli.  The speech stimuli of the behavioural experiment were produced from 
the articulation of /ba/, /da/, and /ga/ by two male talkers, one native English speaker, and one native Japanese 
speaker. These phonemes in Japanese are similar to those in English, although recorded consonants and vowels 
were slightly shorter in Japanese. The recorded speech signals were edited by a digital waveform editing software 
and a movie editing software so that the onset of the auditory speech was 900 ms from the beginning of each 
movie file. Video signals were digitized at 29.93 frames/s in 640 ×​ 480 pixels, and audio digitized at 44.1 kHz in 16 
bits. The intensity of the speech sound was normalized across different articulations. The duration of each movie 
file was approximately 1700 ms, and the duration of auditory speech was 400 ms on average. Unisensory stimuli 
were produced based on the above normalized and time-aligned AV stimuli. The AO stimuli were produced by 
replacing the visual component of the AV stimuli by the still face of that talker. The VO stimuli were produced by 
deleting the auditory component of the AV stimuli.

Procedure.  The behavioural experiment was conducted in a quiet room, outside the MRI scanner. The experi-
ment was controlled by the Presentation software (Neurobehavioral Systems) running on a PC. The participant 
was seated in front of a 19-in LCD monitor at a 50 cm distance. The video signals were presented on the monitor 
and the audio signals via tube-type earphones. To approximate the MRI scanner noise, auditory band noise (300 
to 12000 Hz, similar to machine noise) was added via an audio mixer at a signal-to-noise ratio of 15 dB (speech 
was 65 dB and noise was 50 dB). This signal-to-noise ratio should have had little effect on auditory speech intelli-
gibility based on a previous study10. The task of the participant was to decide what he/she perceived by choosing 
from “ba”, “da”, and “ga”, and pressing one of three buttons with the left hand as accurately and quickly as possible. 
In the AV condition, the participants were instructed to respond as soon as possible after listening to the auditory 
syllable, and not to respond before the sound onset, because several English speakers claimed that they could 
identify phonemes by observation of the talkers’ mouth movements without listening them. In the AO condition, 
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the instruction was essentially the same as for the AV condition (i.e., to respond as soon as possible after listen-
ing to the auditory syllable). In the VO condition, the task required lipreading, because there was no auditory 
cue. The three conditions (AV, AO, and VO) were blocked, and the AV condition was conducted first. This was 
followed by half of the participants tested in an AO to VO order, and the other half in the opposite order. In each 
condition, two blocks of 60 trials (10 repetitions ×​ 3 stimuli ×​ 2 talkers) were conducted. The first block in each 
condition was regarded as practice and the second block was analysed. Six kinds of AV clips (3 stimuli ×​ 2 talkers) 
of 1700 ms duration were presented for pseudo-random order. The interval between two successive AV clips was 
set randomly from 1000 ms to 1400 ms. A fixation cross pattern was presented during this interval.

Data analysis.  For each condition (AV, AO, and VO), each participant’s proportion correct and mean RT were 
calculated. Only correct responses were used for RT analyses. To investigate the degree of audiovisual integra-
tion, we defined the temporal facilitation by visual speech by subtracting the RTs of AV from AO in each group. 
Data was pooled across talkers because there was no significant effect of talker (p =​ 0.115) (see Supplementary 
Information). A one-sample t-test was conducted for the temporal facilitation in each group. For the RTs in the 
VO condition, we conducted a two-sample t-test between English speakers and Japanese speakers.

We did not conduct any statistical analysis of accuracy because there was a ceiling effect due to the simplicity 
of the task.

fMRI experiment.  Stimuli and tasks.  Stimuli were the same as in the behavioural experiment except only 
two syllables (/ba/ and /ga/) were used in the fMRI experiment. The stimuli were presented in a blocked design by 
alternating three stimulus blocks and one rest block in an AV-AO-VO-rest pattern. Each of the 4 stimuli (/ba/ and 
/ga/ of the two talkers) were presented twice in each block with a jittered interval between two successive AV clips 
(2300 ±​ 1000 ms) in order to increase vigilance. The duration of each block was 32 s on average. One functional 
session was composed of four AV-AO-VO-rest sequences. In total, three functional sessions were repeated.

Figure 3.  Functional connectivity. Functional connectivity among our 4 ROIs in the left hemisphere in the AV 
condition (a), AO condition (b), and VO condition (c) (p <​ 0.05 false discovery rate (FDR) corrected). Positive 
correlation is shown in red, and negative correlation is shown in blue, though there was no negative correlation. 
In the analysis of group differences, connectivity shown in red means stronger connectivity in English speakers 
than Japanese speakers (bottom row). Eng; English speakers. Jpn; Japanese speakers.
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The participants’ task was the same as the behavioural experiment, and the participants were asked to report 
what they perceived by pressing a button (/ba/ or /ga/) with their left hand during fMRI scanning. There were 8 
trials within a single 32-second block. Participants were instructed to press a button on each trial (i.e., 8 times 
within a single block).

Procedure.  Each participant lay supine on a scanner bed, with a button response device held in the left hand. 
Sound was delivered via MR-compatible headphones. Auditory stimuli were presented with a sufficiently loud 
volume compared with the MR scanner noise. We estimated that the SNR might be over 10 dB in the fMRI scan-
ner in the present study because the accuracy in the scanner (98.3% under AO condition in both groups) in the 
present study was higher than that of a previous study10 (>​~95% under AO condition in both groups) in which 
an SNR was over 10 dB. The participants viewed visual stimuli that were back-projected onto a screen through a 
built-in mirror. Foam pads were used to minimize head motion.

Image acquisition.  Functional MRI experiments were conducted on a 3-Tesla whole-body scanner equipped 
with a 12-ch phased array coil (Siemens Tim Trio, Erlangen, Germany). Functional images were obtained in 
a T2*​-weighted gradient-echo echo-planar imaging sequence. The image acquisition parameters were as fol-
lows: repetition time (TR) =​ 3.0 s; echo time (TE) =​ 30 ms; flip angle (FA) =​ 80°; field of view (FOV) =​ 192 mm; 
matrix =​ 64 ×​ 64; 50 interleaved axial slices with 3-mm thickness without gaps (3-mm cubic voxels). The first 
four images were not saved to allow for signal stabilization. For anatomic images, T1-weighted three-dimensional 
structural images were obtained using a magnetization-prepared rapid-gradient echo sequence.

General linear model (GLM) analysis.  The fMRI data were analysed with SPM8, using the principles of the 
GLM56. The functional images were corrected for differences in slice-acquisition timing, and were then spatially 
realigned to the first image of the initial run to adjust for residual head movements. The realigned images were 
spatially normalized to fit to a Montreal Neurological Institute (MNI) template57 based on the standard stereo-
taxic coordinate system58. Subsequently, all images were smoothed with an isotropic Gaussian kernel of 8-mm 
full-width at half-maximum (FWHM), except for functional connectivity analysis. Each of the three stimulus 
conditions (AV, AO, VO) and 6 head motion parameters were separately modelled as regressors for the first-level 
multi-regression analysis. This analysis was performed for each participant to test the correlation between the 
MRI signals and boxcar functions convolved with the canonical hemodynamic response function. Global signal 
normalization was performed only between runs. Low-frequency noise was removed using a high-pass filter with 
a cut-off of 128 s, and serial correlation was adjusted using an AR(1) model. By applying the appropriate linear 
contrast to the parameter estimates, mean effect images reflecting the magnitude of correlation between the sig-
nals and the model of interest were computed. These were used for the subsequent second-level random-effect 
model analysis. Group-level statistical parametric maps were produced using the one-sample t-test. A two-sample 
t-test was calculated to clarify group differences between native English speakers and native Japanese speakers. 
These results are shown at a height threshold of p <​ 0.001 (uncorrected) with an extent threshold of 10 voxels59–61. 
These activities were overlaid onto MNI template brain.

Functional connectivity analysis.  Analysis of functional connectivity was performed using the CONN toolbox 
(www.nitric.org/projects/conn)62, by investigating the bivariate correlation of time courses between two ROIs. By 
using the “CompCor” method63, which is able to remove biases related to non-neural sources (such as respiration or 
cardiac activity), we removed principle components associated with segmented white matter (WM) and cerebrospi-
nal fluid (CSF) for each individual participant. The time courses of the WM and CSF seeds were regressed out. An 
additional 12 motion regressors (6 realignment parameters and their first derivatives), due to head movement, were 
regressed out. The effect of each condition was also regressed out, the resulting time course data were orthogonal 
with task design. This procedure could avoid circularity. The time course data were filtered from 0.008 Hz to 0.1 Hz.

We focused only on the left hemisphere to define ROIs because the left hemisphere is language dominant33. 
Previous studies have shown a significant positive interpersonal correlation between left STS activity and the likeli-
hood of the McGurk effect6,52. A previous Transcranial Magnetic Stimulation (TMS) study found inhibition of the 
McGurk effect by left STS TMS55. In our study, MT showed stronger activity in Japanese speakers than in English 
speakers in the AV and VO conditions only in the left hemisphere. Based on these previous findings and our 
data, we decided to focus only on the left hemisphere to define ROIs. We defined 4 ROIs (left STS, Heschl’s gyrus 
(Heschl), calcarine sulcus (Calcarine), and middle temporal visual area (MT) as seeds for functional connectivity 
analysis. These ROIs were defined by conjunction of GLM functional results (group analyses per group, except for 
STS) and anatomical atlas. The centre coordinate was defined as the peak coordinate of activity in group analysis 
during the AV condition (p <​ 0.001, uncorrected) within appropriate anatomical atlas using Anatomical Automatic 
Labeling (AAL)64 for Heschl and Calcarine, and Anatomy Toolbox65 for MT. The 6 mm-radius spheres were created 
around these centre coordinates, and defined as ROIs. To define the left STS ROI, we adopted the mean criterion, 
which is when the BOLD signals for multisensory stimulation exceeds the mean of both unisensory responses 
(AV >​ mean (AO +​ visual-only (VO)))66 because a previous study66 showed that the mean criterion was suitable 
for revealing STS multisensory integration site. First, we performed conjunction analysis of the AO condition and 
the VO condition (p <​ 0.001, uncorrected, conjunction null) using a factorial design matrix in each group. Then, 
contrast of AV >​ mean (AO +​ VO) was calculated in the conjunction area using a liberal threshold (p <​ 0.05, 
uncorrected) because we had already set the threshold at p <​ 0.001 for conjunction analysis. The peak within 6 
mm of the mean group maxima in STS was set individually due to large individual differences of STS location55. 
Then, a 6 mm-radius sphere located around this point was defined as the participant’s STS ROI. Calcarine and 
Heschl were defined in each group based on group analyses. MT was also defined based on group analysis, but 

http://www.nitric.org/projects/conn
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using group comparison (Japanese speaker – English speaker under AV condition). The time courses of these ROIs 
were extracted after regressing out the WM, CSF, effects of condition, and movement parameters. Correlation 
coefficients between two ROIs were z-transformed, with one- and two-sample t-tests examining the within- and 
between-group differences in connectivity. Significant connectivity was defined using a threshold of p <​ 0.05 
(two-tailed), and were corrected for multiple comparisons using the seed-level false discovery rate (FDR) method.
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