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Abstract: Octamer-binding transcription factor 3/4 (OCT-3/4), which is involved in the tumorigenesis
of somatic cancers, has diverse functions during cancer development. Overexpression of OCT-3/4 has
been detected in various human somatic tumors, indicating that OCT-3/4 activation may contribute
to the development and progression of cancers. Stem cells can undergo self-renewal, pluripotency,
and reprogramming with the help of at least four transcription factors, OCT-3/4, SRY box-containing
gene 2 (SOX2), Krüppel-like factor 4 (KLF4), and c-MYC. Of these, OCT-3/4 plays a critical role in
maintenance of undifferentiated state of embryonic stem cells (ESCs) and in production of induced
pluripotent stem cells (iPSCs). Stem cells can undergo partitioning through mitosis and separate into
specific cell types, three embryonic germ layers: the endoderm, the mesoderm, and the trophectoderm.
It has been demonstrated that the stability of OCT-3/4 is mediated by the ubiquitin-proteasome
system (UPS), which is one of the key cellular mechanisms for cellular homeostasis. The framework
of the mechanism is simple, but the proteolytic machinery is complicated. Ubiquitination promotes
protein degradation, and ubiquitination of OCT-3/4 leads to regulation of cellular proliferation and
differentiation. Therefore, it is expected that OCT-3/4 may play a key role in proliferation and
differentiation of proliferating cells.

Keywords: OCT-3/4; deubiquitination; E3 ligase; post-translational modification; stem cell;
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1. Introduction

Since octamer-binding transcription factor 3/4 (OCT-3/4) was first identified about 30 years ago,
it has been extensively studied from many different aspects as an important transcription factor.
OCT-3/4 is a core transcription factor that maintains pluripotency and controls development of early
mammalian embryos [1]. Expression of OCT-3/4 is critical for the differentiation of the embryo into the
three germ layers; specifically, stem cells differentiate into the endoderm and the mesoderm when
OCT-3/4 is overexpressed, while downregulation of OCT-3/4 leads stem cells to differentiate into the
trophectoderm [2].

OCT-3/4 is an important regulatory gene that maintains the pluripotency and self-renewal
properties of embryonic stem cells (ESCs). In addition, there are several lines of evidence that OCT-3/4
can also act as an oncogene in several cancers. For example, upregulation of OCT-3/4 has been
detected in several cancers. Overexpression of OCT-3/4 in cervical cancer cells that developed and
progressed to cervical cancer activation was observed [3]. The testicular germ cell tumor (TGCT)
model revealed stem cell characteristics with the expression of OCT-3/4 [4]. OCT-3/4 was also found to
be upregulated in prostate cancer cell lines. In addition, OCT-3/4 upregulation is important for the
regulation of drug-resistant cells such as prostate cancer cells [5]. In undifferentiated tumor-initiating
cells (TICs), OCT-3/4 participates in regulation of TIC functions such as self-renewal, survival,
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epithelial-mesenchymal transition (EMT), metastasis, and drug resistance development [6]. Moreover,
OCT-3/4 was found to be upregulated in colon cancer, and regulated tumor differentiation [7], while its
overexpression in breast cancer increased survival rate [1].

Stem cells can undergo self-renewal and ESCs are not transformed; rather, they are pluripotent cells
derived from the inner cell mass (ICM) of the mammalian blastocyst [8]. Yamanaka transcription factors,
OCT-3/4 or POU5F1, SRY box-containing gene 2 (SOX2), Krüppel-like factor 4 (KLF4), and c-MYC
have been identified as regulators of pluripotency and self-renewal of stem cells [9]. Among these
transcription factors, OCT-3/4 is a key regulatory factor of the molecular network that controls
maintenance and induces pluripotency [10], and Kim et al. reported that OCT-3/4 alone can induce
pluripotency in neural stem cells [11].

Cellular functions of proteins such as activity, interaction, subcellular localization, and stability
can be controlled by posttranslational modifications (PTMs) [2]. More than 200 types of PTMs that
can influence cellular functions such as metabolism, signal transduction, and protein stability have
been identified, of which phosphorylation, glycosylation, methylation, acetylation, ubiquitination,
and SUMOylation have been heavily investigated [12]. Phosphorylation and glycosylation regulate
cellular processes and states [13]. The amino acid residues involved in acetylation, methylation,
and phosphorylation in non-histone proteins undergo acetylation that can directly determine protein
functions [14]. SUMOylation and ubiquitination are structurally related to each other, but not
functionally related.

The ubiquitin-proteasome system consists of proteolytic machinery that controls development,
survival, differentiation, lineage commitment, migration, and homing processes of key regulatory
proteins [15]. The balance of activity for ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs)
regulates the function, localization, and stability of target proteins [16]. Harmony between E3 ligases
and DUBs for transcription factors is important for the regulation of protein functions including
self-renewal, differentiation, proliferation, and pluripotency [17]. OCT-3/4 is not only important for
tumorigenesis and maintenance of cancer cells, but also for embryonic development. Herein, we review
and summarize the currently available information regarding OCT-3/4 as it relates to proliferating cells.

2. Harmony between Ubiquitination and Deubiquitination Regulates Cellular Functions

E3s, and DUBs, participate in reversible reactions (ubiquitination and deubiquitination) for
regulating the function and stability of target proteins [16]. Ubiquitination degrades proteins via the
26S proteasome, changes the cellular location of proteins, influences protein activity, and modulates
protein–protein interactions [16,18]. The 26S proteasome is a large multi-catalytic/multi-subunit
protease complex composed of one 20S core complex for proteolysis and one or two 19S regulatory
complexes (RP) for protein recognition and unfolding of ubiquitinated proteins translocated to the
20S core complex [2,19]. Ubiquitination involves three enzymatic steps via ubiquitin-activating
enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). E1 activates ubiquitin
via ATP-dependent activity, while E2 transfers E1-activated ubiquitin to a target protein, and E3 ligase
catalyzes the ligation of ubiquitin to a lysine residue of the target protein [20]. The human genome
contains more than 600 E3 ligases [20]. These ligases are classified based on their catalytic domains,
which include the really interesting new gene (RING), homologous to E6-AP carboxyl terminus (HECT),
and RING-between RING-RING (RBR) domains [21]. A target protein with an attached ubiquitin can
undergo monoubiquitination, multiubiquitination, or polyubiquitination [22]. Monoubiquitination
is associated with chromatin regulation, protein sorting, and trafficking [23]. Ubiquitin can make
polyubiquitin chains with various lengths on any of seven lysine (K) residues or the N-terminal
methionine (M); M1, K6, K11, K27, K29, K33, K48, and K63 [24]. Each type of polyubiquitination
chain has different functions that regulate cellular proteins; however, only K48 and K63 have been
extensively investigated to date. Conversely, polyubiquitination is linked to protein signaling and
degradation through proteasomal or autophagic degradation [23,25]. Among the polyubiquitination
chains, the K48-linked polyubiquitination chain plays an essential role in proteasomal regulation of
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target proteins, while the K63-linked polyubiquitination chain regulates cellular processes such as
endocytosis, DNA repair, and signaling activation [26,27].

Deubiquitination occurs via DUBs, which play a role in detaching ubiquitin chains [28]. DUB
cysteine proteases have catalytic activity that leads to separation of the isopeptide bond between
the glycine site of ubiquitin and the lysine site of the target protein [29]. DUBs can be divided
into seven subfamilies: ubiquitin-specific protease (USP), ubiquitin-C-terminal hydrolases protease
(UCH), Machado-Joseph disease protein domain protease (MJD), ovarian tumor protease (OTU), motif
interacting with Ub-containning novel DUB family (MINDY), and zinc finger containing ubiquitin
peptidase 1 (ZUP1), as well as Jab1/Pab1/MPN metallo-enzyme motif protease (JAMM), which has
zinc metalloisopeptidase activity [30].

Harmony between ubiquitination and deubiquitination of OCT-3/4 controls stem cell function,
including pluripotency, differentiation, and self-renewal [17], and cancer cell function, including
proliferation, survival, and metastasis [31]. Therefore, both E3 ligases and DUBs regulate cellular
homeostasis. Specifically, E3 ligases attach ubiquitin chains to OCT-3/4 proteins to regulate cellular
functions of proliferating cells, while DUBs deubiquitinate OCT-3/4 to inhibit cell differentiation in
cancer [32] (Figure 1).
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Figure 1. Interaction of target protein with ubiquitin ligases (E3s) and deubiquitinating
enzymes (DUBs). E3s and DUBs regulate target proteins including transcription factors such
as octamer-binding transcription factor 3/4 (OCT-3/4). DUBs regulate the stability of OCT-3/4.
Proliferation and differentiation in cancer cells and stem cells are regulated by ubiquitination and
deubiquitination systems.

3. OCT-3/4 Regulated by Several PTMs

OCT-3/4 is regulated by PTM processes that are involved in phosphorylation [33,34],
SUMOylation [35], ubiquitination [1,36,37], glycosylation [38], methylation [39–41], and acetylation [42]
(Figure 2).

In human embryonic stem cells (hESCs), 11,000 unique phosphopeptides have been identified, five
of which contain phosphorylation sites related to differentiation that are localized to OCT-3/4 [43,44].
Recently, Bae et al. reported that serine 347 phosphorylation by c-Jun-N-terminal kinases (JNKs)
negatively regulates OCT-3/4 protein stability in mouse embryonic stem cells (mESCs) [34]. Specifically,
they found JNKs directly regulate phosphorylation of OCT-3/4 at serine 347, which inhibits the
transcriptional activity of OCT-3/4. They also found that a phosphorylation mutant form, OCT-3/4
(S347A), enhanced the stability of OCT-3/4 in the mESCs and efficiency of generating iPSCs [34].
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Figure 2. OCT-3/4 (PDM ID: 3L1P, https://www.ncbi.nlm.nih.gov/Structure/pdb/3L1P) is regulated
by different kinds of posttranslational modifications (PTMs). SUMOylation (K118), glycosylation
(T228), phosphorylation (S347), ubiquitination, methylation, and acetylation of OCT-3/4 regulate the
pluripotency, differentiation, and self-renewal of stem cells.

SUMOylation of OCT-3/4 occurs at lysine 118, which is located at the end of the N-terminal
transactivation domain and next to the POU DNA-binding domain [45]. SUMOylation of OCT-3/4
enhances NANOG protein expression and promotes NANOG transcription [46].

Glycosylation occurs in the ER and Golgi apparatus [14] and protein glycosylation influences
cellular pluripotency and somatic cell reprogramming. O-linked-N-acetylglucosamine (O-GlcNAc) of
OCT-3/4 at threonine 228 enhances the transcription activity of OCT-3/4 to maintain self-renewal of
mESCs and reprogramming of mouse embryonic fibroblasts (MEFs) [14].

DNA methylation is a key regulation process of pluripotency genes. Olariu el al. proposed
that combining three transcription factors, NANOG, OCT-3/4, and TET1, regulates DNA methylation
modification, which governs pluripotency through reprogramming [39]. Differentiation-induced de
novo DNA demethylation can repress pluripotency genes including OCT-3/4, whereas active DNA
demethylation reactivates pluripotency genes [41].

Acetylation of OCT-3/4 regulates induction of the pluripotency gene network [42], while Sirt-1, an
NAD-dependent deacetylase, deacetylates OCT-3/4, which may be linked to stem cell development [42].
OCT-3/4 not only regulates cellular reprogramming, but also plays a critical role in tumorigenesis [47].
Akt regulates the iPSC process through regulation of PTM, which facilitates the p300-mediated
acetylation of OCT-3/4 [47].

Ubiquitin-proteasome system (UPS) regulates protein levels via degradation of the protein and
polyubiquitination of the protein targets for the 26S proteasomal degradation [36]. There are several
E3 ligases that regulate OCT-3/4 stability. WW domain containing E3 ubiquitin protein ligase 2
(WWP2), a mouse HECT-type E3 ubiquitin ligase, is also an E3 ligase of OCT-3/4 that interacts with
OCT-3/4 and negatively regulates the protein level of OCT-3/4 in hESCs [48]. In human amniotic
epithelial stem cells (HuAECs), WWP2 is a target gene of microRNA (miR)-32. When miR-32
was overexpressed, endogenous expression of WWP2 was decreased whereas OCT-3/4 expression
was increased [48]. Therefore, WWP2 ubiquitinates OCT-3/4 and induces its degradation during
differentiation of embryonic carcinoma cells [49]. Itch, a C2-WW-HECT domain ubiquitin E3 ligase,
interacts with OCT-3/4, which induces transcriptional activity of OCT-3/4 and controls OCT-3/4 protein
stability [50]. E3 ligases of WWP2 and Itch primarily ubiquitinate OCT-3/4 through the Ub-K63
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linkage [49,50]. DPF2, which is also known as ubi-d4/requiem (REQU), contains a plant homeodomain
(PHD) finger protein that ubiquitinates OCT-3/4 and enhances degradation, mainly through the Ub-K48
linkage [36]. Cho et al. recently introduced a new E3 ligase, CHIP, which interacts with OCT-3/4 [1].
When CHIP is overexpressed, the stability of OCT-3/4 decreases through the proteasomal degradation.
Therefore, CHIP-induced OCT-3/4 ubiquitination is important in breast cancer stem cells (CSCs) used
for cancer therapy [1].

E3 ligases ubiquitinate transcription factors including OCT-3/4, while DUBs maintain transcription
factors to prevent differentiation by cleaving ubiquitin chains [32]. One of the functions of DUBs is
to cleave the attached ubiquitin chains on ubiquitinated target proteins; therefore, regulation of E3
ligases and DUBs can determine the cell fate. Ubiquitin-specific protease 7 (USP7), ubiquitin-specific
protease 34 (USP34), ubiquitin-specific protease 44 (USP44), and 26S proteasome non-ATPase regulatory
subunit 14 (Psmd14), which are the only DUBs related to OCT-3/4, are downregulated during ESC
differentiation. USP34 is a deubiquitinating enzyme that regulates Wnt/β-catenin signaling. Recently,
Oh et al. investigated the role of USP34 in EMT induction and the effect of USP34 on mammary
epithelial stem cells [51]. OCT-3/4 is expressed in the nucleus of mesenchymal and epithelial cells in
mouse embryonic mammary placodes. When expression of USP34 was knocked down, the ability to
form a mammosphere concomitant was increased, which may be related to the increased expression
of OCT-3/4 mRNA [51]. In addition, knockdown of USP44 upregulated OCT-3/4 and promoted
stemness. It seems that OCT-3/4 is a direct target of USP44 that plays a role opposite to that of
USP34 [52]. RNF20 is an E3 ligase to promote mono-ubiquitination of histone H2B on lysine 120,
reducing OCT-3/4 expression. In the meantime, USP44 increases H2B deubiquitination, upregulating
OCT-3/4 expression [53]. Psmd14 is a key regulator of stem cell maintenance. Without Psmd14
expression, ES cells revealed significant loss of OCT-3/4 protein expression coupled to morphological
changes [17]. Finally, USP7 is also a DUB that maintains stem cell pluripotency and differentiation.
It has been reported that USP44 and USP7 bind to the OCT-3/4 promoter, but their roles in stem cell
differentiation and cellular reprogramming should be further investigated [54].

4. Expression of OCT-3/4 in Different Cancer Cells

OCT-3/4 is an important transcription factor that maintains the pluripotency and self-renewal of
ESCs. Wang et al. recently found that some stem cell-associated transcription factors, such as OCT-3/4,
SOX2, NANOG, and KLF4, are related to the tumorigenesis of somatic cancers [3]. Specifically, OCT-3/4
is a multifunctional factor during cancer development. Upregulation of OCT-3/4 has been found in
cervical cancer [3,55], TGCTs [5,56], and drug-resistant cells (prostate cancer) that showed significant
increases in tumorigenicity [57,58], TICs [59], colon cancer [7], lung adenocarcinoma [60], and breast
cancer [1,61] (Figure 3).

Western blot analysis revealed that OCT-3/4 was upregulated in cervical carcinoma-related
tissues, indicating that its reactivation in cervical cancer cells contributes to the development and
progression of cervical cancer through the miRNA-125b/BAK1 pathway. OCT-3/4 interacts with and
transactivates miRNA-125b-1 promoter, while miRNA-125b-1 is upregulated in cervical cancer and
teratocarcinoma cells, leading to inhibition of apoptosis. miRNA-125b is an oncogenic factor that
regulates proliferation, apoptosis, differentiation, drug resistance, and immunity. In the regulatory
cervical cancer pathway, OCT-3/4 directly upregulates miR-125b, which downregulates its direct
target BAK1; therefore, suppression of cervical cancer cell apoptosis occurs [3]. High risk human
papillomavirus (HR-HPV) promotes self-renewal by upregulating OCT-3/4, NANOG, and SOX2
expression to maintain the cervical cancer stem cell (CCSC) in the cervical cancer [62]. Expression of
OCT-3/4, NANOG, SOX2, and Notch receptor 3 (NOTCH3) were increased in the cancer stem cells to
promote drug resistance [62].

TGCTs, which are common cancers in young men in the United States and Europe [63], are the
solid cancers most responsive to conventional chemotherapy. A mouse TGCT model featuring germ
cell-specific Kirsten rat sarcoma (K-RAS) activation and Phosphatase and tensin homolog (PTEN)
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inactivation has been developed [4]. Lee et al. found that RAS activation promotes proliferation
and self-renewal of the cell [64]. Moreover, TGCT mouse models have developed teratoma and
embryonic carcinoma, and this mouse revealed stem cell characteristics such as expression of OCT-3/4.
Chemotherapy treatment of this mouse model reduced tumor size and OCT-3/4-positive CSCs [4].
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Figure 3. OCT-3/4 is also related to tumorigenesis of somatic cancers. Expression level of OCT-3/4 is
related to development of cancers such as cervical cancer, colon cancer, and breast cancer, as well as
testicular germ cell tumors, drug-resistant cells, and undifferentiated tumor-initiating cells; accordingly,
OCT-3/4 can be a novel therapeutic target for the treatment of cancers.

Patients who suffer from prostate cancer are usually resistant to cytotoxic agents in advanced
stages. To improve treatment efficacy, it is important to understand the drug resistance mechanism.
Linn et al. found that OCT-3/4 was upregulated in drug-resistant cell lines by microarray analysis,
RT-PCR, sequencing, and Western blotting [57], suggesting that upregulation of OCT-3/4 plays an
essential role in regulating growth and survival of drug resistant cancer cells such as prostate cancer
cells. Based on the results of shRNA knock-down, cell growth and tumorigenicity decreased. Therefore,
OCT-3/4 is a target gene that is relevant to aggressive drug-resistant cancers [57].

OCT-3/4 was detected in undifferentiated TICs, which indicates that it also participates in TIC
functions such as self-renewal and survival, EMT, metastasis, and drug resistance development.
Overexpression of OCT-3/4 leads to a higher tendency to form tumorspheres, increased expression
of TIC markers, and greater tumorigenic potential in vivo. In lung adenocarcinoma (LAC),
expression of OCT-3/4 was found to be increased, resulting in increased sphere formation and
tumor initiating capability. However, knockdown of OCT-3/4 inhibited tumorigenic and metastatic
ability, and prolonged the survival time of tumor cell-transplanted nude mice. The prostate cancer cell
line 22RV1, which highly expresses OCT-3/4, is highly resistant to a chemotherapeutics such as cisplatin,
paclitaxel, adriamycin, and methotrexate. In OVCAR433 cells, which are ovarian cancer cells resistant to
cisplatin, OCT-3/4 is highly expressed following the activation of extracellular signal-regulated kinases
(ERK1/2). ERK2 signaling is important to cisplatin-induced EMT, and targeting ERK2 in the presence
of cisplatin can reduce recurrence of ovarian cancer. ERK1/2 phosphorylates OCT-3/4; therefore,
ERK1/2-mediated phosphorylation of OCT-3/4 may play a crucial role in chemoresistance [59].

There are two types of colon cancer, left-sided colon cancer (LCC) and right-sided colon cancer
(RCC), and Wang et al. confirmed the roles of OCT-3/4 in both types [7]. When OCT-3/4 was positively
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expressed in LCC, it was found to be related to differentiation, while in RCC, it was related to lymphatic
invasion. During lymphatic invasion, OCT-3/4 is upregulated, leading to increase of survival rates [7].

In the lung adenocarcinoma, the expression of OCT-3/4 was increased in the A549 cells treated with
5-fluorouracil (5-FU), and decreased the expression of S phase kinase associated protein-2 (Skp2) [60].
Skp as an E3 ligase degrades cyclin-dependent kinase inhibitor p27 to increase proliferation of lung
cancer cells [65,66]. It is interesting to observe that constitutive photomorphogenic 1 (COP1) as an E3
ligase also regulates p27, but it is not involved in the cancer progression of ovarian cancer [67].

For breast cancer, CSCs are commonly used as a model. Cho et al. produced mammospheres
from breast cancer cells and performed DNA microarray analysis to identify regulators of breast cancer
CSCs [1]. They found that expression of CHIP, an E3 ligase, was decreased in breast CSCs. Based
on their results, patients with breast cancer, who had low CHIP expression, had increased OCT-3/4
stability that increased survival during breast cancer progression [1]. Shen et al. investigated the
effects of OCT-3/4 on the metastasis of breast cancer cells and identified Rho Family GTPase 1 (Rnd1)
as a downstream target of OCT-3/4 by ribonucleic acid sequencing (RNA-seq) analysis [61]. When
OCT-3/4 was overexpressed, it suppressed transcriptional activity of Rnd1, rearranged the cytoskeleton,
and elevated E-cadherin expression [61]. Therefore, OCT-3/4 can be a novel therapeutic target for the
treatment of breast cancer metastasis.

5. Differentiation of ESCs Induced by Ubiquitination of OCT-3/4

OCT-3/4 is a transcription factor that plays a critical role in maintenance of the undifferentiated
state of ESCs and produces iPSCs. Maintenance of a pluripotent state is regulated by the expression
level of OCT-3/4, which, with other transcription factors such as SOX2, KLF4, and c-MYC, is important
to the conversion of somatic cells into pluripotent stem cells. However, Kim et al. reported that
overexpression of OCT-3/4 alone is sufficient to convert adult neural stem cells into iPSCs [11,68].
Gao et al. reported that using plasmids expressing OCT-3/4, SOX2, KLF4, LIN28, and l-MYC, male
skin fibroblasts were successfully transformed into iPSCs [69]. Expression of OCT-3/4 is involved in
lineage commitment. It is of interest that increase in OCT-3/4 expression level enhances differentiation
of stem cells into the endoderm and the mesoderm, whereas decreased OCT-3/4 expression leads to the
trophectoderm differentiation [70]. Therefore, OCT-3/4 is a key factor that controls the maintenance and
induction of pluripotent stem cells. OCT-3/4 regulates the fate of ESCs and somatic cell reprogramming
efficiency [71].

It has been demonstrated that overexpression of Itch enhances OCT-3/4 transcriptional activity in
293T cells, while knockdown of Itch reduces OCT-3/4 transcriptional activity in ESCs. In addition, Itch
directly interacts with and ubiquitinates OCT-3/4 protein through K63-linked polyubiquitination to
promote OCT-4 degradation, and increased OCT-3/4 transcriptional activity is counterbalanced by
degradation of OCT-3/4 mediated by E3 ligase function of Itch [50].

Bae et al. reported that OCT-3/4 is negatively, but directly regulated by c-Jun-N-terminal kinases
(JNKs), which phosphorylates at serine 347 of OCT-3/4 [33,34]. Moreover, phosphorylation of OCT-3/4
has been shown to be involved in ubiquitination, which decreases protein stability and induces
proteasomal degradation. Moreover, phosphorylation at serine 347 of OCT-3/4 enhanced binding with
the F-box protein 8 (FBXW8), which is an E3 ligase that reduces OCT-3/4 protein stability and induces
ESC differentiation [34].

Another E3 ligase, DPF2, was found to increase OCT-3/4 expression during differentiation of
the human ESC line, H9, induced by retinoic acid. The interaction between OCT-3/4 and DPF2 was
evaluated by immunoprecipitation assay as well as GST pull-down assay [36]. Liu et al. concluded
that DPF2 mainly ubiquitinates OCT-3/4 through the K48-linked polyubiquitination chain based on a
ubiquitination assay [36]. Moreover, ubiquitination of OCT-3/4 through DPF2 downregulated OCT-3/4
expression during hESC differentiation. Conversely, knockdown of DPF2 induced expression of
OCT-3/4 and differentiation of human ESCs [36].
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RNF2, a RING finger E3 ligase, ubiquitinates OCT-3/4 and maintains stem cell pluripotency.
The polycomb group (PrG) proteins regulate heritable silencing of the developmental regulators,
polycomb repressive complexes 1 (PRC1) and 2 (PRC2). PRC2 shares target genes with components
of the core transcription network, such as OCT-3/4, to maintain the pluripotency of ESCs. The core
PRC1 components Ring1 A/B are involved in repression of developmental regulators in mESCs and
maintenance of ESC characteristics. Engagement of PRC1 at target genes is OCT-3/4 dependent,
while engagement of OCT-3/4 is PRC1 independent. Therefore, Ring1A/B (Ring1/Rnf2)-mediated
polycomb silencing functions downstream of the core transcriptional regulatory circuitry to retain the
characteristics of ESCs. [72].

6. Conclusions

PTMs of OCT-3/4 regulate cellular pluripotency through several mechanisms including
phosphorylation [73], SUMOylation [74], ubiquitination [49], glycosylation [38], methylation [40],
and acetylation [42], which are important for OCT-3/4 functions. OCT-3/4, which is known to be an
ESC-specific protein, is frequently used as a marker of germ cell tumors such as teratomas. Therefore,
OCT-3/4 positive cells are CSCs in germ cell carcinomas [56,75]. OCT-3/4 is used as a marker to
identify CSC subpopulations in several cancers [76]. In this review, we summarize interesting findings
regarding ubiquitination of OCT-3/4, which is related to differentiation and proliferation in proliferating
cells. OCT-3/4 is active in many somatic tumors, and several studies have proposed its functional
importance in cervical cancer [3], TGCTs [5], prostate cancer [57], TICs [59], colon cancer [7], and
breast cancer [1,61]. Overexpression of OCT-3/4 in cervical cancer induces overexpression of miR-125b,
which suppresses apoptosis and expression of BAK1 protein. Therefore, OCT-3/4 directly upregulates
miR-125b, which inhibits BAK1 function, leading to the suppression of cervical cancer apoptosis [3]. In
a TGCTs mouse model, OCT-3/4 was overexpressed in germ cell-specific K-RAS activation and PTEN
inactivation. This mouse model contained teratoma and exhibited upregulation of OCT-3/4 [4]. Kosaka
et al. demonstrated the significance of OCT-3/4 expression as a predictive marker of prostate cancer [77].
Specifically, they found that 250 prostate cancer patients who underwent radical prostatectomy showed
the overexpression of OCT-3/4. Therefore, OCT-3/4 upregulation is a clinically relevant predictor of
prostate cancer [1].

OCT-3/4 helps various cellular processes of TIC, including self-renewal [78,79], survival [80,81],
EMT [82,83], metastasis [84,85], and drug resistance [57,59,86]. Colon cancer consists of malignant
tumors and OCT-3/4 is overexpressed in colon cancer tissues, demonstrating a correlation between
OCT-3/4 and the development of colon cancer [87].

OCT-3/4 is ubiquitinated by several E3 ligases including WWP2 [49], Itch [50], CHIP [1], DPF2 [36],
RNF2 [72], and FBXW8 [34]. These E3 ligases positively regulate protein degradation, catalyze OCT-3/4
for ubiquitination, and lead to differentiation of proliferating cells. In contrast to E3 ligases, DUBs
deubiquitinate target proteins, inhibiting differentiation. One of the E3 ligases for OCT-3/4, CHIP,
interacts directly with OCT-3/4 to decrease its stability as well as its breast cancer cell properties.
Downregulation of CHIP induced increased OCT-3/4 stability in breast cancer cells through PTMs [1].
Moreover, a recent study showed that the OCT-3/4-mediated signal transducer and activator of
transcription 3 (STAT3) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)
signaling pathways play important roles in resistance to irradiation (IR) by suppressing IR-induced
premature senescence in breast cancer cells [88]. Therefore, these signaling pathways maintain cell
survival during breast cancer progression and will be an ideal approach for breast cancer-related
therapy. OCT-3/4 upregulated in these cancer cell lines may contribute to the development and
progression of these cancers.

Here, we define the difference between cancer cells and stem cells regulated by OCT-3/4. Specifically,
OCT-3/4 induces differentiation and proliferation in proliferating cells. This review focuses on currently
known E3 ligases and DUBs within the scope of the ubiquitination and deubiquitination of OCT-3/4,
as well as cancer cell lines related to OCT-3/4 expression (Table 1). Interactions between those E3
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ligases and DUBs have important implications for the future development of targeted therapies for
application in OCT-3/4-related diseases. Overall, this review provides valuable insight into various
potential candidates for OCT-3/4-related therapeutics.

Table 1. PTMs of OCT-3/4, and E3 ligases and DUBs regulating OCT-3/4.

References

OCT-3/4

Cancer cells Cell line

Cervical cancer [3,56]
Testicular germ cell tumor (TGCTs) [4,5,57,66]

Drug-resistant cells (prostate cancer) [5,7,58,59,83]
Undifferentiated tumor-initiating cells

(TICs) [7,57,79–87]

Colon cancer [7,61,89]
Breast cancer [1,63,89]

Kinases Phosphorylation: Serine 347 [34]

PTMs

Modified
residues of

OCT-3/4

1. Phosphorylation: Serine 347 [34]
2. SUMOylation: Lysine 118 [46,47]

3. O-linked-N-acetylglucosamine
(O-GlcNAc): Threonine 228 [14]

E3 ligases

WW domain-containing protein 2
(WWP2) [49–51]

Itchy E3 ubiquitin protein ligase (Itch) [50,51]
Carboxy terminus of

HSP-70-interacting protein (CHIP) [1]

Double PHD fingers 2 (DPF2) [36]
Ring finger protein 2 (RNF2) [73]

F-box and WD repeat domain
containing 8 (FBXW8) [34]

DUBs

Ubiquitin specific peptidase 44
(USP44) [17,54,55]

Ubiquitin specific peptidase 34
(USP34) [52]

Ubiquitin specific peptidase 7 (USP7) [55]
26S proteasome non-ATPase

regulatory subunit 14 (PSMD14) [17]
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