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Abstract

pain behavior for up to two weeks.

pain facilitation under control conditions.

Background: The rostral ventromedial medulla (RYM) is a key brainstem structure that conveys powerful descending
influence of the central pain-modulating system on spinal pain transmission and processing. Serotonergic (5-HT)
neurons are a major component in the heterogeneous populations of RVM neurons and in the descending pathways
from RVM. However, the descending influence of RVM 5-HT neurons on pain behaviors remains unclear.

Results: In this study using optogenetic stimulation in tryptophan hydroxylase 2 (TPH2)- Channelrhodopsin 2 (ChR2)
transgenic mice, we determined the behavioral effects of selective activation of RVM 5-HT neurons on mechanical and
thermal pain behaviors in vivo. We found that ChR2-EYFP-positive neurons strongly co-localized with TPH2-positive
(5-HT) neurons in RVM. Optogenetic stimulation significantly increased c-fos expression in 5-HT cells in the RVM of
TPH2-ChR2 mice, but not in wild type mice. Behaviorally, the optogenetic stimulation decreased both mechanical
and thermal pain threshold in an intensity-dependent manner, with repeated stimulation producing sensitized

Conclusions: These results suggest that selective activation of RVM 5-HT neurons exerts a predominant effect of
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Background
The rostral ventromedial medulla (RVM), consisting of
the nucleus raphe magnus (NRM), nucleus reticularis
gigantocellularis and gigantocellularis pars alpha, is a key
brainstem structure that relays processed information of
pain from higher brain sites and exerts powerful descend-
ing modulation of spinal pain transmission through direct
projections to spinal dorsal horn [1-3]. This descending
pain modulation is functionally bi-directional, producing
either pain inhibition or pain facilitation depending on be-
havioral conditions [4-8]. The RVM-mediated descending
pain modulation plays a critical role in control of pain sta-
tus for baseline pain responses under control conditions,
pain inhibition induced by analgesic drugs, and pain
sensitization in chronic pain conditions [2,5,6,8].

Despite decades of research, the neurotransmitter sys-
tems of RVM that mediate the descending pain inhibition
and pain facilitation remain unclear at present. RVM is a
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heterogeneous brainstem region containing diverse groups
of neurons and neurotransmitter systems, such as glutam-
ate, GABA, serotonin (5-HT), opioids and neuropeptides,
including those neurons that project to the spinal cord
[2,3]. While RVM-descending pain inhibition has been
the research topic since its discovery decades ago, stud-
ies in recent years are increasingly focusing on RVM-
descending pain facilitation due to its now well recognized
role in maintenance of a sensitized pain state in various
conditions of chronic pain [2,5,6,8].

5-HT cells, mainly in NRM, are one of the main cell
groups in RVM and their spinal projections constitute a
significant portion of descending pathways for pain modu-
lation [3]. However, roles of RVM 5-HT cells in descending
pain modulation are quite controversial with inconsistent
results reported. Using the non-selective antagonist methy-
sergide to block 5-HT receptors in the spinal dorsal horn
where the RVM descending pathway projects, earlier stud-
ies indicate both pain-inhibitory and pain-facilitatory influ-
ence by the RVM 5-HT system [9-11]. Other studies with
pharmacological or genetic methods to delete RVM 5-HT
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cells suggest that RVM 5-HT system has an inhibitory ef-
fect on pain [12,13]. By down-regulating 5-HT synthesis
and depleting 5-HT in RVM, recent studies show a major
pain-facilitating role of the RVM 5-HT system under per-
sistent pain conditions [14,15]. These data support the no-
tion that the RVM-descending 5-HT system may have
both pain-inhibiting and pain-facilitating effects depending
on behavioral state.

Recently, optogenetics has been increasingly used in
neuroscience research to selectively and precisely control
activity of a defined group of central neurons for deter-
mining their roles in behavioral functions in animals
[16-20]. It also has been used in recent studies of pain
[21-23]. In this study, we used the recently established
TPH2-ChR2-EYFP transgenic mice, which express the
light-sensitive protein channelrhodopsin-2 (ChR2) in cen-
tral neurons containing tryptophan hydroxylase 2 (TPH2),
the rate-limiting enzyme in 5-HT synthesis, as serotoner-
gic cells [24]. Local optical stimulation was applied in the
RVM of the transgenic mice to specifically activate RVM
5-HT neurons. In this experimental setting, we deter-
mined the behavioral effects of selective activation of
RVM 5-HT neurons on thermal and mechanical pain re-
sponses in the freely moving transgenic mice in vivo.

Results

Selective expression of ChR2-EYFP in RVM 5-HT neurons
in TPH2-ChR2 transgenic mice

We first examined the distribution of ChR2-EYFP-
expressing cells in RVM, using anti-GFP antibodies and
immunohistochemistry for EYFP staining as described in
the original study of the transgenic mice [24]. We used
THP2 as the marker of 5-HT cells in the CNS [15,24]
and examined their co-localization with ChR2-EYFP-
expressing cells in RVM. As shown in Figure 1, TPH2-
positive 5-HT cells were mainly localized in the nucleus
raphe magnus (NRM) and lateral paragigantocellular nu-
cleus, consistent with previous reports [25,26]. These 5-
HT neurons strongly co-localized with anti-GFP-labeled,
ChR2-EYFP-expressing cells in RVM (267 GFP-positive
cells out of 323 TPH2-positive neurons counted, 82.7%,
from 6 slices of 3 different mice). Importantly, Nearly all
GFP-positive neurons were also TPH2-positive, suggest-
ing that ChR2-EYFP was specifically expressed in 5-HT
neurons with no ectopic expression. This is consistent
with the original report of TPH2-ChR2-EYFP transgenic
mice with ChR2-EYFP exclusively expressed in 5-HT
neurons in other brainstem raphe nuclei [24].

Optogenetic stimulation increases c-fos expression in
RVM 5-HT neurons

We implanted an optical cannula in the RVM of TPH2-
ChR2-Tg mice to activate ChR2-expressing 5-HT neu-
rons with a single light stimulation (473 nm, 5 mW,
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20 Hz, 15 ms) for 5 min, a stimulation protocol that has
been shown to be selectively effective in these transgenic
mice [24]. As reported in previous studies [17,21], we
examined changes in expression of the immediate early
gene c-fos as the readout of neuronal activity. Using im-
munohistochemical microscopy, we quantified the light-
induced changes in both general signal intensity of c-fos
staining and the percentage of c-fos-positive cells in
DAPI-positive cell population in the RVM of TPH2-
ChR2-Tg mice. We found that, at 2 h after light stimula-
tion, overall intensity of c-fos staining was significantly
increased (t =4.581, p <0.001), and so was the number of
c-fos-expressing cells when compared to RVM cells with-
out the light stimulation (No light: 378 c-fos-positive cells
vs. 2688 DAPI-positive cells; light: 1050 c-fos-positive cells
vs. 3524 DAPI-positive cells; t =4.796, p <0.001, Figure 2).
It is noteworthy that the c-fos expression was mainly
increased in ChR2-expressing neurons, but it was also
increased in some ChR2-negative neurons in RVM, in-
dicating that other non-5-HT cells were possibly acti-
vated indirectly through optogenetic activation of 5-HT
neurons in RVM.

To verify that the increased activity of 5-HT neurons
as measured by c-fos expression was indeed due to light
activation of ChR2, but not to other non-specific stimu-
lation from the light, we compared and analyzed similar
data of c-fos-expression after the same light simulation
in wild type (WT) mice and in TPH2-ChR2-Tg mice.
Consistent with the above results, the optical stimula-
tion significantly increased the intensity of c-fos expres-
sion (t =5.161, p <0.001) and number of c-fos-positive
cells in the RVM of TPH2-ChR2-Tg mice when compared
to those of WT mice (WT: 241 c-fos-positive cells vs.
2864 DAPI-positive cells; TPH2-ChR2: 770 c-fos-positive
cells vs. 2946 DAPI-positive cells; t =6.798, p <0.001,
Figure 3). Thus, it is likely that the optical stimulation
selectively increased the activity of 5-HT neurons with
possible secondary, downstream activation of some
non-5-HT neurons in the RVM of the transgenic mice.

Optogenetic stimulation of RVM 5-HT neurons induces
persistent pain sensitization

We then examined the behavioral effects of this optoge-
netic activation of RVM 5-HT neurons on pain behaviors
in mice in vivo. We found that single optical stimulation of
the same parameter induced persistent pain sensitization,
with sustained decrease in pain thresholds measured by
both the von Frey test for mechanical allodynia and by the
paw-withdrawal test for thermal hyperalgesia (Figure 4A:
F(6.48) =15.88, p <0.001; Figure 4B: F(g,4) =5417, p =0.0012).
The pain sensitization lasted about 4 days in both
mechanical allodynia and thermal hyperalgesia. In contrast,
the same optical stimulation failed to induce significant
changes in the basal pain thresholds of both mechanical



Cai et al. Molecular Pain 2014, 10:70
http://www.molecularpain.com/content/10/1/70

Page 3 of 9

Anti-GFP

Anti-TPH2

Figure 1 Selective expression of ChR2-EYFP in serotoninergic (5-HT) neurons in the rostral ventromedial medulla (RVM) of TPH2-ChR2

transgenic mice. Representative RVM images in increasing scales with anti-GFP staining for ChR2-EYFP-positive cells (green), anti-TPH2 staining

for 5-HT cells (red), and merged images (yellow) from TPH2-ChR2 transgenic mice. The white squares encircle the magnified area in RVM shown
L in following images. Scale bars =200 uM (A), 100 uM (B), 50 uM (C) and 20 uM (D).

and thermal tests in control WT mice. Figure 4C depicts
tip positions of the optical cannulas in brainstem slices for
light stimulation in these behavioral pain tests. In addition,
implantation of the optic fiber cannula did not alter the
basal mechanical or thermal thresholds, excluding a poten-
tial effect of the surgery itself (Figure 5). These behavioral
results suggest that activation of RVM 5-HT neurons in-
duces a persistent pain-facilitating effect.

To determine whether the pain sensitization was
dependent on the intensity of optical stimulation, we re-
duced the light intensity to 2.5 mW with other stimula-
tion parameters unchanged (473 nm, 20 Hz, 15 ms for

5 min) and repeated the stimulation protocol once daily
for three consecutive days. Consistent with the result of
single light stimulation, we found that this repeated op-
tical stimulation produced stronger pain sensitization in
both mechanical allodynia and thermal hyperalgesia that
lasted much longer than that after single stimulation,
with significant mechanical allodynia remaining after
14 days, the latest time point of measurement (Figure 6A:
Fu7187) =21.06, p <0.001; Figure 6B: F(13143) =20.73,
p <0.001). These results further support the notion that
activation of RVM 5-HT neurons induces long-lasting
pain sensitization.
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Figure 2 Optical stimulation increases c-fos expression in RVM 5-HT neurons. (A) Representative images showing anti-c-fos, anti-GFP and
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TPH2-ChR2 mice (9 slices from 3 different mice for each group). *** p <0.001

Discussion

In this study, we have shown that selective optical activa-
tion of RVM TPH2-expressing 5-HT neurons produces
persistent behaviors of pain sensitization as mechanical
allodynia and thermal hyperalgesia. The finding that this
pain sensitization lasts for days to weeks suggests that the
5-HT neurons in RVM are able to exert powerful and

long-lasting facilitatory influence on spinal processing of
pain, leading to a persistent state of pain sensitization.
Since RVM 5-HT neurons constitute one of the major
neurotransmission systems in the brainstem descending
pain-modulating pathways [3], understanding of their
functions is important to reveal neural mechanisms for
central modulation of pain under normal and pathological
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Figure 3 Optical stimulation increases c-fos expression of RVM 5-HT neurons selectively in TPH2-ChR2 mice. (A) Representative images
showing anti-c-fos, anti-TPH2 and merged staining after single light stimulation in the RVM of WT mice (top row) and TPH2-ChR2 mice (bottom
row). Scale bars =100 pM. (B and C) Summarized data of intensity of c-fos staining (B) and percentage of c-fos-positive cells vs. DAPI-positive cells
(C) in the stimulated RVM of WT and TPH2-ChR2 mice (9 slices from 3 different mice for each group). *** p <0.001 (unpaired t test).
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conditions. In this regard, almost all previous studies used
an approach of loss-of-function by pharmacologically or
genetically inhibiting RVM 5-HT cells. This approach re-
quires creation of a pre-existing condition, either stimulus/
drug-induced antinociception or inflammation/injury-
induced pain sensitization. As such, RVM 5-HT cells
were shown to be antinociceptive, as their inhibition re-
duced the antinociception, or to be pronociceptive, as
their inhibition attenuated the pain sensitization [9-11,14,
15,27,28]. Interestingly, while earlier studies tend to focus
on the antinociceptive role of RVM 5-HT cells, recent

studies with more specific targeting of 5-HT cells and 5-
HT receptor subtypes report a pronociceptive effect of
RVM 5-HT cells under persistent pain conditions [14,15].
The current study used a unique approach of acute
functional activation to selectively increase activity of
RVM 5-HT neurons under normal conditions and re-
veals a pronociceptive effect on normal pain responses
without pre-existing conditions and consequently in-
duced adaptive changes within the RVM systems. This
effect may suggest that the group of RVM 5-HT neu-
rons, if activated as a whole, has a net or predominant
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Figure 4 Single optical stimulation in the RVM of TPH2-ChR2 mice induces persistent behaviors of pain sensitization. (A and B) Changes in
sensitivity of mechanical pain (A) and thermal pain (B) before (baseline) and after single light stimulation (arrow) given for 5 min on day 0 in WT and
TPH2-ChR2 mice (n =5 each group). Pain tests were performed once daily. (C) Schematic drawing of brain slices illustrating tip positions of the optical
cannulas (circle, WT; triangle, TPH2-ChR2). Numbers on the right are distance from Bregma. * p <0.05, ** p <0.01, *** p <0.001 (two-way ANOVA and
Bonferroni's post hoc analysis).
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Figure 5 Cannula implantation does not alter basal pain thresholds.
(A and B) Basal mechanical (A) and thermal (B) thresholds before
(baseline) and 7 d after surgery for implantation of the optic fiber
cannula in WT mice (n =5) and in TPH2-ChR2 mice (n =5) (paired
and unpaired t test).

pain-facilitating effect under various behavioral states.
Some early studies used RVM administration of 5-HT
and observed either an antinociceptive effect or no ef-
fect on pain threshold [29-31]; however, 5-HT may acti-
vate or inhibit RVM cells, depending on the 5-HT
receptor subtype the cells contain, and the cell popula-
tion affected by 5-HT administration is likely different
from that of this study, which contains 5-HT and likely
releases 5-HT onto target cells within RVM and in their
projection area of spinal dorsal horn.

The cellular mechanism by which this selective activa-
tion of RVM 5-HT neurons induces pain sensitization is
still unclear. Within RVM, although there is discrepancy
regarding RVM cell classes that contain 5-HT, both ana-
tomical and electrophysiological studies demonstrate
that a significant portion of spinally projecting RVM 5-HT
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cells contain mu-opioid receptor (MOR) [32,33]. Since
MOR-containing RVM cells have been well recognized as
a cell class that exerts pain facilitation [2], optical activa-
tion of this group of 5-HT cells would account for the sen-
sitized pain behaviors we observed. It is noteworthy that
this optical activation of 5-HT cells likely also indirectly
activated other non-5-HT cells, including those with
spinal projections, through synaptic connections in RVM,
as shown by increased c-fos expression in some non-
ChR2-expressing RVM cells. This is consistent with the
previous report of feed-forward connections between 5-
HT cells and non-5-HT cells in RVM-descending control
pathways [25]. Nevertheless, activation of 5-HT neurons
and descending pain facilitation appears predominant over
potential descending influence from other non-5-HT cells
after the optical stimulation in RVM. It is likely that this
pain sensitization involves 5-HT that is released from the
optically activated, spinally projecting RVM 5-HT cells
and acts on 5-HT receptor-expressing neurons in spinal
dorsal horn. Numerous studies using pharmacological an-
tagonists or genetic disruption of specific 5-HT receptor
subtypes have shown that spinal 5-HT1 and 5-HT?2 recep-
tors are predominantly antinociceptive whereas spinal 5-
HT3 receptors have been shown to mediate mostly pain
sensitization with some reports of pain inhibition in ani-
mal models [3,34-41].

The TPH2-ChR2 mice provide a unique tool to con-
trol activity of 5-HT neurons in the brain in vivo with
temporal and spatial precision. In these mice, the blue
light has been shown to evoke reliable firing of action
potentials at up to 20 Hz in TPH2-ChR2-expressing
neurons [24]. In a recent study of pain-induced sleep
disorder, similar optical stimulation was used to activate
defined 5-HT neurons in the dorsal raphe nucleus
(DRN) of TPH2-ChR2 mice in vivo [23]. In the current
study, ChR2-EYFP-positive RVM neurons were identi-
fied as 5-HT cells, as they strongly overlapped with
TPH2-containing neurons, consistent with a recent re-
port showing that TPH2 completely co-localizes with
5-HT in RVM cells [15]. Our optical stimulation signifi-
cantly increased c-fos expression when compared to
that without the stimulation in the RVM cells of TPH2-
ChR2 mice and the same stimulation failed to alter c-
fos expression in the RVM cells of WT mice, indicating
that the optical stimulation likely activates RVM 5-HT
cells, leading to an RVM 5-HT cell-initiated descending
effect of pain facilitation. Of note is that ChR2-EYFP ex-
pression is also present in DRN 5HT neurons that may
project to RVM in the TPH2-ChR2-Tg mice. Thus, it can-
not be ruled out that the optical stimulation in RVM also
activated ChR2-expressing never fibers from DRN.

This RVM 5-HT system of pain facilitation may play an
important role in the mechanisms for the development of
chronic pain. Many recent studies using animal models of
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Figure 6 Repeated optical stimulation in the RVM of TPH2-ChR2 mice induces long-lasting behaviors of pain sensitization. (A and B)
Changes in sensitivity of mechanical pain (A) and thermal pain (B) before (baseline) and after repeated light stimulation (arrows) given for 5 min
once daily for 3 days on day 0 through day 2 in WT (n =6) and TPH2-ChR2 mice (n =7). Pain tests were performed once daily. (C) Schematic
drawing of brain slices illustrating tip positions of the optical cannulas (circle, WT; triangle, TPH2-ChR2). Numbers on the right are distance from
Bregma. * p <0.05, ** p <0.01, *** p <0.001 (two-way ANOVA and Bonferroni’s post hoc analysis).

chronic pain have shown that selective inhibition of 5-HT
functions in RVM or in RVM-projected spinal dorsal horn
attenuates sensitized pain behavior [14,15]. This suggests
that RVM 5-HT function may be upregulated in chronic
pain conditions. Indeed, RVM TPH2 protein level is in-
creased in a rat model of neuropathic pain and persistent
inflammatory pain increases spontaneous activity of some
TPH-containing 5-HT cells in RVM [15,42]. Whereas a
similar protocol of optical stimulation (20 Hz, 10 ms,
9 mW) in the DRN of TPH2-ChR2-Tg mice evokes 5-HT
release in its projection area of prefrontal cortex [23], it
remains to be demonstrated what are the spinal 5-HT re-
ceptor subtypes involved in the pain sensitization if 5-HT
is released from RVM-descending 5-HT pathways acti-
vated by the optical stimulation. It is also unclear how per-
sistent pain conditions may activate the RVM 5-HT
function and one possibility is that RVM 5-HT neurons
are activated by noxious stimuli through a spinoreticular
pathway [26]. As chronic pain is considered as the result
of imbalanced shift in RVM modulation from pain inhib-
ition to pain facilitation [43], the RVM 5-HT system may
play an important role in this shift and could be a thera-
peutic target in the treatment of chronic pain.

Conclusions

In this study, we show that optogenetic activation of tryp-
tophan hydroxylase 2-expressing serotonergic neurons in
rostral ventromedial medulla iz vivo induces a long-lasting
(days — weeks) pain sensitization measured as mechanical
allodynia and thermal hyperalgesia. It suggests a predomin-
ant pain-facilitating role of the brainstem 5-HT neurons in
spinal pain processing.

Methods

Animals

Male heterozygous TPH2-ChR2-EYFP BAC transgenic
mice were purchased from the Jackson Laboratory. The
male transgenic mice were crossed with female C57BL/
6 ] mice to obtain TPH2-ChR2-Tg mice and WT litter-
mates. This strain was generated by Zhao et al. and
ChR2-EYFP is selectively expressed in serotonergic neu-
rons recognized by anti-GFP antibodies with no ectopic
expression in brainstem [24]. Mice were housed in
groups of five with food and water available ad libitum,
and a 12 h light/dark cycle. Behavioral experiments and
tests were performed between 8:00 a.m. and 18:00 p.m.
All procedures involving the use of animals conformed
to the guidelines set by the Institutional Animal Care
and Use Committee of MD Anderson Cancer Center.

Implantation of optical fiber cannula and optical
stimulation

A mono fiber-optic cannula (Doric Lenses Inc., Canada)
was stereotaxically implanted just above the RVM (AP,
5.8 mm; L, 0.0; V, 5.3 mm). Animals were single housed
after the implantation surgery and allowed to recover for
7 days before behavioral tests. For optical stimulation,
the implanted cannula was connected to a 473 nm DPSS
laser (Shanghai Laser & Optic Century Co., China)
through a fiber-optic patch cord with a rotary joint for
free movement of the animal. Blue light pulses of 20 Hz,
15 ms, 5 mW with 17.68 mW/mm?> or 2.5 mW with
8.84 mW/mm?® were delivered to the RVM for 5 min
once or once daily for 3 d. Intensity of the fiber-optic
light at the end of fiber was verified before and after
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each experiment by a power meter (PM-100D, Thor
Labs). All laser outputs were controlled by a Master-8
pulse stimulator (A.M.P.I).

Von Frey test for sensitivity of mechanical pain

Mice were extensively handled and habituated to the test
environment and test apparatus for at least 3 d before all
behavioral tests. A mouse was placed in a plastic box
with mesh floor and allowed to acclimate for 1 h. A
series of calibrated von Frey filaments were applied per-
pendicularly to the plantar surface of a hind paw with
sufficient force to bend the filament for 6 s. Brisk hindpaw
movements (withdrawal or flinching) were considered to
be a positive response. The tactile stimulus producing a
50% likelihood of withdrawal was determined by the “up-
down” calculating method [44,45]. Basal threshold was
measured as baseline before optical stimulation. A
473 nm blue light was delivered to the RVM for 5 min
with the single or repeated stimulation protocol described
above. The hindpaw withdrawal responses were measured
twice with a 5-min interval 10 min after light stimulation.

Analgesia test for sensitivity of thermal pain

A mouse was placed in a Plantar Test Instrument
(Model 37370, Ugo Basile, Italy). Response to an infrared
heat stimulus was measured with a Hargreaves apparatus
and only quick hindpaw withdrawal (with or without lick-
ing) was counted as a response [46]. Latency to the paw
withdrawal was recorded automatically by the Instrument.
The latency before and after the optical stimulation was
measured twice with a 5-min interval 50 min after light
stimulation. The data represent the average value for with-
drawal latencies of both right and left hindpaw measured
alternatively.

Immunohistochemistry

Mice were deeply anesthetized with pentobarbital and
transcardially perfused with 20 ml heparinized saline
and subsequently with 30 ml ice-cold 4% paraformalde-
hyde in 1xPBS (pH 7.4). The brain and spinal cord
were removed and post-fixed in 4% paraformaldehyde
overnight at 4°C, followed by dehydration with 30% su-
crose in 1xPBS. Tissues were sectioned into 30-pm
thick coronal sections with a cryostat at —20°C. Sections
were blocked with 5% normal donkey serum in PBS con-
taining 0.3% Triton X-100 and incubated overnight with
primary antibodies (rabbit anti-GFP antibody, 1:1000 di-
lution, A11122, Invitrogen; mouse anti-TPH2 antibody,
1:500 dilution, T0678, Sigma; and rabbit anti-c-Fos anti-
body, 1:1000, sc-52, Santa Cruz). Sections were then
rinsed and incubated with the Alexa Fluor-conjugated
secondary antibodies (1:500, Alexa Fluor 488 and 568,
Invitrogen), and were mounted on slides, dried and cov-
erslipped with ProLong Gold antifade reagent for
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staining with the fluorescent reporter 4',6-diamidino-2-
phenylindole (DAPI, Invitrogen). The stained sections
were examined with an Olympus BX51 fluorescence
microscope. Intensity of fluorescence signals for c-fos
staining in images was automatically quantified and ana-
lyzed by HCImage software (Hamamatsu Corporation,
PA). For each group, 9 slices from 3 different mice were
selected and in each slice, 4 randomly selected areas
(250 pm x 250 um) in the TPH2-positive or GFP-
positive areas within RVM were chosen for cell counts.
The number of c-fos-positive cells and DAPI-positive
cells in the selected areas was counted manually by ex-
perimenters blind to experimental conditions.

Statistical analysis

For data of pain tests, two-way ANOVA for repeated mea-
sures with post hoc analysis of the Bonferroni method was
used to determine statistical significance in group treat-
ment and between-group interactions at each time point.
Unpaired Student’s ¢ test was used for comparisons of
c-fos data between groups. A p value of <0.05 was con-
sidered statistically significant. All statistical analyses were
performed with the Prism software version 6.0 (GraphPad
Software). Data are presented as mean + S.E.M.
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