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Abstract: The constitutively active BCR-ABL1 tyrosine kinase, found in t(9;22)(q34;q11) chromosomal
translocation-derived leukemia, initiates an extremely complex signaling transduction cascade that
induces a strong state of resistance to chemotherapy. Targeted therapies based on tyrosine kinase
inhibitors (TKIs), such as imatinib, dasatinib, nilotinib, bosutinib, and ponatinib, have revolution-
ized the treatment of BCR-ABL1-driven leukemia, particularly chronic myeloid leukemia (CML).
However, TKIs do not cure CML patients, as some develop TKI resistance and the majority relapse
upon withdrawal from treatment. Importantly, although BCR-ABL1 tyrosine kinase is necessary
to initiate and establish the malignant phenotype of Ph-related leukemia, in the later advanced
phase of the disease, BCR-ABL1-independent mechanisms are also in place. Here, we present
an overview of the signaling pathways initiated by BCR-ABL1 and discuss the major challenges
regarding immunologic/pharmacologic combined therapies.

Keywords: BCR-ABL1; chronic myeloid leukemia; tyrosine kinase inhibitors

1. Introduction

BCR-ABL1 is a multidomain, constitutively active, chimeric tyrosine kinase that re-
sults from a reciprocal translocation between chromosomes 9 and 22—t(9;22)(q34;q11)—
characteristic of Philadelphia chromosome(Ph1)-positive leukemia [1]. Depending on the
breakpoint on chromosome 22 at the BCR (break point cluster) gene, three major isoforms
of BCR-ABL1 can be produced: the 185kDa, 210kDa, and 230kDa proteins found in acute
lymphocytic leukemia (ALL), chronic myeloid leukemia (CML), and chronic neutrophilic
leukemia (CNL), respectively [2–4]. In all these circumstances, the first exon of c-ABL—
the cellular homolog of Abelson murine leukemia virus (A-MuLV)—on chromosome 9 is
replaced by one of the BCR sequences (Figure 1).

The BCR part of the protein contributes to several domains responsible for regulating
the enzymatic activity of BCR-ABL1 or its interactions with different binding partners [5,6].
At the N-terminal portion of BCR, there is a coiled-coil domain responsible for oligomer-
ization and constitutive activation of the BCR-ABL1 tyrosine kinase. In addition, the
BCR sequence contains a serine/threonine kinase (STK) domain, a Ras homolog gene
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family/guanine nucleotide exchange factors (Rho/GEF) kinase domain, and SH2 do-
mains capable of binding adaptor molecules, such as growth factor receptor-bound protein
2 (GRB2) [7].
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Figure 1. Linear structure of p210 BCR-ABL1 showing the relative position of each domain from
both the BCR and the c-ABL portions of the protein. CC, coil-coiled oligomerization domain; STK,
serine/threonine kinase domain; Rho/GEF domain; SH, (SRC homology domains) 1, 2, and 3; NTS,
nuclear translocation signal; DB, DNA binding domain; AB, actin binding domain.

c-ABL is a tyrosine kinase located preferentially in the nucleus [8], although it is
also found in the cytoplasm where it associates with actin filaments [5]. The structure of
c-ABL, which is conserved in BCR-ABL1, comprises multiple domains, including SRC-
homology domain 1 (SH1; kinase domain), SH2, SH3, DNA binding (DB), and actin
binding (AB) domains, in addition to a nuclear translocation signal (NTS) sequence, sites
for phosphorylation by protein kinase C (PKC), and a proline-rich sequence (Figure 1).
Among all these domains, the SH1 region is the most conserved during evolution and
contains the catalytic site essential for the initiation of signaling pathways that result in
cellular transformation, including dysregulated proliferation and resistance to apoptosis.

The indication that this enzymatic activity was essential to induce the transformation
of BCR-ABL1-positive cells led to the development of a rationally designed tyrosine kinase
inhibitor (TKI)—imatinib mesylate, also known as STI571 or Gleevec [9]. Imatinib was
the first TKI anticancer targeted therapy to receive FDA approval and has unquestionably
changed the outcomes of a great number of CML patients. This TKI has prolonged the
overall survival of BCR-ABL positive leukemia patients to the point that their life spans
are now similar to age-matched healthy individuals [10]. However, with time, approxi-
mately 50% of patients develop resistance or intolerance to imatinib and treatment must
be discontinued. Second generation TKIs (e.g., dasatinib, nilotinib, and bosutinib) ex-
hibit significantly improved activity against all resistant mutations except BCR-ABLT315I,
affecting threonine 315 which is crucial for the accessibility of the ATP-binding pocket
(see below), and have been used as either salvage therapies or alternative first-line treat-
ments [11]. Finally, ponatinib, a high potency third generation TKI, has shown unique
activity against the BCR-ABLT315I mutation; however, it has also been associated with
considerable risks for vascular occlusions, heart failure, and hepatotoxicity [12,13]. Despite
the significant improvement of the treatment of BCR-ABL1-drived leukemia, some patients
still develop intolerance or resistance to all TKIs, progress to a more advanced phase of
the disease, and/or require continuous resistance to TKI therapy. Importantly, at this
point, kinase-independent or even BCR-ABL1-independent signals may trigger alternative
survival pathways responsible for the residual presence of leukemic cells in these patients.

2. BCR-ABL1 Tyrosine Kinase-Dependent Signaling Cascade

Due to its complex structural nature, multiple proteins have been shown to directly
associate with BCR-ABL1. Co-immunoprecipitation of BCR-ABL1 from the K562 CML cell
line followed by mass spectrometry revealed the potential core components of the BCR-
ABL1-interactome, including the adapter proteins GRB2, SHC adaptor protein 1 (SHC1),
CT10 regulator of kinase 1 (CRK1), the E3 ubiquitin-protein ligase casitas B-lineage lym-
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phoma (c-CBL), the p85α and β subunits of the phosphoinositide 3-kinase (PI3K), the
suppressor of T-cell receptor signaling 1 (STS1), and the SH2 domain-containing inositol
5-phosphatase 2 (SHIP-2) [14]. These proteins, along with other interactors, can recruit
intermediate and/or effector molecules, thereby initiating a plethora of signaling pathways,
including RAS/RAF/MAPK, PI3K/AKT/mTOR, JAK/STAT, and WNT/β-catenin, briefly
presented below, responsible for the different aspects of BCR-ABL-1-induced transformation.

2.1. BCR-ABL1 Activation of the RAS/RAF/MAPK Pathway

The activation of the rat sarcoma virus (RAS)/rapidly accelerated fibrosarcoma
(RAF)/mitogen-activated protein kinase (MAPK) pathway by BCR-ABL1 is initiated by
GRB2 binding to phosphotyrosine Y177 in the BCR region, followed by the recruitment
of GRB2-associated-binding protein 2 (GAB-2) and son of sevenless (SOS). The BCR–
ABL1–GRB2–SOS complex drives RAS activation and the consequent activation of RAF1,
MAPK/ERK Kinase (MEK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal
kinase (JNK), and p38MAPK. Together, these signaling pathways regulate cell proliferation,
differentiation, and survival [15–18]. Most importantly, expression of a dominant-negative
RAS inhibits BCR-ABL1-mediated transformation and attenuates CML-like myeloprolifera-
tive disease [19]. It is important to note that RAS can also contribute to the activation of the
pro-survival PI3K/AKT/mTOR pathway [20].

2.2. BCR-ABL1 Activation of the PI3K/AKT/mTOR Pathway

BCR-ABL1 activates the PI3K/AKT/mTOR pathway both directly and indirectly
through the induction of autocrine cytokines [21]. The interaction between BCR-ABL1 and
PI3K can occur via GRB2, GAB-2, SHC, c-CBL, and CRKL [15,22,23]. BCR-ABL1 activates
the p85 regulatory subunit of PI3K leading to the conversion of phosphatidylinositol
4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-trisphosphate (PIP3), which further
activates phosphoinositide-dependent kinase 1 (PDK1) and AKT [24]. Activated AKT
has been shown to prevent apoptosis by phosphorylating different substrates, such as
glycogen synthase kinase 3 (GSK3), cysteine-aspartic protease-9 (caspase-9), and BCL-2
associated agonist of cell death (BAD) [25]. Importantly, BAD phosphorylation is not
essential for BCR-ABL1-induced survival [26]. Although PI3K activation is implicated in
the antiapoptotic effect induced by growth factors, such as NGF, PDGF, and IGF-1—but not
IL-3 [27–29]—PI3K activity appears not to be involved in the resistance to chemotherapeutic
drugs observed in BCR-ABL1-positive cells [30].

AKT also induces the downstream activation of mammalian target of rapamycin
(mTOR), which works as a catalytic subunit of the mTORC1 and mTORC2 protein com-
plexes [31]. mTORC1 activates eukaryotic translation initiation factor 4E-binding protein
1 (4EBP1), S6 Kinase (S6K), and S6 ribosomal protein (RPS6) to control cell cycle progression
from the G1 to S phase, cell proliferation, and angiogenesis. On the other hand, mTORC2
regulates cytoskeleton organization and cell proliferation [32]. BCR-ABL1-mediated induc-
tion of the mTOR pathway also upregulates the FOXO subclass of forkhead box transcrip-
tion factors (FOXO1, FOXO3a, and FOXO4) to promote leukemogenesis [33]. In leukemic
stem cells (LSCs), dysregulated PI3K/AKT/mTOR signaling activates LKB1 and AMPK
via ROS production to regulate cell survival, proliferation, and drug resistance [34,35].

Importantly, resistance to TKIs, such as imatinib, dasatinib, and nilotinib, is associated
with the hyperactivation of the mTORC2/AKT signaling pathway [36,37], possibly via BCR-
ABL1-independent PI3K activation [38]. Targeted inhibition of mTORC2/AKT signaling
by glucocorticoid-induced leucine zipper protein (GILZ) dampens imatinib and dasatinib
resistance and restricts tumor growth. Interestingly, the binding of GILZ to mTORC2, but
not to mTORC1, reduces AKT phosphorylation (at Ser473) and induces FOXO3a-mediated
transcription of the proapoptotic protein BCL-2-interacting mediator of cell death (BIM) [39].
Combined targeting of mTORC1 and mTORC2 by OSI-027, a catalytic mTOR inhibitor,
also results in a strong anti-leukemic effect against BCR-ABL1-positive cells [40], which
can be prevented by concomitant inhibition of autophagy [41]. Equally, the use of PI3K
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inhibitors LY294002 and CAL-10 restored apoptosis and sensitivity to TKI inhibitors in
leukemic cells [42].

2.3. BCR-ABL1 Activation of the JAK/STAT Pathway

Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling
is involved in growth factor independence and resistance to apoptosis in CML [43–47].
JAK2, STAT1, STAT3, and STAT5 were shown to be constitutively active in CML cell
lines [47]. BCR-ABL1-mediated activation of STAT5 regulates the transcription of BCL-2-
related protein A1 (A1), B-cell lymphoma extra-large (BCL-xL), and myeloid cell leukemia-1
(MCL-1) all potent anti-apoptotic members of the BCL-2 family [48–51]. Importantly, the
inhibition of JAK2 or STAT5 was shown to induce apoptosis in BCR-ABL1-positive cell lines
as well as primary cells derived from imatinib-sensitive or resistant CML patients [45,46,52].

2.4. BCR-ABL1 Activation of the WNT/β-Catenin Pathway

A disturbance in the canonical WNT/β-catenin signaling pathway is associated with
the pathogenesis of leukemia [53,54]. In the absence of WNT activation, β-catenin is
phosphorylated and ubiquitinated in the context of a multiprotein complex composed
of glycogen synthase kinase 3 (GSK-3), creatin kinase 1 (CK1), axis inhibitor (Axin), ade-
nomatous polyposis coli (APC), protein phosphatase 2A (PP2A), and the E3-ubiquitin
ligase β-transducin repeat-containing protein (β-TrCP), followed by further proteasomal
degradation [53,54]. BCR-ABL1 directly binds and phosphorylates β-catenin [55], resulting
in its stabilization and nuclear translocation/accumulation [56], which has been implicated
in the proliferation and survival of leukemic stem cells in CML patients [17]. In the nucleus,
β-catenin interacts with members of the T cell factor/lymphoid enhancer factor (TCF/LEF)
family of transcription factors (TCF1, TCF3-4, and LEF1) to activate target gene expression,
including c-MYC and cyclin D1 [57]. Importantly, genetic or pharmacological inhibition
of β-catenin were shown to interfere with CML cell proliferation and induce apoptosis,
including in cells bearing the T315I mutation [58].

2.5. BCR-ABL1 Activation of the PP2A Pathway

PP2A is a tumor suppressor serine-threonine phosphatase that negatively regulates
the mitogenic and survival signals emanating from PI3K/AKT, RAS/MAPK, and MYC
pathways [59]. Interestingly, PP2A is downmodulated by BCR-ABL1 in CML patients,
particularly during blast crisis [60,61]. BCR-ABL1 inhibition of PP2A is mediated by
the activation of SET, an endogenous inhibitor of PP2A. Importantly, treatment with
imatinib, inhibition of SET, or pharmacological activation of PP2A lead to inactivation and
degradation of BCR-ABL1 and, consequently, the loss of tumorigenic activity in BCR-ABL1-
positive cells, including TKI-resistant CML stem cells [62]. At least in part, the inhibitory
effect of PP2A is mediated by the activation of another tumor suppressor phosphatase,
namely Src homology region 2 domain-containing phosphatase-1 (SHP-1) [60,61], as well
as the inhibition of JAK2 and β-catenin [62].

3. BCR-ABL1 Kinase-Independent Alternative Survival Signals

Unquestionably, the BCR-ABL1 tyrosine kinase-dependent signaling events summa-
rized above are required for the transformation of Ph1 chromosome-positive leukemia.
However, the resistance to TKIs observed in some CML patients suggests that signals
emanating from the BCR-ABL1 protein independently of its tyrosine kinase activity may
take over, allowing the survival of leukemic cells and relapse of the disease. Indeed, it was
recently shown that inhibition of the catalytic activity does not completely dismantle the
BCR-ABL1 molecular complex [63]. Signaling proteins, such as p85α-PI3K, GRB2, SHIP2,
SHC1, SOS1, and c-CBL, remain associated with BCR-ABL1, whereas CRK, CRKL, or GAB2
seem to detach from the complex [63]. Therefore, residual signaling transduction events
appear to be sufficient to maintain survival of CML cells in the absence of tyrosine kinase
activity, as previously proposed [64]. This idea is supported, for instance, by the observa-
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tion of the alternative activation of RAF/MEK/ERK, mTOR, or PKC-β/Alox5 pathways
in imatinib-resistant patients, which could be circumvented using TKI + mTOR or PKC
combined therapies [65–67].

Equally important is the fact that LSCs homing to bone marrow niches is arguably the
most important event related to TKI resistance, since it results in a high genetic, epigenetic,
and transcriptional alteration leading to an increased self-renewal capacity of the LSCs
themselves [61]. Acquired heterogeneity helps some LSCs to survive TKI treatment, thus
serving as a reservoir of leukemic cells that can eventually cause relapse after therapy
discontinuation [68]. Furthermore, microenvironment alterations at the hematopoietic niche
may contribute to the survival of LSCs. Altered metabolic pathways and the expression of
co-stimulatory molecules and/or regulatory cytokines by surrounding stromal cells may
create an immunosuppressive environment that helps malignant cells to escape immune
surveillance and targeted chemotherapy [69,70].

4. Resistance to Apoptosis in CML

As discussed above, BCR-ABL1 activates multiple signaling pathways to induce
leukemogenesis, which results in growth factor-independency and regulation of adhesion
and invasion [71–73]. On the other hand, BCR-ABL1-positive cells generally display normal
mitotic indices and do not show increased overall proliferation [74]. Perhaps the most
notable aspect of BCR-ABL1-mediated leukemogenesis is the vigorous state of resistance to
apoptosis that is conferred to the transformed cells [19,75–80].

The enforced expression of BCR-ABL1 in hematopoietic cell lineages revealed its
potential to prevent apoptosis induced by a variety of stimuli, including growth fac-
tor withdrawal, γ-irradiation, death receptor agonists, and multiple chemotherapeutic
drugs [19,75–79]. Studies with point mutations at the autophosphorylation site (Y793F), the
phosphotyrosine binding motif (R552L), and/or at the GRB2-binding site (Y177F) demon-
strated that BCR-ABL1-mediated resistance to apoptosis depends on the cellular context.
For instance, enforced expression of a BCR-ABL1-Y177F/R552L/Y793F triple mutant in
IL-3-dependent lymphoblastoid 32D murine cells did not confer IL-3 independency or
resistance to γ-irradiation-induced apoptosis; however, the same mutant protected BaF3
cells, a different IL-3-dependent pro-B murine cell line, from these apoptogenic stimuli [19].
Moreover, enforced expression of wild type or the above-mentioned BCR-ABL1 mutants
protected the apoptosis-sensitive human acute promyelocytic leukemia HL-60 cell line
from a variety of apoptogenic insults to the same extent [77]. Therefore, different cellular
contexts may provide alternative pathways that contribute to the survival of BCR-ABL1-
positive cells.

BCR-ABL1 has been shown to inhibit apoptosis at the mitochondrial level by pre-
venting the release of cytochrome c to the cytosol and the consequent activation of ef-
fector caspases [77]. It is important to note that cytochrome c release is controlled by
members of the BCL-2 family of proteins [81,82]. Interestingly, BCR-ABL1 expression
has been associated with the downregulation of BCL-2 and upregulation of A1, BCL-xL,
and MCL-1 [30,50,51,83], which are all anti-apoptotic proteins critical to the regulation of
mitochondria-mediated cell death. The upregulation of MCL-1 seems to involve the activa-
tion of the RAS/RAF/MAPK pathway [51] and Sphingosine kinase-1 (SPK1) [84]. While
increased expression of A1 and BCL-xL depends on BCR-ABL1 tyrosine kinase activation
of STAT5, and the inhibition of STAT5, BCL-xL, or MCL-1 renders BCR-ABL1-positive
cells susceptible to apoptosis [48,49,51,77]. In addition, there is a positive correlation be-
tween STAT5 activity, BCL-xL levels, and the progression of disease in CML patients [85].
Nevertheless, BCL-xL is only partially responsible for the BCR-ABL1-mediated resistance
to apoptosis [77]. In agreement with this notion, a systematic comparison of the ectopic
expression of either BCR-ABL1, BCL-xL, or BCL-2 in HL-60 cells revealed a remarkably
robust anti-apoptotic effect conferred by BCR-ABL1, greater than the resistance awarded
by either of the anti-apoptotic proteins of the BCL-2 family [79], reinforcing the idea that
BCR-ABL1 acts on multiple points of the apoptosis machinery.
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The regulation of particular pro-apoptotic BH3-only members of the BCL-2 family
were also shown to contribute to the resistance to apoptosis observed in BCR-ABL1-positive
cells. As previously mentioned, BCR-ABL uses the PI3K pathway to phosphorylate and
inactivate BAD; however, as mentioned previously, BAD inactivation does not account
for the resistance to apoptosis observed in BCR-ABL1-positive cells [26]. Interestingly,
imatinib was shown to kill BCR-ABL1-positive cells via modulation of members of the
BCL-2 family [86]. BIM and BAD are post-translationally activated by imatinib, and the
elimination of both confers resistance to imatinib [86]. More importantly, a common intronic
deletion polymorphism of BIM that produces BIM isoforms lacking the pro-apoptotic
BH3 domain has been associated with resistance to TKIs in CML [87]. Apparently, other
members of the BH3-only subfamily of BCL-2 proteins, such as BID, BIK, BMF, HRK,
NOXA, and PUMA, the anti-apoptotic protein BCL-w, as well as the apoptotic pore-form
proteins BAX and BAK, do not seem to be modulated by BCR-ABL1 or play an important
role in BCR-ABL1-mediated leukemogenesis.

BCR-ABL1 has also been shown to inhibit apoptosis initiated by death receptor sig-
naling [77,79,80,88–90]. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/
TNFSF10), which was shown to induce apoptosis in many tumor cells but not in normal
cells [91–93], is downregulated in CML patients, particularly in more advanced phases of
the disease [90,94]. The downregulation of TRAIL in BCR-ABL1-positive cells is mediated
by a preferentially expressed antigen of melanoma (PRAME)/enhancer of zeste homolog
2 (EZH2) repression mechanism, and the inhibition of either PRAME or EZH2 expression
increases TRAIL levels and sensitivity to TRAIL and to imatinib [90]. Finally, BCR-ABL1
was additionally shown to inhibit apoptosis downstream of cytochrome c release from
mitochondria by interfering with APAF-1-caspase-9 apoptosome activation [95].

5. Tyrosine Kinase Inhibitors and the Paradigm Shift of CML Treatment

The discovery that constitutive BCR-ABL1 tyrosine kinase activity was crucial for the
development of CML [96] warranted a TK-targeting therapeutic strategy. Consequently,
several TKIs were developed to target the ATP binding site of the kinase domain, thereby
preventing phosphorylation of the target protein and subsequent signaling events (Figure 2).
Imatinib, nilotinib, dasatinib, bosutinib, ponatinib, and asciminib are currently used for the
treatment of CML and are briefly described below.

5.1. Imatinib Mesylate

Imatinib was developed by Novartis Pharmaceuticals and was the first TKI to suc-
cessfully show an impact on the proliferation and survival of BCR-ABL1-expressing cells
in vitro and in vivo [9,97]. In 2001, imatinib was FDA approved for the treatment of three
clinical stages of CML: CML-BC (blast crisis); CML-AP (accelerated phase); and CML-CP
(chronic disease resistant or intolerant to interferon-alpha (IFN-α) treatment). The approval
of imatinib transformed the treatment of CML patients. Early results from phase III random-
ized studies showed that imatinib was more effective than the standard-of-care combined
therapy, cytarabine and interferon-alpha (IFN-α), for the treatment of patients with newly
diagnosed CML. At 18 months, the estimated rate of complete cytogenetic response was
around 76% in imatinib-treated patients, compared with 14.5% in patients receiving IFN-
α/cytarabine [98]. Further studies revealed a survival advantage for imatinib first-line
treatment over IFN-α/cytarabine combination therapy [99]. The promising low side effects
and high efficiency of imatinib were further confirmed in a ten-year follow up study, with
an overall survival rate of 83% [100]. Despite the low toxicity and high efficiency of this
therapy, approximately 25% of the patients eventually developed resistance to imatinib,
while 5–10% discontinued the therapy due to intolerance [101]. Resistance to imatinib is
often associated with mutations in the BCR-ABL1 kinase domain that allow evasion of TKI
binding and consequently the reactivation of BCR-ABL1 oncogenic signal transduction.
However, alternative resistance mechanisms have also been found in patients with full
inhibition of BCR-ABL1 [102]. This led to the development of second generation TKIs.
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Figure 2. 2D structure of BCR-ABL1 kinase domain and binding sites for TKIs. (A) BCR-ABL1 is a
constitutively active kinase that binds ATP and transfers a phosphate from ATP to tyrosine residues
on various substrates. This activates downstream signaling pathways, leading to abnormal cellular
adhesion and proliferation of myeloid cells and inhibition of apoptosis. TKIs were developed to
specifically block the binding of ATP to the BCR-ABL tyrosine kinase, inactivating the constitutive
tyrosine kinase activity and inhibiting downstream pathways. (B) Imatinib (first generation TKI)
binds to the BCR-ABL kinase domain in its inactive conformation through the ATP binding site.
(C) Dasatinib (second generation TKI) inhibits the BCR-ABL tyrosine kinase performance at the ATP
site in ABL regardless of protein conformation (active or inactive). (D) Nilotinib (second generation
TKI) connects to an inactive conformation of the BCR-ABL protein, taking an analogous region that
would be occupied by ATP. (E) Ponatinib (third generation TKI) has multiple contact points for the
inactive conformation of the ABL and for the T315I mutation.

5.2. Nilotinib

The TKI nilotinib was FDA approved in 2007 for the treatment of CML-AP and -CP pa-
tients who were resistant or intolerant to imatinib treatment [103]. In vitro studies showed
that nilotinib was 20 to 50-fold more potent than imatinib, exhibiting inhibitory activity
against the majority of BCR-ABL1 imatinib-associated mutations, except for the T315I
mutation [104]. A phase III randomized study showed that, at 12 months, nilotinib was
more efficient than imatinib for the treatment of patients with newly diagnosed CP-BCR-
ABL positive CML, where the complete cytogenetic response of nilotinib-treated patients
was 80%, compared to 65% for imatinib [105]. Although nilotinib reduced the occurrence
of treatment-associated BCR-ABL1 mutations when compared to imatinib [106,107], four
kinase domain mutations were less sensitive to this TKI treatment. The imatinib-associated
mutation T315I remains as a marker for resistance to nilotinib. Additionally, nilotinib was
also less effective at eliminating leukemia cells from patients presenting mutations in the
amino acids F359C/V, E255K/V, and Y253H [102]. Interestingly, 61% of the patients on nilo-
tinib treatment that progressed to advanced phases of the disease had no newly detectable
mutations, suggesting alternative mechanisms of resistance in these patients [108].
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5.3. Dasatinib

Dasatinib is a potent second-generation inhibitor targeting several kinases, including
BCR-ABL1, SRC kinases, c-KIT, and platelet-derived growth factor receptor beta (PDGFR-
β) [109,110]. In vitro and in vivo studies have shown that dasatinib inhibits proliferation
of BCR-ABL1-positive cells and prolongs survival in mouse models induced by imatinib-
resistant cells [111]. However, dasatinib is less effective for the elimination of T315I-positive
leukemia cells. Clinical studies have shown that the treatment of imatinib-resistant or
intolerant chronic CML patients induced a 43% molecular response [112], whereas patients
who switched to dasatinib after 3 months of imatinib treatment had a significantly higher
molecular response than patients who remained on imatinib [113]. This result suggests
that second generation TKIs may provide clinical benefit for CML patients as a second
line of treatment, after 3 months of treatment with imatinib, with a possible reduction
in resistance.

5.4. Bosutinib

Bosutinib is a second-generation TKI with dual inhibitory activity against SRC and
ABL kinases. Different than dasatinib, this inhibitor has minimal inhibitory effects against
c-KIT and PDGFR-β kinases [114,115]. In Phase I/II clinical trials, bosutinib was effective
against imatinib-resistant and intolerant leukemias. However, despite all efforts to create
a more potent inhibitor, as with other TKIs, bosutinib was less effective for the treatment
of CML with T315I mutations [116,117]. Compared to nilotinib and dasatinib, bosutinib
has a very similar efficacy in the treatment of imatinib-resistant CML. The advantage of
this inhibitor is a higher safety profile. Transient mild-to-moderate myelosuppression was
observed in the early days of treatment, with neutropenia/thrombocytopenia of 18% and
24%, respectively, for bosutinib patients, compared to 33–49% and 22–47% for dasatinib and
13–29% and 20–29% for nilotinib. Furthermore, hemorrhagic events have been observed
less often in bosutinib treated patients (5%) compared to other TKI inhibitors (40% for
dasatinib) [116]. These results may be associated with a lack of activity of bosutinib towards
the inhibition of c-KIT and platelet function, important for normal hematopoiesis and
blood coagulation, respectively [118,119]. Thus, bosutinib may provide a potent molecular
response with less side effects for imatinib-resistant CML patients.

5.5. Ponatinib

The third-generation TKI ponatinib is a BCR-ABL1 inhibitor with strong activity
against common ABL kinase domain mutations, including the T315I mutation [120]. In vitro
and in vivo studies have shown that ponatinib inhibits the catalytic activity of native
and mutant ABL, thereby interfering with proliferation and inducing apoptosis in cells
expressing BCR-ABL1 mutants, as well as prolonging the survival of mice with BCR-
ABL T315I-dependent disease [120]. Due to its promising effect against other BCR-ABL1
mutations, in 2012, ponatinib was granted an accelerated FDA approval for the treatment
of CML patients resistant to imatinib. In phase II trials with this drug, 34% of CML
patients had a molecular response. Of those, 56% presented the T315I mutation. Moreover,
no single mutation conferring resistance to this TKI was observed [121]. These results
suggest a strong efficiency of ponatinib for the elimination of BCR-ABL1 leukemic cells.
However, serious arterial thrombotic events were observed in 9% of the patients receiving
ponatinib [122,123]. The severity of the side-effect raised concerned from the US FDA and
the inhibitor had to be withdrawn from the market. In 2014, the drug was back on the
market with a safer treatment regimen and clear restrictions of its use regarding vascular
conditions [124].

5.6. Asciminib

Asciminib (ABL001/Sclembix) is the newest tyrosine kinase inhibitor that targets
both native and mutated BCR-ABL1, including the gatekeeper T3151 mutant. Different
to other TKIs, asciminib does not bind to the ATP-binding site of the kinase portion of
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BCR-ABL, but rather works as an allosteric inhibitor of kinase activity. Asciminib binds
to the myristoyl site of the kinase domain, normally occupied by a motif that serves as
an allosteric negative regulatory element. Through binding of this site, asciminib locks
BCR-ABL into an inactive conformation inhibiting downstream signaling events [125,126].
In October 2021, the US Food and Drug Administration (FDA) granted accelerated approval
of asciminib for the treatment of CML in two specific indications: (i) for adult patients
with Philadelphia chromosome-positive CML in the chronic phase (Ph+ CML-CP) with
a low molecular response rate (MMR) at 24 weeks post-treatment with two or more TKIs
and (ii) for adult patients with Ph+ CML-CP with the T315I mutation. The initial results
revealed that asciminib had a cytogenetic response rate of 41%, compared to 24% for the
TKI bosutinib, indicating the potential value of asciminib therapy for TKI-resistant patients.

Although TKIs have offered a significantly improved survival and quality of life for
patients with CML, the ability of this agent to eradicate quiescent CML stem cells remains
a challenge. New therapies that inhibit leukemia stem cells and consequently reduce the
chances of relapse are currently under investigation.

6. Mechanisms of Resistance to TKI

The major purpose of CML therapy with TKIs is to achieve a deep molecular response.
To identify those who have not achieved desired response and may be suffering from
resistance to TKIs, it is necessary to apply the European LeukemiaNet criteria for treatment
response [124,127]. It is possible to rate the success of therapy by monitoring the BCR-ABL1
transcript levels at 3, 6, and 12 months, and any time after 12 months (Table 1). To maintain
the current treatment, an optimal response is mandatory; otherwise, the therapy must be
replaced (failure/resistance) or considered for change (warning) [124]. Furthermore, to
achieve successful treatment, it is necessary to understand the mechanisms that led to the
poor outcome, particularly the resistance to TKIs (Figure 3).

Table 1. Criteria for optimal, warning, and failure response to any TKI as first-line therapy.

Time Optimal Warning Failure

Baseline NA High risk ACA, high risk ELTS score NA
3 months BCR-ABL1 ≤10% BCR-ABL1 >10% BCR-ABL1 >10% if confirmed within 1–3 months
6 months BCR-ABL1 ≤1% BCR-ABL1 >1–10% BCR-ABL1 >10%
12 months BCR-ABL1 ≤0.1% BCR-ABL1 >0.1–1% BCR-ABL1 >1%
Any time BCR-ABL1 ≤0.1% >0.1%; loss of ≤0.1% (MMR) * BCR-ABL1 >1%, resistance mutations high risk ACA

* Loss of MMR (BCR-ABL1 > 0.1%) means failure after treatment remission. NA, not applicable; ELTS, EUTOS
score; ACA, additional chromosomal aberrations; MMR, major molecular remission.

Resistance to TKIs can be classified as primary (no hematologic or cytogenetic response
from the beginning of therapy) or secondary (initial response that decays during the
treatment). Currently, two mechanisms of resistance are known: BCR-ABL1-dependent
and BCR-ABL1-independent pathways [122]. It is important to note that the ATP molecule
binds between the two lobes of the catalytic domain in ABL kinase (an N-terminal lobe and
a C-terminal lobe) [128]. Mutations that lead to imatinib resistance have been detected in
the phosphate-binding loop and in other regions of the kinase domain where amino acid
substitutions may result in conformational changes that prevent imatinib binding [129].

The first report of TKI resistance was published in 2001 when a group of patients
lost response during imatinib treatment [130]. The sequencing of the BCR-ABL1 kinase
domain in these patients revealed a single nucleotide change at position 315 (T315I) in six
of nine cases. Importantly, the threonine at position 315 (Thr315) is the “gatekeeper” that
controls the accessibility of the ATP-binding pocket [131]. When replaced by an isoleucine
(T315I), patients develop pan-resistance to TKIs: it prevents the drug from attaching to the
ATP-binding pocket (for example, dasatinib) or impairs the drug from binding to kinase
due to a conformational change from the inactive type II conformation to active type I (for
instance, imatinib and nilotinib).
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Figure 3. Signaling pathways involved in the development of target therapy resistance. (A) Molecular
structure of BCR-ABL1 kinase domain with some mutations (indicated in red). (B) Gene amplification
can lead to overproduction of tyrosine kinase. (C) Constitutive activation of signaling pathways,
such as PI3K-AKT, RAS-MAPK, and JAK-STAT, result in cell proliferation and anti-apoptotic mecha-
nisms. (D) Intracellular concentrations of TKIs can be modified through membrane transporters that
may cause increased efflux or decreased influx. (E) The most common chromosome abnormalities
involved in karyotype evolution are trisomy 8, trisomy 19, trisomy 21, second Ph chromosome, and
isochromosome 17.

Several mutations were described, some more frequent than others, for example,
T315I, H396P, E255K, Y253F [132], and mostly for amino acid substitutions at the kinase
domain [128] (Figure 4). Interestingly, some mutations are strongly associated with disease
stages, e.g., substitutions at H396, L248, and F317 in chronic phase and T315, E255, and
Q252 in accelerated phase, and others with ethnicity [133].

Amplification or overexpression of the ABL1 kinase domain triggered by genetic in-
stability can also impair TKI binding and consequently reactivation of the phosphorylation
cascade [134]. Although the amplification rate is higher per cell division, clinically, it is more
common to find point mutations, likely because overexpression of BCR-ABL1 provokes
cell injury. As BCR-ABL1 transcript levels correlate with the disease phase, high levels in
the advanced phase may be related to the development of resistance [135]. Indeed, a study
confirmed this finding, showing a high level of BCR-ABL1 transcripts during the resistance
period [23]. Another important aspect is clonal evolution, defined by the acquisition of
secondary abnormalities leading to chromosomal aberration. These abnormalities can exist
already at diagnosis or develop during treatment of CML and are mainly associated with
disease progression (transformation to accelerated or blastic phase) [136]. According to Eu-
ropean LeukemiaNet, the “major route” abnormalities are trisomy 8, second chromosome
Ph, isochromosome 17, and trisomy 19 [137–139]. The relationship between the appearance
of clonal evolution and decreased survival is well described in the literature [140]. One
study described 171 patients who did not achieve a complete response (at the beginning of
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the disease), and clonal evolution was present at the time of imatinib failure. In this group
of patients, BCR-ABL1-kinase mutations occurred more with clonal evolution than those
without [134].
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Resistance to TKI therapy can occur independently of BCR-ABL1 and may involve
genomic instability, epigenetic modification, the overexpression of multidrug resistance
(MDR) proteins involved in the efflux of anti-cancer drugs, the activation of survival
pathways (Ras/MAPK, JAK/STAT, PI3K/AKT), and interactions with the LSC microenvi-
ronment [141].

The genomic instability of LSCs contributes to the emergence of genetic abnormalities.
Mutations in the coding sequences of genes involved in chromatin remodeling, differen-
tiation, proliferation, and survival of blood cells, including ASLX1, RUNX1, and NRAS,
may contribute to progression and drug resistance in CML [142,143]. In addition, it is
well known that epigenetic dysregulation plays an important role in the maintenance and
progression of cancer. There is growing evidence that epigenetic events may also have a
role in TKI resistance [144–146].

The ATP-binding cassette (ABC) transporter family of proteins actively exports struc-
turally unrelated substrates out of cells, presumably to protect them from possible toxicities.
Overexpression of some members of this family, including P-glycoprotein (MDR1) and
breast cancer resistance protein (ABCG2), have been implicated in leukemia stem cell drug
resistance [70,147–149]. CML patients in blast crisis present with higher expression of
MDR1 compared to CML patients in the chronic phase, and MDR1 upregulation has been
associated with decreased sensitivity to chemotherapy in advanced-phase disease [147,150].
Inhibitors of MDR1 and ABCG2 are available and have passed phase I and II clinical trials’
safety requirements. It is possible that combined treatment with these drugs may increase
the sensitivity of CML-LSCs to TKIs and improve prognosis for treatment relapse patients.
Organic cation transporters (OCTs) are known to affect substrate transport, and some
studies have demonstrated that imatinib enters cells through OCT-1. With OCT inhibition,
the levels of imatinib were also decreased in cells, explaining this dose-dependent relation
but not clinical resistance [148]. These studies developed several important hypotheses and
possible paths to improve combined therapy.
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As discussed above, BCR-ABL1 induces the activation of multiple signaling pathways,
such as JAK-STAT, RAS-MAPK, and PI3K-AKT, that are responsible for cell proliferation
and anti-apoptotic signaling [11]. Although treatment with TKIs somehow disables these
pathways, they can be reactivated by alternative and external pathways, making the tumor
cell independent of BCR-ABL1, and promoting resistance to therapy [151,152]. For instance,
BCR-ABL1-independent activation of STAT3 was found in TKI-resistant cell lines and
primary CML cells from patients with clinical resistance to multiple TKIs [153], suggesting
that STAT3 activation is a critical survival pathway in CML.

Several recent studies have shown that the bone marrow microenvironment plays
an important role on the response of leukemic cells to anti-cancer drugs. CML stromal
cells have an abnormal gene expression pattern, despite a deep molecular response, that
may contribute to disease relapse and secondary resistance [154]. These cells may promote
cell cycle arrest in LSCs through specific signals, thus allowing their persistence during
TKI treatment [155]. Expression of CXCL12 MSCs, but not other CXCL12-expressing BM
microenvironment cell populations, has been shown to be important for the persistence of
quiescent, TKI-resistant LSCs within the BM microenvironment [156]. In addition, stromal
cell-derived cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-
CSF), fibroblast growth factor-2 (FGF-2), and placental growth factor (PIGF), promote
BCR-ABL1-independent proliferation and resistance to cell death [157–159].

Finally, an important element to be considered is the pharmacokinetics of TKIs. A
study showed that imatinib concentrations may vary due to the levels of cytochrome p450
isoenzyme 4A, which is responsible for neutralizing it, directly impairing the response to
treatment [160].

7. Challenges and Future Perspectives—Novel Agents and Combined Therapies

Despite the extensive knowledge about molecular resistance to TKIs, the biology in-
volved in BCR-ABL1-independent mechanisms needs better elucidation. Specific molecules
are under investigation as possible and potential therapeutic targets. As described previ-
ously, the activation of signaling pathways, such as PI3K-AKT, can lead to TKI resistance.
The phosphorylation of FOXO transcription factors that occurs through the AKT pathway
can also take place across BCR-ABL1, leading to changes in cell cycle regulation related to
proliferation, differentiation, and cell death [161]. In vitro assays have shown that treatment
with PI3K inhibitors can elevate cytoplasmic FOXO levels and increase patients’ response
to more than one TKI [162].

Another pathway that should be better analyzed is WNT-β-catenin signaling. This
pathway is associated with a variety of proliferative diseases, including CML [163]. WNT-
β-catenin signaling is involved in several aspects of CML, such as stem cell maintenance,
the self-renewal capacity of myeloid blastic phase-CML, and CML persistence in murine
disease models through the activation of β-catenin [164]. Therefore, targeting nuclear
β-catenin should be considered in patients who do not respond to TKIs in the absence of
BCR-ABL1 mutations.

An alternative option for a therapy target is AXL, a tyrosine kinase receptor found to
be overexpressed in imatinib- and nilotinib-resistant CML cell lines and patients, as well
as associated with AKT survival signaling [165,166]. Downregulation of AXL was shown
to partially reverse imatinib or nilotinib resistance [165,166], as well as the self-renewal
capacity of primary BCR-ABL1-positive CD34+ stem cells [167]. Finally, treatment with an
AXL inhibitor reduced tumor growth in mice inoculated with BCR-ABL1 T315I-bearing
CML cells [168].

Another field that should be explored is oxidative stress. Some studies demonstrate
that BCR-ABL1 increases the number of reactive oxygen species (ROS) in the cell, promoting
mutations through oxidative damage to DNA. Antioxidant therapies that lead to ROS
inhibition decrease mutagenesis and, consequently, TKI resistance [169].

Vascular endothelial growth factor receptor (VEGFR) also plays a role in CML, and the
use of VEGFR inhibitors has been shown to lead to a decrease in resistance to TKIs [170].
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An example is axitinib—when linked to ABL1, it can inhibit BCR-ABL1 in the presence of
the T315I mutation [171].

BH3 mimetics, small molecule inhibitors of the prosurvival members of the Bcl-2
family, have been developed for the treatment of cancer and, particularly, hematological
malignancies [172–174]. Venetoclax/ABT-199/ GDC-0199 is the first selective inhibitor
of BCL-2 to show clinically relevant antitumor activity without causing thrombocytope-
nia [175]. Venetoclax was shown to sensitize BIM-deficient TKI-resistant cell lines and
patient samples to imatinib [86,87]. Venetoclax in combination with imatinib or nilotinib
was able to disrupt the engraftment potential of CML precursors, possibly by reducing
their ability to form colonies and/or inducing apoptosis [176,177]. More importantly, a
retrospective study in CML and Ph+ AML patients.

Finally, in a different avenue, strategies aiming to degrade the BCR-ABL1 protein using
proteolysis-targeting chimera (PROTAC) technology have been tested. PROTACs are small
molecules with a heterobifunctional structure—part of the molecule consists of a specific
ligand to the protein of interest (POI) linked to an E3 ligase-recruiting domain [178–182].
The approximation of the target protein to the E3 ligase results in ubiquitination and
degradation of the former by the proteasome [178–182]. Importantly, BCR-ABL1-targeted
PROTACs were shown to inhibit proliferation and induce apoptosis in cell lines and in
primary CML CD34+ cells [183–185].

It can be emphasized that within malignant hematological diseases, an exceptional
result in the overall survival of patients with CML was achieved through the development
of TKIs. There are obstacles related to treatment management, including the appearance
of mutations and a loss of response after discontinuing TKIs. Despite these problems,
the results show increased treatment effectiveness and manageable side effects compared
to those obtained in other chronic leukemias with a high risk of progression to an acute
form. Researchers are on the right path to improve the knowledge already consolidated
and seek to understand alternative therapies that can either function synergistically with
existing treatments or are superior to current therapies. Notwithstanding, efforts are still in
place to find better BCR-ABL1 kinase inhibitors that can overcome multiple TKI-resistant
mutants [186–188].
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