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Spatio-temporal dynamics of a variety of proteins is, among other things, regulated by post-translational
modifications of these proteins. Such modifications can thus influence stability and biochemical activities of
the proteins, activity and stability of their upstream targets within specific signalling pathways. Commonly
used mathematical tools for such protein–protein (and/or protein-mRNA) interactions in single cells, namely,
Michaelis–Menten and Hill kinetics, yielding a system of ordinary differential equations, are extended here
into (non-linear) partial differential equations by taking into account a more realistic spatial representation of
the environment where these reactions occur. In the modelling framework under consideration, all interactions
occur in a cell divided into two compartments, the nucleus and the cytoplasm, connected by the semipermeable
nuclearmembrane and bounded by the impermeable cell membrane. Passive transportmechanism,modelled by
the so-called Kedem–Katchalsky boundary conditions, is used here to represent migration of species throughout
the nuclear membrane. Nonlinear systems of partial differential equations are solved by the semi-implicit Rothe
method. Examples of two spatial oscillators are shown. Namely, these are the circadian rhythm for concentration
of the FRQ protein inNeurospora crassa and oscillatory dynamics observed in the activation and regulation of the
p53 protein following DNA damage in mammalian cells.
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1. Introduction

Cellular responses are controlled either by one particular and
functionally active protein or by several proteins whose activation and
activity towards other proteins in highly specific situations depend on
other factors and conditions which cells are exposed to. Such processes
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may be also different from cell to cell; they can be influenced by extra-
cellular factors such as light, heat, abundance of stress agents and dura-
tion of their action, growth conditions, available resources and many
others. On a molecular basis, roles of proteins in specific networks
are influenced by protein–protein interactions either through post-
translational modifications (by attaching a phosphate or acetyl group,
ubiquitin to a protein, etc.), or by various compound formation. An
interesting example is the signalling network of the protein p53 that
may elicit life and death decisions in a cell. Activity of p53 in such situa-
tions (meaning not only transcriptional activity towards pro-arrest, pro-
apoptotic and pro-survival target genes) is closely controlled by post-
translational modifications (such as phosphorylation or ubiquitination)
and interactions with other proteins [1–3].

From amathematical point of view, post-translational modifications
can be advantageously modelled as enzyme reactions where a modify-
ing protein (providing a phosphate group or ubiquitin) is considered to
act as enzyme, i.e. it binds a substrate to form a compound, modifies the
substrate in the compound and is released from the compound, becom-
ing available tomodify other target substrates. Mathematically, enzyme
reactions can be described by using the law of mass action and the
quasi-steady-state approximation yielding thus a non-linear term for a
gain of the modified protein (the product of the reaction) and a loss
of the former state of the protein (the substrate entering the reaction)
[4,5]. This approach turns enzyme reaction kinetics into ordinary differ-
ential equations (ODEs) broadly used by mathematicians.

One of the simplest ‘protein-mRNA’models is a non-linear biochem-
ical oscillator proposed by Goodwin in 1965 [6] that simulates expres-
sion of a single gene controlled by its protein product P, thus, closing
a negative feedback loop. In particular, equations appearing in the orig-
inal Goodwin model are, respectively,

d mRNA½ �
dt

¼ a1
A1 þ k1 P½ �−δ1;

d P½ �
dt

¼ a2 mRNA½ �−δ2;

reporting here only production (transcription in the first equation and
translation in the second) and degradation terms (δ1 and δ2).

Based on this model, a compartmental ODE model for the circadian
clock rhythm of the FRQ protein expressed during a day in Neurospora
crassa was proposed by Leloup and Goldbeter [7]. The model includes
expression of the frq gene in the nucleus, a process that is influenced
by available light, and translation of FRQ mRNA into FRQ in the cyto-
plasm that, afterwards, enters the nucleus and negatively regulates
the transcription of its gene, as it is observed in vivo in [8].

More complicated ‘protein–protein’ and ‘protein–mRNA’ ODE
models have been designed to represent intracellular signalling of the
protein p53 [9–18]. One of them is also proposed in [19] and it simulates
initial activation and regulation of p53 in response to DNA damage.
Activation is performed through the interactions with the ATM protein,
that is identified as DNA double strand break (DSB) sensor [20], and
regulation of p53 by the proteins Wip1 and Mdm2, on whose genes
p53 act as a transcription factor [21,22]. These four proteins have been
identified as necessary to create a minimal p53 network yielding
sustained oscillations in p53 concentration in vivo [9,23].

The spatial organisation of the cell, however, suggests to consider
migration of the involved species in the cytosol and between the
compartments, and thus tomodel a protein signallingmore realistically
by including diffusivities of the species and by setting particular translo-
cation conditions to model exchanges of the species between the com-
partments. Thus, one has to deal with coupled systems of nonlinear
evolution partial differential equations (PDEs) for the concentrations
of the species in the nucleus and in the cytoplasm with transmission
boundary conditions (BCs) imposed on the inner nuclear envelope
and on the outer cellular membrane (Robin-like and zero-flux BCs
in our modelling setting). Among other mathematical methods that
are available in the literature, the semi-implicit Rothe method [24]
can be used when dealing with non-linear systems of evolution equa-
tions. Without going into details, let us mention that after a suitable
linearisation of non-linear equations, one can discretise time derivatives
and solve a finite number of elliptic equations for which a non-negative
and unique solution is guaranteed by the Lax–Milgram theorem [24,25].
A Rothe function formed from the solutions of the elliptic problems then
can serve as a good approximation of a solution of the original reaction–
diffusion problem (that is also non-negative and unique) in an entire
time interval for the problem under consideration.

The aim of this article is to acquaint readers with reaction–diffusion
equations for protein spatio-temporal signalling rising from protein–
protein (and/or protein–mRNA) interactions in the two compartments
of a cell, nucleus and cytoplasm, and from migration of the species in
and between these compartments. Since it is impossible in general to
derive analytical solutions for such coupled systems, numerically, pass-
ing to a weaker notion of solution, it can be proved to exist even in
Lipschitz domains (as cells are assumed to be in our approach). With
the Rothemethod in hand, examples of such spatio-temporal oscillatory
models, particularly, the Leloup–Goldbeter FRQ model and ATM-p53-
Wip1-Mdm2 model in individual cells are shown, numerically solved
and illustrated.

Let us mention here that works on reaction–diffusion models ap-
plied to intracellular biology had been rather scarce until recently.
Among previous studies [11,26–29], it is worth pointing out the Ph D
thesis of A. Serafini [30] that gives a different (theoretical and computa-
tional) approach to the reaction–diffusion equations applicable in
modelling protein networks.

The organisation of the paper is as follows. Kinetics of enzyme reac-
tions is briefly summarised in the following Section 2. Michaelis–
Menten and Hill kinetics are presented as tools for mathematical
modelling. An introduction to reaction–diffusion equations is given in
Section 3, followed by two sections where the Leloup–Goldbeter
model (Section 3.1) and the p53model (Section 3.2) are demonstrative-
ly shown. Note that detailed analysis of themodels is not the aim of the
article. Whereas, to our best knowledge, the reaction–diffusion Leloup–
Goldbeter model is newly presented here, so that we believe that no
analysis has been done so far, an analysis of the p53 model has been
given in [31]. Moreover, we describe in Section 3.3 the semi-implicit
Rothe method that can be useful in numerical simulations. Finally, a
short discussion closes the article.

2. A brief tutorial on the kinetics of enzyme reactions

Let us briefly summarise basic mathematical ideas used tomodel an
enzyme reaction

Sþ En ⇌
k1

k−1

SEn→
k2 Enþ P

where a substrate S reacts with an enzyme En forming a complex SEn
with a rate k1. In this complex, the enzyme En converts S into a product
protein Pwith a kinetic rate k2. The enzyme En is released and available
for further reactions. The first reaction between S and En is reversible,
meaning that the complex SEn can eventually fall apart with a reverse
rate of reaction k−1, whilst the second reaction is assumed to proceed
in one direction only [5,32].

The law of mass action for the concentrations of species denoted
subsequently by s= [S],e= [En],c= [SEn] and p= [P] gives four equa-
tions, one for each species. These are

ds
dt

¼ k−1c−k1se;
de
dt

¼ k−1 þ k2ð Þc−k1se;

dc
dt

¼ k1se− k−1 þ k2ð Þc; dp
dt

¼ k2c;
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and we can assume initial conditions s(0) = s0, e(0) = e0, c(0) = 0 and
p(0) = 0.

Note that the last equation can be easily solved whenever c is deter-
mined. In this case p(t) = k2∫0

t c(τ)dτ and so the last equation can
be omitted from further considerations. Note also that de

dt þ dc
dt ¼ 0 and

so e + c = e0 where e0 is the total amount of available enzyme. By
substituting e = e0 − c into the equations for s and c, we can write

ds
dt

¼ k−1 þ k1sð Þc−k1se0; ð1Þ

dc
dt

¼ k1se0− k1sþ k−1 þ k2ð Þc: ð2Þ

The quasi-steady-state approximation (QSSA) can be finally applied
to eliminate the equation for the complex. In particular, one can approx-
imate the rate of change of c by zero, i.e. dc

dt≈0. Although equality is not
always true during the reaction, see for example [4], by taking the
right hand side of Eq. (2) to be zero, one can write c in terms of s and
such term substitution into Eq. (1) finally yields

ds
dt

¼ −k2e0
s

K2 þ s
with K2 ¼ k−1 þ k2

k1
ð3Þ

where k2 is the kinetic rate of the reaction and K2 is affinity constant.
A basic assumption for the QSSA is that the concentration of enzyme

is smaller than the concentration of substrate (e.g., for ε = e0/s0 small,
typically, between 10−2 and 10−7, [5]), the assumption that is not
usually true in our models since enzymes under consideration may be
present in large quantities. The QSSA can however be found valid also
in the case when the concentration of the intermediate complex SEn is
immediately consumed, i.e. it is always small compared with the total
concentration of the substrate [4,5]. For a rigorous mathematical treat-
ment of the QSSA from the point of view of perturbation theory, see [4].

Eq. (3) is thought to represent the total loss of the substrate S in the
reaction, and thus, by using conservation of mass, the same term with
opposite sign canbewritten as the total gain of the product P. In practical
simulations, e0 in Eq. (3) is often replaced by the actual concentration e.

Example 2.1. In a model discussed in Section 3.2, we will consider the
protein p53, its activation by the kinase ATMp (phosphorylation of p53
by ATM giving p53p) and regulated by the phosphatase Wip1 and the
E3 ligase Mdm2 (dephosphorylation of p53p byWip1 and ubiquitination
of p53 byMdm2, respectively). All these modifications can be represent-
ed as enzyme reactions, i.e.

p53þ ATMp ⇌
katm

k−atm

Complex→
kph1

ATMp þ p53p phosphorylation of p53 by ATMp

� �
;

p53p þWip1 ⇌
kwip1

k−wip1

Complex →
kdph1

Wip1þ p53 dephosphorylation of p53p by Wip1
� �

;

p53þMdm2 ⇌
kmdm2

k−mdm2

Complex→
kub Mdm2þ p53ub ubiquitination of p53 by Mdm2ð Þ:

Following the approach described above, one finally arrives at the
equations for p53 and its phosphorylated version p53p, in particular,

d p53½ �
dt

¼ − kph1 ATMp

h i p53½ �
Kph1 þ p53½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

phosphorylation of p53 by ATMp

þ kdph1 Wip1½ �
p53p
h i

Kdph1 þ p53p
h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dephosphorylation of p53p by Wip1

− kub Mdm2½ � p53½ �
Kub þ p53½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ubiquitination of p53 by Mdm2

;

d p53p

h i
dt

¼ kph1 ATMp

h i p53½ �
Kph1 þ p53½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

phosphorylation of p53 by ATMp

− kdph1 Wip1½ �
p53p

h i
Kdph1 þ p53p

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dephosphorylation of p53p by Wip1
with specific kinetic maximum velocity rates kx and affinity constants
Kx.

The situation is slightly complicated whenever monomerisation and
polymerisations of a protein are modelled as enzyme reactions, i.e.

S Nð Þ þ En ⇌
ki

k−i

Complex→
ka Enþ NP

NSþ En ⇌
kj

k− j

Complex→
kb Enþ P Nð Þ

where a polymer S consisting of Nmolecules reacts with an enzyme En
yielding N monomers P in the first reaction, and N monomers S react
with an enzyme En to give a polymer P in the second equation. In the
same p53 model in Section 3.2 we will consider ATM dimer/mono-
merisation, since ATM in inactive state preferentially forms dimers
and these dimeric molecules dissociate into active ATMp molecules
once they sense occurrence of DNA damage [20], see also [19] for the
derivation of equations for ATM dimer/mono-merisation.

Kinetics of enzyme reactions using the law of mass action and the
QSSA is sometimes collectively called Michaelis–Menten kinetics [4,5].

In themodels presented below, wewill also consider the expression
of genes, particularly transcription of frq, mdm2 and wip1 into messen-
ger RNA and its translation into proteins. Whilst translation is usually
modelled as linear gain of the concentration of translated proteins, tran-
scription can be modelled as enzyme reaction; however, transcription
factors often express cooperative binding to the active sites of DNA
(considered to be the enzyme in the reaction), i.e. binding of one sub-
strate molecule affects binding of subsequent substrate molecules, as
it is in the case of p53 that bind DNA as tetramers and thus four mole-
cules of p53 cooperate whilst performing the transcription job [33,34].
In such kinetics, sometimes called non-Michaelis–Menten kinetics or
Hill kinetics, the Hill equation can be used to describe the degree of
cooperativity quantitatively [5,35]. In particular, transcription of
mRNA can be described by a Hill function

d mRNA½ �
dt

¼ kt
TF½ �n

Kn
t þ TF½ �n

with Hill coefficient n, rate of transcription kt, affinity constant Kt and a
transcription factor TF. According to [34], see also [5] chap. 1, theHill co-
efficient is equal to the number of binding sites, which, for example, in
the case of tetrameric p53 binding DNA, is n = 4.

Finally, natural degradation terms will be modelled here by linear
loss terms or by Hill functions of coefficient 1. In the p53 model there
is also a decay term in the nuclear and cytoplasmic p53 equation coming
from ubiquitination of p53 by Mdm2, thus forming Michaelis–Menten
kinetics discussed above. This is because p53 is degraded by the
ubiquitin-dependent degradation machinery in many conditions [22];
for the sake of simplicity, we will not introduce any special equation
for ubiquitinated p53 since it would consist only of degradation terms
for this species.

3. Reaction–diffusion models for protein cellular signalling

Having in mind to represent the signalling of any protein in individ-
ual cells whose activity is determined by its post-translationalmodifica-
tions, one can write as many reactions as necessary to sufficiently
describe a desired protein dynamics. Michaelis–Menten and Hill kinet-
ics turn protein–protein interactions and transcription of genes into
proteins into a system of ODEs. Since the spatial representation of sig-
nalling pathways can reveal diffusion patterns that are hidden in
ODEs, one might consider a system of PDEs instead of ODEs. In PDEs,
the protein dynamics in cells is particularly endowed with diffusivity
rates and with some transmission conditions on the nuclear and cell
(possibly other) membranes to represent, respectively, migration of
species in and their exchange between the cellular compartments and



Fig. 1. Cell scheme: the nucleus Ω1, the cytoplasm Ω2, the nuclear membrane Γ1 and the
cell membrane Γ2; n1 and n2 are the unit normal vectors oriented outward from Ω1 and
Ω2, respectively.

Table 1
Parameters for the FRQ PDEmodel. Note that the diffusivity of themRNA-protein complex
is D0 = 108 μm2 h−1 as suggested in [48] and the diffusivity of FRQ is D1 = 43,200 μm2 h−1

that corresponds to the diffusivity of a protein with the weight 110 kDa [41,31], whilst FRQ
has the molecular weight in the range 97–160 kDa depending on its form [44,49]. The perme-
abilities p0 = 1 μm h−1 and p1 = 2.7 μm h−1 are tuned by hand so that the system gives os-
cillations.

Parameter Value [units] Parameter Value [units]

Vm
n 0.005 [nM h−1] Km

n ,Km
c 0.5 [nM]

Vm
c 0.5 [nM h−1] Kd

n,Kd
c 0.13 [nM]

Vd
n 0.4 [nM h−1] D0 108 [μm2 h−1]

Vd
c 0.06 [nM h−1] D1 43,200 [μm2 h−1]

ks 0.9 [h−1] p0 1 [μm h−1]
K 1.01 [nM] p1 2.7 [μm h−1]
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between cells themselves. In the two sections that follow we show two
examples of oscillators given by reaction–diffusion PDEs [36,37]. The
first one is based on the commonly known and used Leloup–Goldbeter
ODE model for circadian rhythms of the protein FRQ in Neurospora [7].1

The second one is an ODE and PDE model for the p53 intracellular dy-
namics following DNA damage in mammalian cells. Whilst the p53
ODE model has been proposed in [19], the PDE model, based on the
ODEmodel, has been recently studied in [31]. Another example of a sig-
nal transduction modelled by reaction–diffusion equations, more pre-
cisely, a model of Ran-driven transport process was studied in [30].

In cellular settings, a general coupled reaction diffusion system may
be written as follows,

du
dt

−div D∇uð Þ ¼ f uð Þ in 0; Tð Þ �Ω1;

dv
dt

−div D∇vð Þ ¼ g vð Þ in 0; Tð Þ �Ω2;

þboundary conditions on Γ1 and Γ2

ð4Þ

where u= u(t,x) : [[0,T] ×Ω1]N→ℝN and v= v(t,x) : [[0,T] ×Ω2]N→ℝN

are the nuclear and cytoplasmic concentrations of N chemicals, T N 0,
N N 0, f:ℝN → ℝN and g:ℝN → ℝN collect protein–protein and protein–
mRNA reaction terms, and production/degradation terms for all N spe-
cies as they are discussed in Section 2, D is a diagonal N-by-N matrix
with the diffusivities on the diagonal, and div is the divergence operator.
The domains Ω1 and Ω2 represent the nucleus and the cytoplasm, re-
spectively, assumed to be Lipschitz domains [24,40], Γ1 is the nuclear
membrane and Γ2 is the cell membrane. The geometry of a cell under
consideration is sketched in Fig. 1, that in our very simplified framework
represents a cell as big as 10–100 μm or so, which is able to proliferate
Table 2
Parameters for the p53 PDE model. Note that the diffusivity of the mRNA–protein com-
plexes is D2 = D6 = 1.8 μm2 min−1 as the diffusivity of an average mRNA–protein com-
plex is estimated to be in range 1.2–2.4 μm2 min−1 in [48]. The diffusion rate of p53 is
chosen to be D0 = D3 = 1000 μm2 min−1 which is in agreement with the estimated
value for p53-GFP in [55]. Other diffusivities are chosen with respect to the weights of
the species corresponding to the weight of p53. More details about the parameter choice
are provided in [31].

Parameter Value [units] Parameter Value [units]

kph1 3 [min−1] kSpw 1 [μM min−1]
Kph1 0.1 [μM] KSpw 0.1 [μM]
kdph1 0.78 [min−1] ktw 1 [min−1]
Kdph1 0.25 [μM] ATMTOT 1.3 [μM]
kph2 1 [min−1] E 0.1 [μM]
Kph2 0.1 [μM] δ0,δ5 0.2 [min−1]
kdph2 0.96 [min−1] δ1 0.16 [min−1]
Kdph2 0.26 [μM] δ2 0.0001 [min−1]
kub 10 [min−1] δ6 0.001 [min−1]
Kub 1.01 [μM] D0, D1, D3, D5 1000 [μm2 min−1]
kS 0.015 [μM min−1] D2, D6 1.8 [μm2 min−1]
kSpm 1 [μM min−1] D4 300 [μm2 min−1]
KSpm 0.1 [μM] p0, p1, p5 10 [μm min−1]
ktm 1 [min−1] p2, p6 0.36 [μm min−1]
and which can have heterogeneous shape. However, we exclude cells
of complicated structures and morphologies such as neurons or muscle
cells.

As previously outlined, we will consider zero-flux boundary condi-
tions on the outer cell membrane Γ2, i.e. ∂vi

∂n2
¼ 0 for i = 0,1…, N − 1

where n2 is the unit normal vector oriented outward from the cell,
Fig. 1. Although species with molecular weight over 40 kDa usually
use active transport mechanisms to be translocated from one compart-
ment to another, for the sake of simplicity, only passive transport pro-
cess driven by the difference in concentrations at both sides of the
nuclear membrane, modelled by the so-called Kedem–Katchalsky BCs,
is used here [11,31,41,42]. In particular, export/import of the nuclear
species is modelled by

−Di
∂ui

∂n1
¼ −pi vi−uið Þ ð5Þ

and export/import of the cytoplasmic species by

Di
∂vi
∂n1

¼ −pi ui−við Þ; ð6Þ

where n1 is the unit normal vector oriented outward from the nucleus
(therefore, the BCs in Eq. (6) come with a different sign), and pi are
the permeabilities of the membrane for each species i = 0,1…, N − 1.
Recall that if a chemical is assumed to migrate between the compart-
ments in one direction only, e.g. mRNA is supposed to move from the
transcription sites in the nucleus to the cytoplasm and not the other
way round, then this can easily be modelled by omitting either vi or ui
in Eqs. (5) and (6), cf. (9)–(11) and (14) below.

In addition to the boundary conditions, we will assume initial con-
ditions for each species i = 0,1…, N − 1 to be non-negative functions
ui(t = 0,x) = ui

0(x) ≥ 0 and vi(t = 0, x) = vi
0(x) ≥ 0 belonging to

L2(Ω1) and L2(Ω2), respectively.

3.1. The Leloup–Goldbeter model for the N. crassa circadian clock

3.1.1. The frequency protein and circadian clock
Circadian clock in Neurospora controls the pattern of asexual devel-

opment [43] and a central component of sustained rhythms is the FRQ
protein (a long form of 989 amino acids and a short form of 890
amino acids) encoded by the frq clock gene [8]. The oscillator consists
of a self-control of frq transcription, i.e. a negative feedback loop in
which frq is synthesised into the FRQ protein (both forms are required
for robust rhythmic responses) which, in turn, acts to reduce intensity
of frq transcription into mRNA [43].

Making theNeurospora clock start atmidnightwhen FRQmRNA and
FRQ proteins attain low levels in concentration, we see that transcrip-
tion of the gene increases and mRNA reaches its peak in the
midmorning about 4 h before the peak of the total FRQ. FRQ enters
the nucleus where it contributes to inhibit gene transcription through
the interaction with other factors (WC-1 and WC-2) required in the
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frq gene transcription [43,44]. Partial phosphorylation of FRQ leads to its
initial degradation as soon as it enters the nucleus. Degradation then in-
creases with more extensive FRQ phosphorylation through the early
night [43,45].

3.1.2. Spatio-temporal Leloup–Goldbeter PDE model for FRQ
Circadian clock represented by sustainably oscillating concentration

of the FRQ protein is modelled by Leloup and Goldbeter [7] via the fol-
lowing ODE equations,

d FRQmRNA½ �
dt

¼ Vs
Kr

Kr þ FRQ½ � nð Þ� �r −Vm
FRQmRNA½ �

Km þ FRQmRNA½ � ;

d FRQ½ � cð Þ

dt
¼ ks FRQmRNA½ �−Vd

FRQ½ � cð Þ

Kd þ FRQ½ � cð Þ −k1½FRQ � cð Þ þ k2½FRQ � nð Þ
;

d FRQ½ � nð Þ

dt
¼ k1 FRQ½ � cð Þ−k2½FRQ � nð Þ

: ð7Þ

The first term in thefirst equation in Eq. (7)models the transcription
of the frq gene that is negatively controlled (in a steepway if the Hill co-
efficient r is high) by the expression level of the nuclear FRQ protein,
andwhere the rate of gene transcription Vs is a function of light available
during the day and changes in time, Vs = Vs(t,light). The second term
represents mRNA degradationwith rate Vm. The first term in the second
equation stands for gene translation into the cytoplasmic protein, and it
is followed by the degradation term and the terms modelling exchange
of the protein between the compartments. The equation for the nuclear
concentration of the protein contains only terms for its exchange be-
tween the compartments.

The model of Leloup and Goldbeter [7] is based on the Goodwin
model [6] and Hill functions are used to simulate production/
degradation events occurring in the cell. Starting with the model (7),
we can formulate reaction–diffusion equations for the nuclear and cyto-
plasmic FRQ protein and its nuclear and cytoplasmic mRNA. To our best
knowledge, this is the first attempt to model the classical Leloup–
Goldbeter circadian oscillator [7] via partial differential equations. For
simplicity, let us simplify notations and write

u0 ¼ FRQmRNA½ � nð Þ
; v0 ¼ FRQmRNA½ � cð Þ

;u1 ¼ FRQ½ � nð Þ and v1 ¼ FRQ½ � cð Þ

for the nuclear and cytoplasmic concentrations of FRQ and mRNA of
FRQ. The PDE equations may become

∂u0

∂t −D0Δu0 ¼ Vs
Kr

Kr þ ur
1
−Vn

m
u0

Kn
m þ u0

;

∂u1

∂t −D1Δu1 ¼ −Vn
d

u1

Kn
d þ u1

;

∂v0
∂t −D0Δv0 ¼ −Vc

m
v0

Kc
m þ v0

;

∂v1
∂t −D1Δv1 ¼ ksv0χtra−Vc

d
v1

Kc
d þ v1

;

ð8Þ

where, compared with Eq. (7), degradation of FRQ and its mRNA is con-
sidered to occur in both compartments with the (possibly different)
rates of degradation Vm

n , Vm
c , Vdn, and Vd

c (and the corresponding affinity
constants) in both compartments distinguished by the superscripts n
and c for the nucleus and the cytoplasm, respectively. Note that, similar-
ly as we modelled the translation process in [31], and as it was also
modelled in the spatio-temporal Hes1 model in [26], translation of
mRNA is assumed to occur at distance from the nucleus. More precisely,
it is observed that the proteins that move from the translation sites in
the cytoplasm back into the nucleus are likely translated outside of
the endoplasmic reticulum (ER) [26,46]. Translation of FRQ mRNA into
proteins is thus assumed to occur in a subdomain of the cytoplasm de-
noted by χtra; cf. Fig. 4(a) in Section 3.3.
Migration of the FRQ protein can be modelled in both directions
from the nucleus to the cytoplasm, and the other way round, by the
Kedem–Katchalsky BC

−D1
∂u1

∂n1
¼ −p1 v1−u1ð Þ ¼ −D1

∂v1
∂n1

: ð9Þ

The flux in Eq. (9) is determined by the difference between the nu-
clear and cytoplasmic concentrations at the nuclear membrane, to be
compared with translocation in the ODE model in Eq. (7), 2nd and 3rd
equation, that runs in both directions with generally different rates k1
and k2. In addition, there is also a biological evidence [47] that FRQ is
localised mainly in the nucleus and so we can also assume that it can
only move from the translation sites in the cytoplasm (ribosomes)
into the nucleus. In this case the Kedem–Katchalsky BC is

−D1
∂u1

∂n1
¼ −p1v1 ¼ −D1

∂v1
∂n1

: ð10Þ

The mRNA is assumed to move from the nucleus to the cytoplasm
where it binds free ribosomes localised outside of the ER, thus the
boundary conditions on the nuclear membrane are set to

−D0
∂u0

∂n1
¼ p0u0 ¼ −D0

∂v0
∂n1

ð11Þ

where n1 is the unit normal vector pointing outward from the nucleus
and p0 and p1 are the permeabilities for FRQ mRNA and its protein
product, FRQ. Zero-flux boundary conditions on the cell membrane ∂vi

∂n2
¼

0, i = 0,1 are still assumed.
Nuclear and cytoplasmic concentrations as solutions to the PDE

model (8) with (10) and (11) are shown in Fig. 2 for Vs set to
1.6 nM h−1 in the continuous darkness, Fig. 2(a) and for Vs defined
as a piecewise constant function attaining values 2 nM h−1 and
1.6 nM h−1 every 12 h in the 12:12 light:dark simulations,
Fig. 2(c). Periods of oscillations are 21.5 h and ~24 h in constant
darkness and 12:12 light:dark simulations, that can be compared
with the periods of oscillations in the Leloup–Goldbeter ODE model
and experimentally observed periods in Neurospora, [7] and citations
therein. Fig. 2(b) and (d) shows stable limit cycles reached in the FRQ
and its mRNA concentrations.

3.2. Model of p53 activation and regulation in mammalian cells

3.2.1. The protein p53 and its intracellular signalling in genome protection
The protein p53, the so-called guardian of the genome, plays im-

portant roles in genome protection since it is able to either trigger
apoptosis or stimulate permanent cell cycle arrest; thus it protects
the cell integrity from turning tomalignancy, as well as it contributes
to cell survival through initiation of some DNA repair processes; it
thus contributes to both cell renewal and tissue repair. In contrast
to the positive role of p53 in protection against cancer, p53 may be
responsible for many unwanted effects in ageing, as well as in the de-
bilitating toxic side effects of chemotherapeutic treatments [2,50].
The protein p53 thus acts as a hub in a broad range of various sig-
nalling pathways. Interested readers who might like to become
acquainted with other reviews about p53 protein signalling are
referred to [3,22,51,52].

The intracellular dynamics of p53, namely its activation and regula-
tion in response to DNA damage caused by γ-radiation or some drugs in
chemotherapy, involves the kinase ATM as a damage sensor and activa-
tor of p53, and the downstream p53 targets Wip1 and Mdm2 that reg-
ulate p53 through protein–protein interactions (phosphorylation and
ubiquitination) and its subsequent degradation.

ATM in inactive state (preferentially) forms dimers that promptly
dissociate into active monomers following occurrence of DNA DSBs
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Fig. 2. The concentrations of thenuclear FRQ, itsmRNA, and the sumof thenuclear and cytoplasmic FRQ in (a) continuous darkness,Vs=1.6 nMh−1, and in (c) 12:12 light:dark cycle,Vs=
2 nM h−1 and 1.6 nM h−1 every 12 h. Concentrations are solutions to the PDE model (8) with the Kedem–Katchalsky BCs (10) and (11). Received period in (a) is 21.5 h, in (c) 23.5 h.
Subplots in (b) and (d) show stable limit cycles of the concentrations. The parameters used in the PDEmodel (8) are in Table 1. The plotted concentrations are scaled over the total volume
of the computational domain (nucleus or cytoplasm).
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[20] (modelled here as an interaction of dimeric ATM with an abstract
signal E standing for the abundance of DNA damage [31]). Such
mono-mers then phosphorylate p53 on serine 15 (Ser15) residue that
is located very close to the Mdm2 binding domain [22]. Ubiquitin-
dependent degradation controlled by the Mdm2 ligase is a principal
way of p53 regulation; p53molecules tagged by ubiquitin are exported
from the nucleus to the cytoplasm and degraded [22]. Hence, phosphor-
ylation of p53 by ATM impedesMdm2 to bind p53 and soMdm2 cannot
ubiquitinate p53. Halted p53 ubiquitination results in p53 stabilisation
in the nucleus where it forms tetrameric compounds that bind DNA
and act transcriptionally towards many target genes, with the mdm2
and wip1 genes among them [33,34]. The wip1 gene protein product,
the phosphataseWip1, then dephosphorylates p53 on Ser15, thus it un-
masks p53 from Mdm2. Wip1 also dephosphorylates ATM molecules
that bind another dephosphorylated monomers to create inactive di-
mers [21,53,54]. All these four proteins have been observed to generate
sustained oscillations in response to DNA DSBs in vivo, with the period
of p53 oscillations in the range 4–7 h [9,12,23].

3.2.2. Spatio-temporal PDE model for p53
In a very simplified framework, intracellular activation and regu-

lation of p53 thus consist of the two negative feedback loops, ATM-
p53-Wip1 and p53-Mdm2. Representing protein–protein interac-
tion and gene transcription by Michaelis–Menten and Hill kinetics
discussed in Section 2 together with other assumptions on migration
of the species throughout the nuclear membrane, one can formulate
a reaction–diffusion system for the nuclear and cytoplasmic concen-
trations of the proteins/mRNAs [31], cf. Eqs. (12) and (13) below.
Before stating equations for the PDE model, let us also show the
ODE model for p53 that has been studied in [19]. Note that unlike
the model studied in [19], the transcription of the mdm2 and wip1
genes is fully controlled by p53; thus we do not consider any con-
stant rates for the Mdm2 and Wip1 mRNA production independent
of p53, which were previously assumed in [19] and also in [11]. In
both ODE and PDE models, natural degradation of the species and
translation of mRNA into proteins are modelled as linear gain/loss
and a constant term is used for p53 production, since, for sake of sim-
plicity, we do not assume any promoters (transcription factors) for
p53. Difference between the models is naturally in the diffusivities
integrated into PDEs (which are supposed to be zero for each species
in ODEs). Note that the Kedem–Katchalsky BCs, and also passive
transport mechanism for exchange, cf. Eq. (14) below, can readily
be rewritten into similar conditions in the ODE setting (with the per-
meabilities denoted similarly by pi for each species i).

Let us denote concentrations of the species by

u0 ¼ p53½ � nð Þ
;u1 ¼ ½Mdm2� nð Þ

;u2 ¼ ½Mdm2 mRNA� nð Þ
;u3 ¼ ½p53p� nð Þ

;

u4 ¼ ATMp

h i nð Þ
;u5 ¼ ½Wip1� nð Þ

;u6 ¼ ½Wip1 mRNA� nð Þ
;

v0 ¼ p53½ � cð Þ
; v1 ¼ ½Mdm2� cð Þ

; v2 ¼ ½Mdm2 mRNA� cð Þ
;

v3 ¼ ½p53p� cð Þ
; v4 ¼ ATMp

h i cð Þ
; v5 ¼ ½Wip1� cð Þ

; v6 ¼ ½Wip1 mRNA� cð Þ
:
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The ODE system that, withminor changes, was previously studied in
[19], is

du0

dt
¼ kdph1u5

u3

Kdph1 þ u3
−kubu1

u0

Kub þ u0

dv0
dt

¼ kS−kubv1
v0

Kub þ v0
−p0 v0−u0ð Þ

−kph1u4
u0

Kph1 þ u0
−p0Vr u0−v0ð Þ −δ0v0;

du1

dt
¼ −p1Vr u1−v1ð Þ−δ1u1

dv1
dt

¼ ktmv2−p1 v1−u1ð Þ−δ1v1
du2

dt
¼ kSpm

u4
3

K4
Spm

þ u4
3

−p2Vru2−δ2u2
dv2
dt

¼ p2u2−ktmv2−δ2v2
du3

dt
¼ kph1u4

u0

Kph1 þ u0
−kdph1u5

u3

Kdph1 þ u3

dv3
dt

¼ 0

du4

dt
¼ kph2E

ATMTOT−u4

Kph2 þ 1=2 ATMTOT−u4ð Þ
dv4
dt

¼ 0

−2kdph2u5
u2
4

Kdph2 þ u2
4

du5

dt
¼ p5Vrv5−δ5u5

dv5
dt

¼ ktwv6−p5v5−δ5v5;
du6

dt
¼ kSpw

u4
3

K4
Spw

þ u4
3

−p6Vru6−δ6u6
dv6
dt

¼ p6u6−ktwv6−δ6v6

where the velocity ofmigration in the nucleus is balanced by the special
volume ratioVr assuming that the cytoplasmhas Vr times bigger volume
than the nucleus [10,19].
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Fig. 3. The concentrations of the sum of p53p and p53, ATM, Mdm2 and Wip1 in the nucleus
Katchalsky BCs (14). In (c) and (d) stable limit cycles of the nuclear concentration of ATMp to the
signalling is rescaled so that the period of p53 oscillations is 6 h. The parameters chosen in simu
plotted concentrations are scaled over the total volume of the computational domain (nucleus
The dynamics of the species together with their spatial distribution
in the nucleus can be described by the following seven equations,

∂u0

∂t −D0Δu0 ¼ kdph1u5
u3

Kdph1 þ u3
−kubu1

u0

Kub þ u0
−kph1u4

u0

Kph1 þ u0
;

∂u1

∂t −D1Δu1 ¼ −δ1u1;

∂u2

∂t −D2Δu2 ¼ kSpm
u4
3

K4
Spm

þ u4
3

−δ2u2;

∂u3

∂t −D3Δu3 ¼ kph1u4
u0

Kph1 þ u0
−kdph1u5

u3

Kdph1 þ u3
;

∂u4

∂t −D4Δu4 ¼ kph2E
ATMTOT−u4

Kph2 þ 1
2 ATMTOT−u4ð Þ−2kdph2u5

u2
4

Kdph2 þ u2
4

;

∂u5

∂t −D5Δu5 ¼ −δ5u5;

∂u6

∂t −D6Δu6 ¼ kSpw
u4
3

K4
Spw

þ u4
3

−δ6u6;

ð12Þ

where, in contrast to the model in [31], themdm2 and wip1 gene tran-
scription is fully controlled by p53 here. Equations for the cytoplasmic
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(a) and in the cytoplasm (b) as solutions to the PDE system (12) and (13) the Kedem–

total concentration of p53, and the total concentration of p53 toMdm2 are shown. Protein
lation are in Table 2, for their detailed description see [31,19] and also citations therein. The
or cytoplasm).
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concentrations are rather simpler, since only degradation of the species
and translation of mRNA, supposed to occur outside of the ER [26,46],
are assumed to occur there. Free ribosomes needed for translation of
Mdm2 and Wip1 mRNA are thus localised in a cytoplasmic subdomain
denoted by χtra. In addition, production of p53 (modelled by a constant
term kS) occurs in a subdomain identified by χbp; cf. Fig. 4(b) in
Section 3.3. Cytoplasmic equations thus read

∂v0
∂t −D0Δv0 ¼ kSχbp−kubv1

v0
Kub þ v0

−δ0v0;

∂v1
∂t −D1Δv1 ¼ ktmv2χtra−δ1v1;

∂v2
∂t −D2Δv2 ¼ −ktmv2χtra−δ2v2;

∂v3
∂t −D3Δv3 ¼ 0;

∂v4
∂t −D4Δv4 ¼ 0;

∂v5
∂t −D5Δv5 ¼ ktwv6χtra−δ5v5;

∂v6
∂t −D6Δv6 ¼ −ktwv6χtra−δ6v6:

ð13Þ

The Kedem–Katchalsky BCs (6) set on the nuclear membrane Γ1 are

−D0
∂u0

∂n1
¼ −p0 v0−u0ð Þ ¼ −D0

∂v0
∂n1

for p53;

−D1
∂u1

∂n1
¼ −p1 v1−u1ð Þ ¼ −D1

∂v1
∂n1

for Mdm2;

−D2
∂u2

∂n1
¼ p2u2 ¼ −D2

∂v2
∂n1

for Mdm2 mRNA;

−D3
∂u3

∂n1
¼ 0 ¼ −D3

∂v3
∂n1

for p53p;

−D4
∂u4

∂n1
¼ 0 ¼ −D4

∂v4
∂n1

for ATMp;

−D5
∂u5

∂n1
¼ −p5v5 ¼ −D5

∂v5
∂n1

for Wip1;

−D6
∂u6

∂n1
¼ p6u6 ¼ −D6

∂v6
∂n1

for Wip1 mRNA:

ð14Þ

The PDE model (12) and (13) with the Kedem-Katchalsky BCs (14)
has been previously proposed in [31]; we refer to this work for more in-
formation about p53 dynamics, for biological evidences that are behind
the model assumptions, migration of the species throughout the cell.
Modelling issues, parameter selection and results from simulations in-
cluding analysis of the PDE model with respect to spatial perturbations
and abundance of the DNA damage E can be found in [31] as well. Fig. 3
shows the nuclear and cytoplasmic concentrations of the proteins ATM,
Mdm2, Wip1 and the total concentration of p53 (phosphorylated and
unphosphorylated) with time rescaled so that the period of p53 pulses
is 6 h.

3.3. The semi-implicit Rothe method for numerical applications

The semi-implicit Rothe method [56] can be used when one has to
solve a coupled reaction–diffusion model (4) in cells as the ones previ-
ously discussed in Sections 3.1 and 3.2 as well as it can be used to prove
theoretically existence of such solutions. Let T N 0 and I=[0,T] be afixed
time interval.Without going into details (a special article [40] is dedicat-
ed to more precise description of the method and rigorous proofs of
statements claimed here), let us mention that we are looking for solu-
tions u = [u0,u1,…,uN − 1]T and v = [v0,v1,…,vN − 1]T to the coupled re-
action–diffusion system

du
dt

−div D∇uð Þ ¼ f uð Þ and
dv
dt

−div D∇vð Þ ¼ g vð Þ ð15Þ
defined in two time–space cylinders I × Ω1 and I × Ω2 connected on a
common boundary I × Γ1 by Robin-like boundary conditions (Kedem–

Katchalsky BCs) and satisfying zero-flux BCs on I × Γ2 and some initial
conditions at time t = 0. Recall that in d-dimensional case, d ≥ 1, Ω1

and Ω2 are open and bounded sets in ℝd with Lipschitz boundaries
Γ1 = ∂Ω1∩∂Ω2 and Γ2 = ∂Ω2 − Γ1, see also Fig. 1 for a schematic repre-
sentation of the domains. Solutions ui for i= 0,1,…N–1 are supposed to
belong to a standard Sobolev–Bochner space,

ui∈W1;2;2
1 I;V1;V

�
1

� � ¼ u∈L2 I;V1ð Þ;du
dt

∈L2 I;V�
1

� �� �

with V1 =W1,2(Ω1) and V1
∗ dual to V1. Similarly, vi∈W2

1,2,2(I;V2,V2∗) with
V2 =W1,2(Ω2) and V2

∗ dual to V2 for all i= 0,1,…N− 1. By du
dt we under-

stand the derivative of u in sense of distributions. We will refer to a so-
lution of the coupled reaction–diffusion system as a solution pair and
write w = {u,v} or wi = {ui,vi} for i = 0,1,… N − 1.

In general, the reaction–diffusion Eq. (15) can be understood as
an abstract initial-boundary value problem: find u(t) and v(t) solu-
tions to

du
dt

−A u tð Þð Þ ¼ ef tð Þ and
dv
dt

−B v tð Þð Þ ¼ eg tð Þ for a:a: t∈I

with u 0ð Þ ¼ u0; v 0ð Þ ¼ v0 and BCs on Γ1 and Γ2;
ð16Þ

where Ai : V1→ V1
∗ and Bi : V2→ V2

∗ , i= 0,1,…N− 1, are independent
of time t, and ef and eg independent of u and v, respectively; u0∈L2(Ω1)
and v0∈L2(Ω2).

Let us define τ N 0 a time step such that T/τ is an integer for sim-
plicity. In the Rothe method [24,56], one has to discretise time t by
backward differences and, if necessary, to approximateef andeg at par-
ticular points t = kτ of a time grid (assumed to be equidistant for
simplicity), k = 0,1,…,T/τ. This approximation can be done, for ex-
ample, by convolution of ef and eg with suitable mollifiers [24,25];
however, reaction terms rising from protein–protein (protein–
mRNA) interactions are smooth functions, thus well defined at each
time point t.

To efficiently handle terms A and B, as they are non-linear in our
reaction–diffusion systems, we can consider a certain linearisation
A z; �ð Þ : V1→V�

1 of A at a point z and B z; �ð Þ : V2→V�
2 of B at a point

z. Then, one can define uτ
k and vτ

k for k = 1,2,…,T/τ by

uk
τ−uk−1

τ

τ
þ A uk

τ ;u
k−1
τ

� �
¼ ef kτð Þ and

vkτ−vk−1
τ

τ
þ B vkτ ; v

k−1
τ

� �
¼ eg kτð Þ; k ¼ 1;…; T=τ; ð17Þ

where the conditions A u;uð Þ ¼ A uð Þ and B v; vð Þ ¼ B vð Þ are required.
The initial conditions uτ

0 and vτ
0 are set to the original initial condi-

tions u0 and v0 or to their suitable approximations. The Kedem–

Katchalsky BCs on Γ1 and the zero-flux BCs on Γ2 for k = 1,2,…,T/
τ become

−D
∂uk

τ

∂n1
¼ −p vkτ−uk

τ

� �
¼ −D

∂vkτ
∂n1

on Γ1 and −D
∂vkτ
∂n2

¼ 0 on Γ2:

ð18Þ

By rearranging terms in Eq. (17), one can notice that the elliptic
problems in Eq. (17) with the BC (18) and the initial conditions possess
unique solutions uτk∈V1 and vτ

k∈V2 by recalling Lax–Milgram theorem
for each k = 1,…,T/τ.

The piecewise affine interpolants uτ∈[C(I;V1)]N and vτ∈[C(I;V2)]N,

uτ tð Þ ¼ t
T
− k−1ð Þ

	 

uk
τ þ k− t

T

	 

uk−1
τ for k−1ð Þτbtbkτ;

vτ tð Þ ¼ t
T
− k−1ð Þ

	 

vkτ þ k− t

T

	 

vk−1
τ for k−1ð Þτbtbkτ

ð19Þ
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can be used as approximations of solutions u and v to the original reac-
tion–diffusion systems. More precisely, it can be shown that u(t) and
vτ(t) weakly converge to u(t) and v(t) by limit passage for τ → 0 for
a.a.t∈I. This non-rigorous procedure constructively proves existence
of u(t) and v(t) in the time–space cylinders I ×Ω1 and I ×Ω2, more de-
tails are left to [40]. Much richer knowledge, and not only on the Rothe
method, can be found in the book of Roubíček [24].

Example 3.1. For convenience and because the Leloup–Goldbeter sys-
tem is less demanding on space, we can show the equations of the
model (8) with the Kedem–Katchalsky BCs (10) and (11) appearing in
the Rothe method. In particular, the equations in Eq. (8) may be
discretised and linearised into the following elliptic problems

uk
0;τ−uk−1

0;τ

τ
−D0Δu

k
0;τ ¼ Vs

Kr

Kr þ uk−1
1;τ

� �r −Vn
m

uk
0;τ

Kn
m þ uk−1

0;τ

;

uk
1;τ−uk−1

1;τ

τ
−D1Δu

k
1;τ ¼ −Vn

d
uk
1;τ

Kn
d þ uk−1

1;τ

;

vk0;τ−vk−1
0;τ

τ
−D0Δv

k
0;τ ¼ −Vc

m
vk0;τ

Kc
m þ vk−1

0;τ

;

vk1;τ−vk−1
1;τ

τ
−D1Δv

k
1;τ ¼ ksv

k
0;τχtra−Vc

d
vk1;τ

Kc
d þ vk−1

1;τ

;

whilst the Kedem–Katchalsky BCs (10) and (11) become

−D0
∂uk

0;τ

∂n1
¼ p0u

k
0;τ ¼ −D0

∂vk0;τ
∂n1

;

−D1
∂uk

1;τ

∂n1
¼ −p1v

k
1;τ ¼ −D1

∂vk1;τ
∂n1

:

Initially, we set uτ0= u0 and vτ
0= v0 (in our simulations u0 and v0 are

positive constants in x). These linear problems yield unique, non-
negative and bounded solutions u0,τ

k ,u1,τk ∈V1 and v0,τ
k ,v1,τk ∈V2 with

bounded time derivatives (existence and uniqueness follows from coer-
civity of the problems, and thus from the Lax-Milgram theorem). It can
be shown that the piecewise affine interpolants (u0,τ,u1,τ)∈[C(I;V1)]2

and (v0,τ,v1,τ)∈[C(I;V2)]2 defined in Eq. (19) are weakly convergent to
(weak) solution pair {(u0,u1),(v0,v1)} in [W1

1,2,2(I;V1,V1∗)]2 × [W2
1,2,2(I;V2,

V2
∗)]2.
a

Fig. 4. 2D cell used in simulations, (a) in the Leloup–Goldbeter PDE model, (b) in the p53 mod
stituted of the endoplasmic reticulum (perinucleic annulus, red) where no translation is allow
by χtra in Eqs. (8) and (13). The nucleus, thus shown as an inner disk, has radius

ffiffiffiffiffiffi
10

p
μm in

rest of the cytoplasm is an annulus with radii 5 μmand 10 μm. The basal production of p53 in th
i.e., not perinucleic, zone, green) in (b), denoted by χbp in 13.
It is, however, worthmentioning that the computational time need-
ed to obtain a solution to the Leloup–Goldbeter model by the semi-
implicit Rothe method is 3.3-fold lower than the time required to
solve the same problem with the Newton method (computations with
T=72 h and τ=0.1 took 105 s in the semi-implicit Rothemethod im-
plementation and 344 s in the Newtonmethod with the accuracy toler-
ance tol = 10−3 needed to terminate iterations). Similarly, the Rothe
method is 5.2-faster than the Newton method when computing solu-
tion to the p53 model (within t = 400 time units and τ = 0.2 took
37 min in the semi-implicit Rothe method implementation and
193 min in the Newton method with tol= 10−3).

For the Leloup–Goldbeter and p53 reaction–diffusion systems pre-
sented in this article, the semi-implicit Rothe method and the Newton
method have been implemented in the freely available solver
FreeFem++ [57] and we ran 2D simulations on a disk-shaped cell
with radius 10 μm, see Fig. 4 on a standard machine MacBook Pro,
2.4 GHz Intel Core icontain contain 7 processor and 8 GB (1600 MHz)
memory.

4. Discussion and conclusion

In this short review we have raised the question of replacing com-
monly used ODE models for protein–protein interactions by reaction–
diffusion models which are well studied [24,25,37] and which not
only contain reaction terms coming from the protein interactions but
also describe the spatial distribution of species involved in the reactions
over the cellular compartments.We have proposed the simpler Leloup–
Goldbeter circadian model for FRQ in Neurospora that contains two
equations for the nuclear and cytoplasmic FRQ protein and its mRNA,
and a more complicated model for p53 response to the occurrence of
DSBs in a single cell. These models, and more generally reaction–
diffusion PDE models for intracellular protein dynamics, are likely to
be more realistic than ODE models.

As an example of such possibly more realistic models, let us con-
sider the slightly more complicated PER model in Drosophila of
Leloup and Goldbeter [38,39], that relies on the same principles as
the FRQ model. Indeed, two additional phosphorylations are consid-
ered, and this first PER model (more sophisticated models of PER
have been published by Leloup and Goldbeter) is proposed to be
amenable to describe two Drosophila mutants for PER, with shorter
or longer period of oscillations, by lower and higher values, res-
pectively, of the maximum degradation rate vd of cytoplasmic
b

el. Both cells are represented by the nucleus (central zone, blue) and the cytoplasm con-
ed and the translation zones (peripheral, green in (a), green and yellow in (b)) denoted
both cases. The endoplasmic reticulum is an annulus with radii

ffiffiffiffiffiffi
10

p
μm and 5 μm. The

e p53model is assumed to occur in an annulus with radii 5 μmand 6 μm(inner peripheral,
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diphosphorylated PER. But is this sole change of constants the best
reason, in a more physiological model, for the change in periods?
Could it be related to transcription of genes, to species diffusion, to
translation into protein products, to cytosolic/nucleic degradation,
to nucleocytoplasmic transport, to the extension of the “dead zone”
around the nucleus where translation occurs (Fig. 4a)? The same
questions can be posed when one considers p53 and drugs amenable
to electively modify specific parts of its intracellular dynamics. This
can be rendered optimally in PDE models, that are much more phys-
iological than (rougher) ODE models, since they are naturally able to
take intracellular spatial features into account, including possible
space heterogeneities in the intracellular medium (not considered
in the examples, apart from the above mentioned dead zone of
non-translation in the cytoplasm).

The oscillatory dynamics of p53, “the guardian of the genome”, has
long been evidenced by biological recordings in experimental condi-
tions representing cell stress due to, e.g. radiotoxic insult [12,23]. In
this sense, the biological question of identifying intracellular spatio-
temporal dynamics is certainly crucial. Furthermore, since p53 disrup-
tions are found inmore than 50% of solid tumours, with various modifi-
cations of its stress-induced dynamics [2,3,50], it is also a crucial point in
cancer therapy modelling to understand how p53 dynamics may be
affected in disease, and to this aim, to have an accurate representation
of how this dynamics works in physiological conditions, which is the
purpose of designing p53 dynamic models.

We have shown how easy it is in principle to start from anODE com-
partmentalmodel, add diffusion terms –which in their simplest version
are mere laplacians – and slightly modify the representation of ex-
changes between the compartments to adapt them to the new setting,
to obtain a ready-made reaction–diffusion PDEmodel. However, depen-
dence on spatial patterns, such as oscillations in concentration, on the
diffusivities and the (nuclearmembrane) permeabilities has to be better
studied, with precise identification of the underlying biological param-
eters, to understand their roles properly. To obtain more realistic PDEs
one can consider effects of different viscosities of buffers on different
diffusivities ofmolecules or adjunction of advection termswhen knowl-
edge of aided transportmakes it relevant (e.g., transport throughmicro-
tubules). To support these ideas, different mobility of molecules in the
nucleus and the cytoplasm caused by limited diffusions has led to bi-
phasic caspase activation kinetics, see [58] and citations therein. In
some circumstances it might be convenient to include specific spatial
structures, such as position and density of ribosomes and thus to
model gene expression more specifically [59,60].

In addition, intracellular signalling in our rather simplifiedmodelling
setting is restricted to cells of physiology and morphology where a mo-
lecular network in question is, at least, partially understood. What does
the p53 signal transduction in response to DNA damage in a nerve cell
or in a polynucleic muscle cell look like? What is the role of diffusion
in a cell where a signal is spread over long distances and in very small
cells. These and other questions should be further addressed and spatial
PDE models might fruitfully be used for this purpose.

Note also that the oscillatory patterns are self-organised not only
due to events occurring in the nucleus or in the cytoplasm but that
they are also tightly connected to boundary conditions on the mem-
branes. Thus physiological delays maintained due to the semiperme-
ability of the nuclear membrane are more typical for PDEs than for
ODEs (if one does not want to deal with artificial delays represented
by delay differential equations). We examined the Kedem–Katchalsky
as representing passive transport mechanisms with the difference of
concentrations at both sides of the membrane as the driving force for
exchanges; however, bigger species are rather transported actively,
which should be taken into account in more sophisticated models of
nucleocytoplasmic transport [41].

On a more technical note, we have also briefly introduced the semi-
implicit Rothe method that can be used for numerical solution of reac-
tion–diffusion systems as an alternative to other used methods; they
can be used also in 3D simulations, [31], where other methods are in
general more demanding in time and memory.

We hope that the simple presentation of this alternate solution to
classical ODEs will be of some help to biologists and modellers who
want to describe intracellular spatio-temporal dynamics of proteins in
a faithful, yet more demanding in terms of parameter estimation, way.
We would as well like to mention that such reaction–diffusion PDE
models are also amenable to describe spatio-temporal dynamics at the
level of cell populations and that, by introducing intercellular signalling,
it is in principle possible to connect the two observation levels. This per-
spective still remains a challenge to mathematicians and modellers in
biology.
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