
November 2017 | Volume 5 | Article 2481

Mini Review
published: 20 November 2017
doi: 10.3389/fped.2017.00248

Frontiers in Pediatrics | www.frontiersin.org

Edited by: 
Peter Michael Gordon,  

University of Minnesota,  
United States

Reviewed by: 
E. Anders Kolb,  

Alfred I. duPont Hospital for  
Children, United States  

Jessica Pollard,  
Seattle Children’s Hospital,  

United States

*Correspondence:
Sarah K. Tasian 

tasians@email.chop.edu

Specialty section: 
This article was submitted to 

Pediatric Hematology and 
Hematological Malignancies,  

a section of the journal  
Frontiers in Pediatrics

Received: 07 September 2017
Accepted: 06 November 2017
Published: 20 November 2017

Citation: 
Sexauer AN and Tasian SK (2017) 

Targeting FLT3 Signaling in  
Childhood Acute Myeloid Leukemia. 

Front. Pediatr. 5:248. 
doi: 10.3389/fped.2017.00248

Targeting FLT3 Signaling in 
Childhood Acute Myeloid Leukemia
Amy N. Sexauer1,2 and Sarah K. Tasian3,4*

1 Dana-Farber Cancer Institute, Boston, MA, United States, 2 Boston Children’s Hospital, Department of Pediatrics, Division 
of Pediatric Hematology/Oncology/Stem Cell Transplant, Boston, MA, United States, 3 Children’s Hospital of Philadelphia, 
Division of Oncology, Center for Childhood Cancer Research, Philadelphia, PA, United States, 4 Perelman School of 
Medicine, University of Pennsylvania, Philadelphia, PA, United States

Acute myeloid leukemia (AML) is the second most common leukemia of childhood and 
is associated with high rates of chemotherapy resistance and relapse. Clinical outcomes 
for children with AML treated with maximally intensive multi-agent chemotherapy lag far 
behind those of children with the more common acute lymphoblastic leukemia, demon-
strating continued need for new therapeutic approaches to decrease relapse risk and 
improve long-term survival. Mutations in the FMS-like tyrosine kinase-3 receptor gene 
(FLT3) occur in approximately 25% of children and adults with AML and are associated 
with particularly poor prognoses. Identification and development of targeted FLT3 inhib-
itors represents a major precision medicine paradigm shift in the treatment of patients 
with AML. While further development of many first-generation FLT3 inhibitors was 
hampered by limited potency and significant toxicity due to effects upon other kinases, 
the more selective second- and third-generation FLT3 inhibitors have demonstrated 
excellent tolerability and remarkable efficacy in the relapsed/refractory and now de novo 
FLT3-mutated AML settings. While these newest and most promising inhibitors have 
largely been studied in the adult population, pediatric investigation of FLT3 inhibitors 
with chemotherapy is relatively recently ongoing or planned. Successful development of 
FLT3 inhibitor-based therapies will be essential to improve outcomes in children with this 
high-risk subtype of AML.
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inTRODUCTiOn

Acute myeloid leukemia (AML) is a group of biologically heterogeneous diseases that comprise 
20% of pediatric and 80% of adult acute leukemias (1, 2). It is estimated that 21,380 people in 
the United States will be diagnosed with AML in 2017, and 10,590 of these patients will die from 
leukemia (3). While outcomes for children with de novo AML have improved over the past several 
decades, event-free survival (EFS) and overall survival (OS) remain suboptimal at approximately 
60 and 70%, respectively (4). Relapsed disease and poor response to salvage therapy remain sig-
nificant hurdles in achieving cure.

FMS-like tyrosine kinase-3 (FLT3; CD135) is a 993 amino acid single transmembrane type 
III receptor tyrosine kinase in the same family as the structurally similar stem cell growth 
factor receptor c-KIT (CD117), colony-stimulating factor-1 receptor (CSF1R; CD115), and 
platelet-derived growth factor receptor (PDGFR) (5–8). FLT3 has a single extracellular ligand-
binding domain with five immunoglobulin-like folds, a juxtamembrane domain, and a single 
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FiGURe 1 | FLT3 signaling in acute myeloid leukemia and clinically relevant FLT3 tyrosine kinase inhibitors. (A) FLT3 receptor and downstream signaling targets 
schema. (B) KinomeScan dendrograms (http://lincs.hms.harvard.edu/kinomescan/) demonstrating relative potency and selectivity of FLT3 inhibitors [adapted from 
Zarrinkar et al. (12); used with permission]. Interactions with Kd <3 µM are shown. Red circles designate kinases bound. Circle size specifies relative binding affinity. 
Dendrogram data are not available for ponatinib, crenolanib, or gilteritinib.
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cytoplasmic tyrosine kinase domain separated by a kinase 
insert region (Figure 1A). FLT3 signaling plays a critical role 
in hematopoiesis and is expressed on CD34+ hematopoietic 
stem/progenitor cells, but its surface expression is lost during 
cellular differentiation (7, 9, 10). Normally, the FLT3 receptor 
is stimulated by FLT3 ligand, leading to receptor dimerization 

with subsequent activation of its tyrosine kinase domain, 
autophosphorylation, and binding of SH2 domain-containing 
proteins. Activated FLT3 then phosphorylates downstream tar-
gets, including STAT5, SHIP, and SHP-2, and signals through 
critical oncogenic pathways such as Ras/Raf/MAPK and PI3K/
Akt/mTOR (5, 6, 11) (Figure 1B).
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Wild-type FLT3 is overexpressed in most cases of 
B-lymphoblastic leukemia and AML and in a smaller percent-
age of T-lineage ALL and chronic myeloid leukemia (CML) in 
blast crisis (13). Mutations in FLT3 are one of the most common 
genetic alterations in AML and are associated with high rates of 
relapse in adults and children (14–16). Activating FLT3 muta-
tions are classified into two types: (1) internal tandem duplication 
(FLT3–ITD) mutations, which are 3–400  bp in-frame duplica-
tions located in the juxtamembrane domain and (2) activating 
point mutations, which are found in the tyrosine kinase domain 
(FLT3–TKD) and most often involve residue D835 (17–19). ITD 
and TKD mutations occur in approximately 25 and 10% of adult 
AML cases, respectively (20, 21). Recent studies have reported 
similar incidence of ITD and activating TKD mutations in 
childhood AML (15, 22–25). Numerous clinical trials have dem-
onstrated inferior clinical outcomes in patients with FLT3–ITD 
AML (14–16, 26, 27).

Adults with newly diagnosed AML are generally treated with 
cytarabine- and anthracycline-based induction chemotherapy 
followed by consolidation therapy. Allocation to subsequent 
hematopoietic stem cell transplant (HSCT) is usually based 
on cytogenetic risk stratification and transplant eligibility 
status (2). With this approach, 5-year OS for adults with AML 
is approximately 40%. However, several studies have demon-
strated significantly decreased duration of first remission (CR1) 
and 5-year OS of approximately 15% in adults with FLT3–ITD 
AML versus those without FLT3 mutations (28–32). Children 
with FLT3–ITD AML treated on Children’s Cancer Group and 
Pediatric Oncology Group trials fared similarly poorly with 
30% 4-year EFS when treated with conventional multi-agent 
chemotherapy (15). Higher mutant-to-wild-type FLT3 allelic 
ratios have also been associated with increasingly inferior out-
comes in children treated on Dutch Children’s Oncology Group 
and Children’s Oncology Group (COG) studies (15, 33). In a 
recent subgroup analysis, the COG phase 3 trial AAML0531 
reported decreased relapse rates in children with FLT3–ITD 
AML with addition of the CD33-targeting antibody-drug 
conjugate gemtuzumab ozogamicin to standard chemotherapy  
(16, 34), demonstrating potential for improved clinical out-
comes in this high-risk patient population with inclusion of 
targeted therapies.

Given the significant negative prognostic effects of FLT3–ITD 
mutations in AML and the relative frequency of these alterations, 
therapeutic targeting of aberrant FLT3 signaling has been a major 
research focus with goals of decreasing relapse and improving 
survival. Tyrosine kinase inhibitors (TKIs) are small molecules 
that inhibit the enzymatic activity of tyrosine kinases and block 
downstream signaling activation. Treatment of adults with CML 
with the SRC/ABL inhibitor imatinib is one of the major early 
successes of modern precision medicine (35, 36). Imatinib targets 
the oncogenic BCR–ABL fusion protein resulting from t(9;22) 
(Philadelphia chromosome; Ph+) by inhibiting the active site 
of the ABL1 kinase. Treatment of patients with CML and Ph+ 
ALL with imatinib or related TKIs markedly improved remis-
sion rates and long-term survival versus prior interferon and 
chemotherapy and is now considered standard-of-care therapy 
(37–40). Similarly, FLT3 inhibitor treatment of patients with 

FLT3-mutated AML has been investigated for the past decade 
with promising results of several studies recently reported. This 
review discusses the current landscape of and future potential 
for clinical testing of FLT3 inhibitors in adults and children with 
FLT3-mutated AML (Table 1).

CURRenT FLT3 TKis in CLiniCAL USe

Midostaurin
Midostaurin (PKC412) is a first-generation oral FLT3 inhibitor 
initially named due to its inhibitory effects upon protein kinase 
C. Midostaurin was subsequently recognized as a promiscu-
ous kinase inhibitor with strong inhibitory effects also against 
the vascular endothelial growth factor receptor (VEGFR), 
PDGFRα and β, spleen tyrosine kinase (SYK), c-KIT, and FLT3 
(62). Midostaurin has been studied extensively in adults with 
relapsed/refractory AML. Initially, midostaurin monotherapy 
was observed to induce a “blast response” (≥50% reduction in 
blast counts in peripheral blood and/or bone marrow) in 70% of 
adults with FLT3–ITD AML and in 30–40% with FLT3-wild-type 
AML (62, 63). However, achievement of long-term remission 
was rare (63). Subsequent trials, thus, combined midostaurin 
with induction chemotherapy and reported improved CR rates 
in patients with FLT3–ITD AML (42). These studies were fol-
lowed by the Cancer and Leukemia Group B 10603 RATIFY 
trial, an international double-blind randomized controlled study 
comparing standard chemotherapy without or with midostaurin 
in adults (18–59 years) with de novo FLT3–ITD or FLT3–TKD 
AML. Addition of midostaurin to chemotherapy significantly 
improved median EFS (8.2 versus 3.0 months) and OS (74.7 versus 
25.6 months) compared to patients treated with chemotherapy 
and placebo (43). The precise impact of HSCT and potential dif-
ferential responses of midostaurin treatment between FLT3–ITD 
and TKD patients is not fully known (43, 64). Based on results of 
this trial, midostaurin was recently approved by the United States 
Food and Drug Administration (FDA) for use in adults with  
de novo FLT3-mutated AML (64).

To date, one trial of midostaurin has been conducted in chil-
dren with leukemia (41). An Innovative Therapies for Children 
with Cancer European consortium-led phase 1/2 dose escalation 
study aimed to establish the safety, tolerability, and efficacy of 
midostaurin in children and adolescents 3  months–18  years 
of age with either relapsed/refractory FLT3-mutated AML 
or KMT2A-rearranged ALL (which overexpresses wild-type 
FLT3). The trial closed early due to inadequate accrual. While 
the number of subjects studied was too small for more rigorous 
analysis, 5 of 15 patients with AML and 3 of 13 patients with 
KMT2A-rearranged ALL had partial or complete responses with 
midostaurin monotherapy with OS of 3.7 (AML) and 1.4 months 
(ALL), respectively (41).

Lestaurtinib
Lestaurtinib (CEP-701) is another first-generation multi-
kinase inhibitor with activity against FLT3, Janus kinase 2, and 
tropomyosin receptor kinase A. One randomized trial tested 
lestaurtinib administration after induction chemotherapy in 
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TABLe 1 | Current clinical trials of FLT3 inhibitors in children and adults with AML.

Drug Clinical trial number (pediatric) Clinical trial number (adult) Phase of testing Reference

Midostaurin NCT00866281a (ITCC-024, CPKC412A2114) NCT00045942 1, 2 (with HSCT) Zwaan et al. (41)a

Stone et al. (42)b

Stone et al. (43)c
NCT00651261b,c

NCT01093573
NCT01477606
NCT01830361
NCT01846624
NCT01883362
NCT02634827

Lestaurtinib NCT00469859 (COG AAML06P1) NCT00030186 1, 2 Levis et al. (44)d

NCT00079482d

Sorafenib NCT00908167e NCT00373373 1, 2, 3 (with HSCT) Inaba et al. (45)e

Widemann et al. (46)f

Rollig et al. (47)g

Chen et al. (48)h

Ohanian et al. (49)i

NCT01371981 (COG AAML1031) NCT00542971
NCT01445080f (COG ADVL0413) NCT00893373g

NCT01398501h

NCT02156297
NCT02196857i

NCT02867891

Sunitinib None NCT00783653j 1,2 Fiedler et al. (50)j

Fiedler et al. (51)

Quizartinib NCT01411267k (TACL T2009-004) NCT00462761l 1, 2, 3 Cooper et al. (52)k

Cortes et al. (53)l

Perl et al. (54)m

Schiller et al. (55)n

NCT00989261m

NCT01390337
NCT01468467
NCT01565668n

NCT02668653
NCT02984995

Ponatinib None NCT00660920o 1, 2 Cortes et al. (56)o

NCT02428543

Crenolanib NCT02270788 (SJCRH RELHEM2) NCT01522469p 1, 2, 3 (with HSCT) Cortes et al. (57)p

Galanis et al. (58)qNCT01657682q

NCT02283177
NCT02298166
NCT02400255
NCT02400281

Gilteritinib None NCT02014558r,s 1, 2, 3 (with HSCT) Perl et al. (59)r

Altman et al. (60)s

Cortes et al. (61)t
NCT02421939
NCT02752035t

NCT02927262
NCT02997202
NCT03070093

COG, Children’s Oncology Group; HSCT, hematopoietic stem cell transplantation; ITCC, Innovative Treatments for Childhood Cancer European consortium; NCT, clinicaltrials.gov 
trial number; SJCRH, St. Jude Children’s Research Hospital; TACL, Therapeutic Advances in Childhood Leukemia and Lymphoma consortium.
Corresponding clinical trial publications or abstracts are annotated with superscripted characters for each inhibitor where available.
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adult patients with AML in first relapse and demonstrated no 
survival benefit with lestaurtinib addition versus chemotherapy 
only (44). However, pharmacodynamic assessment of in  vivo 
signaling inhibition by plasma inhibitory activity (PIA) assays 
demonstrated that few patients achieved sustained FLT3 inhibi-
tion (65), limiting conclusions about the potential efficacy of 
lestaurtinib in this population (44, 66). The UK AML15 and 
AML17 trials also studied lestaurtinib addition versus standard 
chemotherapy in 500 adults with AML harboring FLT3-
activating mutations and showed no significant improvement in 
OS (67). However, PIA assays conducted in this trial correlated 
with significantly decreased relapse rates in lestaurtinib-treated 
patients who consistently achieved >85% FLT3 inhibition, 
further corroborating the importance of pharmacodynamic 
correlation (67).

The COG conducted an analogous pilot trial AAML06P1 
(NCT00469859) in children and adolescents and young adults 
(AYAs) <30  years of age with relapsed/refractory AML. These 
patients were induced with cytarabine and idarubicin, then 
treated with lestaurtinib. The trial closed after the safety phase 
demonstrated tolerable combination dosing, but without comple-
tion of efficacy phase testing (66). In the pediatric population, 
lestaurtinib has been better studied in infants with wild-type 
FLT3-overexpressing KMT2A-rearranged ALL. Despite very 
promising preclinical data, the randomized COG phase 3 trial 
AALL0631 (NCT00557193) failed to demonstrate benefit of 
lestaurtinib addition to chemotherapy in infants with KMT2A-
rearranged ALL, although achievement of sustained FLT3 inhibi-
tion as measured by PIA assays was variable among patients and 
across therapy phases (68).
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Sorafenib
Sorafenib (BAY 43-9006) is another first-generation pan-kinase 
inhibitor with activity against Raf, c-KIT, PDGFR, VEGFR, 
and FLT3 (69). Sorafenib is FDA-approved for the treatment of 
adults with renal cell, hepatocellular, and thyroid carcinomas 
(70–72). Initial studies of sorafenib monotherapy in adults with 
FLT3-mutated AML demonstrated safety and tolerability with 
minimal toxicity (69, 73). Subsequent trials investigated the 
safety and efficacy of combining sorafenib with chemotherapy in 
adults with de novo AML. One phase 2 study at the MD Anderson 
Cancer Center tested sorafenib with cytarabine and idarubicin 
in 62 newly diagnosed patients, 19 of whom had FLT3–ITD 
AML. While response rates were higher in patients with FLT3 
mutations, no differences in EFS or OS were observed (74). 
The successor international phase 2 SORAML trial randomized 
267 adults (ages 18–60  years) to induction chemotherapy with 
cytarabine and daunomycin, followed by high-dose cytarabine 
consolidation therapy with sorafenib or placebo. Intermediate-
risk patients with sibling donors and high-risk patients with any 
matched donor in first remission were allocated to subsequent 
allogeneic HSCT. The SORAML trial demonstrated clear benefit 
in the sorafenib-treated cohort with respect to relapse-free sur-
vival (21 months median EFS versus 9 months for placebo-treated 
patient), although did not improve OS rates (47).

A phase 1 trial conducted at St. Jude Children’s Research 
Hospital (SJCRH) first studied sorafenib monotherapy in 
children with relapsed/refractory AML, then in combination 
with clofarabine and cytarabine. Five of 12 enrolled patients 
had FLT3–ITD AML. Responses were observed in most 
patients, including all five FLT3–ITD patients, with complete 
remission (CR) in four patients, CR with incomplete count 
recovery (CRi) in two patients, and a partial response in one 
patient (45). A concomitant COG phase 1 study of sorafenib 
in children with relapsed/refractory solid tumors or leukemias 
also identified tolerable dosing in children and reported 
complete responses in two of eight patients with FLT3–ITD 
AML, enabling subsequent HSCT (46). The COG phase 3 trial 
AAML1031 (NCT01371981) is currently assessing the efficacy 
of non-randomized sorafenib addition to chemotherapy and 
best available donor HSCT for children and AYAs with de novo 
FLT3–ITD AML. The study was amended to include a 1-year 
sorafenib maintenance phase post-HSCT based upon smaller 
studies reporting potential efficacy of this post-transplant 
strategy to minimize relapse risk (75). Results from the 
AAML1031 sorafenib arm are not yet available, although some 
dosing modifications have been required due to incidence of 
hand–foot syndrome, hypertension, and cardiac dysfunction 
(Children’s Oncology Group Myeloid Diseases Committee, 
unpublished).

Sunitinib
Sunitinib (SU11248), another multi-kinase inhibitor with activ-
ity against FLT3, has been studied in adult patients with FLT3-
mutated AML with reported similar efficacy as sorafenib (50). 
Tolerability and preliminary efficacy of sunitinib was assessed 
in children with relapsed/refractory solid tumors via the COG 
trials ADVL0413 and ACNS1021 (76, 77). Sunitinib has been 

studied in a small number of children with FLT3–ITD AML who 
failed prior sorafenib treatment (78).

Quizartinib
Given the potential for increased toxicities of the first-gener-
ation FLT3 inhibitors secondary to effects upon other kinases 
and/or poor pharmacodynamic properties, second-generation 
inhibitors with greater anti-FLT3 potency were developed. 
Quizartinib (AC220) is the first drug specifically designed as 
a FLT3 inhibitor and has 10–50 times greater in vivo potency 
than first-generation inhibitors (12, 79, 80). Quizartinib also 
has moderate activity against c-KIT (81). Initial phase 1 studies 
of quizartinib monotherapy in adults with relapsed/refractory 
AML demonstrated tolerability and preliminary efficacy (53), 
and subsequent phase 2 trials have reported high response 
rates in both younger and older adults with relapsed/refractory 
AML (54, 82). Other phase 2 and phase 3 studies are currently 
investigating the efficacy of quizartinib in combination with 
chemotherapy. Preclinical and clinical studies have now dem-
onstrated resistance mutations in patients with FLT3–ITD AML 
treated with quizartinib, particularly the F691L gatekeeper  
and D835/I836 activation loop mutations (83, 84).

The Therapeutic Advances in Childhood Leukemia/Lymphoma 
(TACL) consortium conducted a phase 1 trial of quizartinib with 
cytarabine and etoposide in 17 children (ages 1 month to 21 years) 
with relapsed/refractory AML or KMT2A-R ALL. Quizartinib 
was well-tolerated without dose-limiting toxicity, and correla-
tive PIA assays demonstrated near-complete pharmacodynamic 
inhibition of FLT3 at all tested doses (52). All seven patients  
with FLT3–ITD AML had marked reduction in medullary leu-
kemia burden with three patients achieving CR or CRi and pro-
ceeding to allogeneic HSCT. Similar responses were not observed 
in children with wild-type FLT3 AML or KMT2A-rearranged 
ALL (52). These data further support potential improved anti- 
leukemic activity of more selective FLT3 inhibitors.

Ponatinib
Ponatinib (AP24534) is a third-generation multi-kinase inhibi-
tor with activity against BCR–ABL and FLT3. Ponatinib is cur-
rently FDA-approved for treatment of adults with TKI-resistant  
CML or Ph+ ALL (85). In preclinical studies, ponatinib had 
significant anti-leukemia activity against AML specimens with 
FLT3–ITD or TKD mutations, including the F691I gatekeeper 
(86–88). A current phase 1/2 trial is studying the safety and effi-
cacy of ponatinib in combination with cytarabine in adults with 
FLT3–ITD AML (NCT02428543). Ponatinib curren tly has an 
FDA black box warning regarding serious risk of arterial throm-
bosis and hepatotoxicity (89). No formal studies of ponatinib 
in children have been conducted, although anecdotal cases of 
compassionate usage in pediatrics have been reported (90).

Crenolanib
Crenolanib (CP-868596) was originally designed as a PDGFR 
inhibitor, although later studies also demonstrated its potency as 
a FLT3 inhibitor. Due to its short half-life, crenolanib requires 
thrice-daily dosing. Early data suggest that this third-generation 
TKI has robust activity against both FLT3–ITD and FLT3–TKD 
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mutations, including those that confer resistance to quizartinib 
(58, 91, 92). Crenolanib monotherapy has been studied in several 
early-phase trials in adults with relapsed/refractory FLT3-
mutated AML with encouraging activity (93), and combination 
trials in patients with newly diagnosed FLT3–ITD AML have 
demonstrated promising results (94).

Tolerable pediatric dosing of crenolanib monotherapy was 
established via a phase 1 trial conducted at SJCRH in children 
with central nervous system gliomas, which have activated 
PDGFR signaling (95). The current SJCRH RELHEM2 phase 
1 trial (NCT02270788) is assessing the safety of combined 
crenolanib and sorafenib in children with relapsed or refractory 
hematologic malignancies.

Gilteritinib
Gilteritinib (ASP2215), the newest third-generation oral FLT3 
inhibitor, is the most potent and selective FLT3 inhibitor 
developed to date with moderate additional activity against the 
AXL kinase. In preclinical studies, gilteritinib has in vitro anti-
FLT3–ITD activity that equals or surpasses that of other FLT3 
inhibitors previously discussed. Gilteritinib is also active against 
FLT3–TKD resistance mutations and does not appreciably inhibit 
c-KIT (96), thereby potentially avoiding the myelosuppressive 
effects of quizartinib that have been observed in clinical trials 
(97). A first-in-human phase 1/2 trial evaluated gilteritinib 
monotherapy in adults with relapsed/refractory AML. This study 
reported excellent tolerability of gilteritinib and a 30% CR/CRi 
rate in heavily pretreated patients with many patients achieving 
deep molecular remission (59, 60). Gilteritinib is now under 
investigation in adults with relapsed and refractory FLT3-mutated 
AML via a randomized double-blinded phase 3 registration 
trial (NCT02997202) (Table 1). The FDA also recently granted 
orphan drug designation for gilteritinib for patients with FLT3-
mutated AML. A pediatric development program for gilteritinib 
is planned.

FUTURe DiReCTiOnS

Despite maximal therapeutic intensification and significant 
improve ments in supportive care, more than one-third of chil-
dren with AML still die from leukemia or associated complica-
tions. FLT3-mutated AML is a particularly high-risk leukemia  
subtype in both adults and children, and the potential for selec-
tive FLT3 inhibitors to decrease relapse risk and improve cure 
rates is alluring. Initial trials of first-generation FLT3 inhibitors 
have validated FLT3 as a viable therapeutic target in AML and 
expedited FDA approval of midostaurin for adults with FLT3-
mutated AML is a major recent achievement (64). However, poor 
pharmacokinetic properties or unfavorable toxicities of many 
multi-kinase inhibitors have limited usage in some patients. Trials 

of more selective second- and third-generation FLT3 inhibitors 
in adults with relapsed/refractory AML have established safety 
and tolerability of TKI monotherapy and in combination with 
chemotherapy, as well as exciting potential efficacy (14).

It is probable, perhaps certain, that children with FLT3 
signaling-driven AML will similarly benefit from addition of 
FLT3 inhibition to chemotherapy. The newest and more selec-
tive inhibitors, quizartinib, crenolanib, and gilteritinib, have 
demonstrated very promising activity in adults with relapsed/
refractory and newly diagnosed AML, but have been minimally 
or not studied to date in children. These agents merit broader 
clinical investigation in pediatrics. Emerging data from sorafenib 
maintenance studies also demonstrate the potential importance 
of such therapeutic strategies in the post-HSCT setting (75, 98). 
In addition, preclinical studies of FLT3-targeting chimeric anti-
gen receptor T  cell immunotherapy have demonstrated potent 
anti-leukemia activity in cell line (99, 100) and patient-derived 
xenograft models (Tasian, unpublished), further validating FLT3 
as a robust therapeutic target in childhood AML.

Acquisition of resistance mutations following FLT3 inhibitor 
therapy remains a major source of treatment failure, although  
the incidence of such mutations in children with AML is not fully 
known. It is plausible that combining FLT3 inhibitors with chemo-
therapy may decrease the incidence of resistance mutations that 
occur with inhibitor monotherapy, analogous to lower mutation 
rates often observed in children with Ph+ ALL treated with TKI 
and chemotherapy (101, 102). However, major challenges exist 
in the study of new drugs in the pediatric population, including 
the relative rarity and genetic heterogeneity of childhood AML, 
rapid disease progression which may hamper trial enrollment, and  
the ability to partner with pharmaceutical companies to access 
novel agents for study in young children. Nonetheless, prospective 
clinical evaluation of exciting next-generation FLT3 inhibitors 
specifically in children with FLT3-mutated AML is ongoing or 
on the imminent horizon. Such important clinical investiga-
tion is critical to improve remission and decrease relapse in this 
highest-risk population of children with AML, potentially also  
reducing the significant toxicities associated with salvage therapy.
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