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Machine learning enabling 
prediction of the bond dissociation 
enthalpy of hypervalent iodine 
from SMILES
Masaya Nakajima* & Tetsuhiro Nemoto*

Machine learning to create models on the basis of big data enables predictions from new input data. 
Many tasks formerly performed by humans can now be achieved by machine learning algorithms 
in various fields, including scientific areas. Hypervalent iodine compounds (HVIs) have long been 
applied as useful reactive molecules. The bond dissociation enthalpy (BDE) value is an important 
indicator of reactivity and stability. Experimentally measuring the BDE value of HVIs is difficult, 
however, and the value has been estimated by quantum calculations, especially density functional 
theory (DFT) calculations. Although DFT calculations can access the BDE value with high accuracy, 
the process is highly time-consuming. Thus, we aimed to reduce the time for predicting the BDE by 
applying machine learning. We calculated the BDE of more than 1000 HVIs using DFT calculations, and 
performed machine learning. Converting SMILES strings to Avalon fingerprints and learning using a 
traditional Elastic Net made it possible to predict the BDE value with high accuracy. Furthermore, an 
applicability domain search revealed that the learning model could accurately predict the BDE even for 
uncovered inputs that were not completely included in the training data.

Organic chemistry enables the synthesis of various molecules by continuously breaking and forming molecular 
bonds. Bond dissociation enthalpy (BDE) is an indicator of the strength of a chemical bond and is an essential 
consideration in the design of chemical reactions and reactive molecules. Heat energy or light energy in adequate 
quantities can be used to break the chemical bond homolytically. Therefore, BDE is a commonly estimated on 
the basis of thermal measurement1, kinetics2, and electricity3,4. In recent years, advances in the development of 
computers, quantum chemistry, and density functional theory (DFT) calculations, have provided remarkably 
more accurate methodologies for predicting BDE5–7. In silico methods can be used to estimate the BDE, even 
for pinpoint chemical bonds of complicated molecules and imaginary molecules, enabling the design of reactive 
molecules and estimating the stability of functional molecules before they are synthesised. Even with advanced 
computer technology, however, the calculation costs of the DFT method remain enormous. The calculation time 
exponentially increases by the total number of electrons in a molecule. Therefore, obtaining the BDE values of 
hundreds or thousands of molecules at once by quantum computations remains challenging.

Hypervalent iodine (HVI), which bears over eight valence electrons on iodine, is a reactive molecule used 
as an oxidant or an alkylating agent in organic synthesis8–15. Heterolytic or homolytic cleavage of a weak, three-
center four-electron (3c–4e) bond of HVI progresses the chemical reaction. Therefore, the BDE of the 3c–4e bond 
of HVI is an essential parameter that has been calculated by the DFT method on demand16–19. We previously 
reported the BDE value of 3c–4e bonds in various HVIs on the basis of DFT calculations19. We first determined 
the optimal functional and basis sets for reproducing the 3c–4e bond in silico and calculated a BDE value of 206 
HVIs. While this database is helpful for chemists, it is still necessary to calculate the BDE for HVIs that are not 
available in the database.

Machine learning is currently attracting attention worldwide, and analysing and learning from a population 
using statistical methods enables immediate prediction of the results from new inputs. In the field of organic 
chemistry, machine learning is applied for predicting synthetic pathways and reactivity, and optimising reac-
tion conditions20–26. Yu and co-workers reported the prediction model of BDE of carbonyl groups with machine 
learning in 202027. Their important model accurately predicts the BDE value of the C=O bond on the basis of the 
bond length and bond angle of the relevant site as inputs. Three-dimensional molecular information is required 
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for the input data, however, and thus time-consuming DFT calculations are inescapable. We considered that 
an ideal and highly useful method of BDE prediction for chemists should not require quantum computations 
to prepare the input data. Therefore, we decided to use only structural formula information, such as SMILES 
strings, to predict the BDE value of HVIs by machine learning (Fig. 1).

Methods
We first performed DFT calculations to increase the sizes of the data set populations. The DFT calculations 
were performed using Gaussian16 with MN1528 functional and SDD29,30 (for I and Se) and cc-pvTZ31 (for the 
others) basis sets19. Structure optimizations were carried out with an ultrafine grid at 298.15 K in gas phase. 
Harmonic vibrational frequencies were computed at the same level of theory to confirm no imaginary vibration 
was observed for the optimised structure. BDE was calculated from the enthalpy (H) of each species at 298 K 
according to the following formula:

In addition to the BDE data of 206 HVIs, which we reported previously, we newly calculated 510 HVIs by DFT 
calculations (Fig. 2). Various combinations of iodine-containing backbones and leaving groups were calculated 
to increase the diversity of the data sets. A total of 330 cyclic HVIs were calculated: 105 molecules with 35 types 
of leaving groups and three common HVI skeletons for cyclic HVIs, and 225 molecules with 75 types of cyclic 
HVI skeletons and 3 common leaving groups. In addition, 167 acyclic HVIs were calculated: 13 types of sym-
metric HVIs, 101 types of asymmetric HVIs, and 66 types of HVIs with 33 HVI skeletons and 2 leaving groups. 
The 716 types of HVIs were randomly divided into 75% training and 25% test data sets. The training data set 
was first subjected to a grid search by k-partition cross-validation in each machine learning iterative process to 
optimise the hyperparameters (see supplementary information for details). For machine learning, three types of 
structural formulas were converted to SMILES: HVI (neutral), leaving group (radical), and HVI skeleton (radi-
cal). Then, fingerprints were generated using an RDkit (version 2019.09.3)32: Morgan33 (Circular, r = 2, 3 or 4), 
Topological (RDKFingerprint)32, MACCS34, and Avalon35. In each fingerprint, learning from the training data 
set was performed with optimised hyperparameters using Elastic Net (EN)36, support vector (SVR)37, Neural 
Network (NN)38, Random Forest (RF)39, and LightGBM (LGBM)40. The accuracy of the BDE prediction was 
evaluated by comparison with the test data set. Mean absolute error (MAE) and coefficient of determination (R2) 
were used to evaluate the prediction accuracy of the BDE.

BDE = y = H298
radicalA +H298

radicalB −H298
AB

MAE =
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|yiDFT − yiML|

Figure 1.   BDE calculations of HVIs using the DFT method (previous work) and machine learning (this work).
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The training and testing were performed 10 times (random state = 0–9), and accuracy was evaluated by the 
average.

Results and discussion
As a result of the Grid search, we used both the "relu" and "logistic" evaluation functions for NN (see supple-
mentary information for the detailed grid search results). The Avalon fingerprint, which features various factors 
such as atoms, bonds, and ring information, enables highly accurate prediction with an R2 = 0.964 (Fig. 3a) and 

R2 = 1−

∑n
i=1 (yiDFT − yiML)

2

∑n
i=1 (yiDFT − yiaverage_DFT )

2

Figure 2.   Structures of 716 HVIs for the training and test data sets: (a) previously calculated cyclic HVIs, (b) 
additionally calculated 510 HVIs.

Figure 3.   Heat map of accuracy of the prediction by various machine learning algorithm and fingerprints.
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MAE = 1.58 kcal/mol (Fig. 3b) by EN, which was the best score. SVR and NNs also gave high scores. In the Mor-
gan fingerprint, which considers each atom’s neighbourhood, the increasing number of recognised atoms gave a 
lower accuracy, and r = 2 (recognising first and second neighbour atoms) with the EN method giving the highest 
accuracy, similar to Avalon. The Topological fingerprint, which considers atoms and bond types, gave a high R2 
of 0.931 and a small MAE of 2.41 kcal/mol using the SVR method; however, it was inferior to the Avalon and 
Morgan fingerprints. The MACCS fingerprint, which counts 166 specific substructures, yielded the worst results. 
Although it gave an R2 of 0.905 and an MAE of 3.16 kcal/mol by the NN (relu) method, the errors were small 
and acceptable. EN and SVR tended to give good results except for the MACCS fingerprint; on the other hand, 
RF and LGBM, which are decision-tree learning models, predicted BDE with low accuracy in all fingerprints.

Next, we investigated the applicability domain (AD) of these machine learning models41. Verifying the AD 
of the learning model is essential for examining the overfitting of training and the applicable range of uncovered 
inputs. For the AD search, the BDE of 561 HVIs was newly calculated by DFT calculations and classified into four 
groups: group A in which the leaving group and the HVI skeleton were individually included in the training data, 
group B in which the leaving group was included and the HVI skeleton was not included in the training data, 
group C in which the leaving group was not included and HVI skeleton was included in the training data, and 
group D in which neither the leaving group nor the HVI skeleton was included in the training data (Fig. 4). All 
HVIs shown in Fig. 2 were used as training data, and learning by the decision tree, which was an inappropriate 
learning model, was excluded.

The investigation of AD with group A (Fig. 5aA,bA) demonstrated that the Avalon fingerprint maintained 
high accuracy, that is, R2 = 0.932 and MAE = 2.47 kcal/mol with the EN method (Fig. 6A). SVR and NN_r also 
gave R2 = 0.920, 0.920 and MAE = 2.70, 2.89 kcal/mol, respectively. The Morgan (r = 2) fingerprint had a slightly 
lower accuracy with R2 = 0.911 and MAE = 2.79 kcal/mol with the EN method. On the other hand, in the Topo-
logical and MACCS fingerprints, the R2 value was lower than 0.7 and the minimum MAE was 5.44 kcal/mol 
(Topological, EN), indicating a significant decrease in accuracy from the test data in Fig. 3. Therefore, overfit-
ting of the training data occurred in the Topological and MACCS fingerprint. With the molecules of group B 
(Fig. 5aB,bB), which contains new HVI skeletons, the accuracy was slightly decreased but the R2 value of the 
Avalon (Fig. 6B) and Morgan (r = 2) fingerprints maintained a high accuracy of 0.880 and 0.863, respectively. 
In group C (Fig. 5aC,bC), which contains new leaving groups, the Avalon fingerprint could still predict with 
adequate accuracy with R2 = 0.828 with the EN method (Fig. 6C). The Morgan (r = 2) fingerprint predicted the 
BDE value with R2 = 0.532 and MAE = 8.00 kcal/mol, which are much lower than the values in groups A and B, 
indicating that prediction with the uncovered leaving groups was not applicable. We considered that because 
HVI skeletons contain R–I–R’ bonds, the Morgan fingerprint could well recognise the pattern of the structure; 
however, the leaving groups were difficult to learn accurately because of the divergent structures. Finally, we 
verified the AD of group D (Fig. 5aD,bD), a completely new data set, and revealed that the Avalon fingerprint 
predicted the BDE value with R2 = 0.759 and MAE = 5.97 kcal/mol (Fig. 6D). Because the Avalon fingerprint 
considers a larger variety of features and/or generates the fingerprint with a larger number of bits than MACCS, 
topological or Morgan, it was possible to appropriately evaluate the similarity of molecules and predict uncovered 
data with higher accuracy than other fingerprints.

We finally compared the computation time of the DFT method and machine learning method to calculate the 
BDE value of 561 HVIs of group A-D. In our computational environment, the DFT method required 4272 days 
(time converted to per core), i.e., 12 years; on the other hand, machine learning completed the 561 predictions 
from SMILES strings within 3 s, an overwhelming difference in speed.

Conclusions
We constructed a BDE prediction model for HVIs from SMILES strings using machine learning, which does not 
require quantum computations for input data. Avalon fingerprint generation and Elastic Net machine learning 
made it possible to predict BDE with high accuracy and an MAE of 1.58 kcal/mol. This model exhibited a high 
applicable range that can be predicted with an MAE of 5.97 kcal/mol, even for completely uncovered inputs. 
With this model, it is possible to access the predicted value of BDE for HVIs at a remarkable speed compared 
with modern quantum calculations. We anticipate that machine learning will be carried out by many organic 
chemists to facilitate the molecular design and reaction design of HVI.
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Figure 4.   Structures of newly calculated 561 HVIs for AD: (a) table for the explanation of group A–D, (b) 110 
HVIs in group A, (c) 180 HVIs in group B, (d) 102 HVIs in group C, (e) 169 HVIs in group D.
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Data availability
Computational details including the results of grid search, geometry and energy of HVIs by DFT, and the list of 
SMILES and the value of BDEDFT are provided in Supplementary Information.

Received: 9 July 2021; Accepted: 22 September 2021

Figure 5.   (a) Heat maps of the result (R2) of AD. (b) Heat maps of the result (MAE) of AD.

Figure 6.   Correlation plots of the prediction by EN with Avalon fingerprint.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20207  | https://doi.org/10.1038/s41598-021-99369-8

www.nature.com/scientificreports/

References
	 1.	 Szwarc, M. The estimation of bond-dissociation energies by pyrolyric methods. Chem. Rev. (Washington, DC, US) 47, 75–173. 

https://​doi.​org/​10.​1021/​cr601​46a002 (1950).
	 2.	 Kerr, J. A. Bond dissociation energies by kinetic methods. Chem. Rev. 66, 465–500 (1966).
	 3.	 Fu, Y. et al. Quantum-chemical predictions of redox potentials of organic anions in dimethyl sulfoxide and reevaluation of bond 

dissociation enthalpies measured by the electrochemical methods. J. Phys. Chem. A 110, 5874–5886. https://​doi.​org/​10.​1021/​jp055​
682x (2006).

	 4.	 Okajima, M. et al. Generation of diarylcarbenium ion pools via electrochemical C–H bond dissociation. Bull. Chem. Soc. Jpn. 82, 
594–599. https://​doi.​org/​10.​1246/​bcsj.​82.​594 (2009).

	 5.	 Feng, Y., Liu, L., Wang, J.-T., Huang, H. & Guo, Q.-X. Assessment of experimental bond dissociation energies using composite 
ab initio methods and evaluation of the performances of density functional methods in the calculation of bond dissociation ener-
gies. J. Chem. Inf. Comput. Sci. 43, 2005–2013. https://​doi.​org/​10.​1021/​ci034​033k (2003).

	 6.	 Yao, X.-Q., Hou, X.-J., Jiao, H., Xiang, H.-W. & Li, Y.-W. Accurate calculations of bond dissociation enthalpies with density func-
tional methods. J. Phys. Chem. A 107, 9991–9996. https://​doi.​org/​10.​1021/​jp036​1125 (2003).

	 7.	 Kim, S. et al. Computational study of bond dissociation enthalpies for a large range of native and modified lignins. J. Phys. Chem. 
Lett. 2, 2846–2852. https://​doi.​org/​10.​1021/​jz201​182w (2011).

	 8.	 Kita, Y., Tohma, H., Kikuchi, K., Inagaki, M. & Yakura, T. Hypervalent iodine oxidation of N-acyltyramines: Synthesis of quinol 
ethers, spirohexadienones, and hexahydroindol-6-ones. J. Org. Chem. 56, 435–438. https://​doi.​org/​10.​1021/​jo000​01a082 (1991).

	 9.	 Kita, Y. et al. Hypervalent iodine-induced nucleophilic substitution of para-substituted phenol ethers. Generation of cation radicals 
as reactive intermediates. J. Am. Chem. Soc. 116, 3684–3691. https://​doi.​org/​10.​1021/​ja000​88a003 (1994).

	10.	 Zhdankin, V. V. et al. Preparation, X-ray crystal structure, and chemistry of stable azidoiodinanes—Derivatives of benziodoxole. 
J. Am. Chem. Soc. 118, 5192–5197. https://​doi.​org/​10.​1021/​ja954​119x (1996).

	11.	 Kieltsch, I., Eisenberger, P. & Togni, A. Mild electrophilic trifluoromethylation of carbon- and sulfur-centered nucleophiles by a 
hypervalent iodine(III)-CF3 reagent. Angew. Chem. Int. Ed. 46, 754–757. https://​doi.​org/​10.​1002/​anie.​20060​3497 (2007).

	12.	 Phipps, R. J. & Gaunt, M. J. A meta-selective copper-catalyzed C-H bond arylation. Science (Washington, DC, US) 323, 1593–1597. 
https://​doi.​org/​10.​1126/​scien​ce.​11699​75 (2009).

	13.	 Brand, J. P. & Waser, J. Direct alkynylation of thiophenes: Cooperative activation of TIPS-EBX with gold and Broensted acids. 
Angew. Chem. Int. Ed. 49, 7304–7307. https://​doi.​org/​10.​1002/​anie.​20100​3179 (2010).

	14.	 Matsumoto, K., Nakajima, M. & Nemoto, T. Visible light-induced direct S0 → Tn transition of benzophenone promotes C(sp3)-H 
alkynylation of ethers and amides. J. Org. Chem. 85, 11802–11811. https://​doi.​org/​10.​1021/​acs.​joc.​0c015​73 (2020).

	15.	 Nakajima, M. et al. A direct S0→Tn transition in the photoreaction of heavy-atom-containing molecules. Angew. Chem. Int. Ed. 
59, 6847–6852. https://​doi.​org/​10.​1002/​anie.​20191​5181 (2020).

	16.	 Konnick, M. M. et al. Selective CH functionalization of methane, ethane, and propane by a perfluoroarene iodine(III) complex. 
Angew. Chem. Int. Ed. 53, 10490–10494. https://​doi.​org/​10.​1002/​anie.​20140​6185 (2014).

	17.	 Li, M., Wang, Y., Xue, X.-S. & Cheng, J.-P. A systematic assessment of trifluoromethyl radical donor abilities of electrophilic trif-
luoromethylating reagents. Asian J. Org. Chem. 6, 235–240. https://​doi.​org/​10.​1002/​ajoc.​20160​0539 (2017).

	18.	 Yang, J.-D., Li, M. & Xue, X.-S. Computational I(III)-X BDEs for benziodoxol(on)e-based hypervalent iodine reagents: Implica-
tions for their functional group transfer abilities. Chin. J. Chem. 37, 359–363. https://​doi.​org/​10.​1002/​cjoc.​20180​0549 (2019).

	19.	 Matsumoto, K., Nakajima, M. & Nemoto, T. Determination of the best functional and basis sets for optimization of the structure 
of hypervalent iodines and calculation of their first and second bond dissociation enthalpies. J. Phys. Org. Chem. https://​doi.​org/​
10.​1002/​poc.​3961 (2019).

	20.	 Gao, H. et al. Using machine learning to predict suitable conditions for organic reactions. ACS Cent. Sci. 4, 1465–1476. https://​
doi.​org/​10.​1021/​acsce​ntsci.​8b003​57 (2018).

	21.	 Walker, E. et al. Learning to predict reaction conditions: Relationships between solvent, molecular structure, and catalyst. J. Chem. 
Inf. Model. 59, 3645–3654. https://​doi.​org/​10.​1021/​acs.​jcim.​9b003​13 (2019).

	22.	 Fu, Z. et al. Optimizing chemical reaction conditions using deep learning: A case study for the Suzuki-Miyaura cross-coupling 
reaction. Org. Chem. Front. 7, 2269–2277. https://​doi.​org/​10.​1039/​d0qo0​0544d (2020).

	23.	 Kondo, M. et al. Exploration of flow reaction conditions using machine-learning for enantioselective organocatalyzed Rauhut-
Currier and [3+2] annulation sequence. Chem. Commun. (Cambridge, UK) 56, 1259–1262. https://​doi.​org/​10.​1039/​c9cc0​8526b 
(2020).

	24.	 Jorner, K., Tomberg, A., Bauer, C., Skold, C. & Norrby, P.-O. Organic reactivity from mechanism to machine learning. Nat. Rev. 
Chem. 5, 240–255. https://​doi.​org/​10.​1038/​s41570-​021-​00260-x (2021).

	25.	 Kim, H. W. et al. Reaction condition optimization for non-oxidative conversion of methane using artificial intelligence. React. 
Chem. Eng. 6, 235–243. https://​doi.​org/​10.​1039/​d0re0​0378f (2021).

	26.	 Matsubara, S. Digitization of organic synthesis—How synthetic organic chemists use AI technology. Chem. Lett. 50, 475–481. 
https://​doi.​org/​10.​1246/​cl.​200802 (2021).

	27.	 Yu, H. et al. Using machine learning to predict the dissociation energy of organic carbonyls. J. Phys. Chem. A 124, 3844–3850. 
https://​doi.​org/​10.​1021/​acs.​jpca.​0c012​80 (2020).

	28.	 Yu, H. S., He, X., Li, S. L. & Truhlar, D. G. MN15: A Kohn-Sham global-hybrid exchange-correlation density functional with broad 
accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 7, 5032–5051. https://​doi.​org/​
10.​1039/​c6sc0​0705h (2016).

	29.	 Dolg, M., Wedig, U., Stoll, H. & Preuss, H. Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. 
Phys. 86, 866–872. https://​doi.​org/​10.​1063/1.​452288 (1987).

	30.	 Andrae, D., Haeussermann, U., Dolg, M., Stoll, H. & Preuss, H. Energy-adjusted ab initio pseudopotentials for the second and 
third row transition elements. Theor. Chim. Acta 77, 123–141. https://​doi.​org/​10.​1007/​bf011​14537 (1990).

	31.	 Dunning, T. H. Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. 
J. Chem. Phys. 90, 1007–1023. https://​doi.​org/​10.​1063/1.​456153 (1989).

	32.	 RDKit: Open-Source Cheminformatics Software. https://​www.​rdkit.​org/.
	33.	 Morgan, H. L. Generation of a unique machine description for chemical structures—A technique developed at Chemical Abstracts 

Service. J. Chem. Doc. 5, 107–113. https://​doi.​org/​10.​1021/​c1600​17a018 (1965).
	34.	 Durant, J. L., Leland, B. A., Henry, D. R. & Nourse, J. G. Reoptimization of MDL keys for use in drug discovery. J. Chem. Inf. 

Comput. Sci. 42, 1273–1280. https://​doi.​org/​10.​1021/​ci010​132r (2002).
	35.	 Gedeck, P., Rohde, B. & Bartels, C. QSAR—How good is it in practice? Comparison of descriptor sets on an unbiased cross section 

of corporate data sets. J. Chem. Inf. Model. 46, 1924–1936. https://​doi.​org/​10.​1021/​ci050​413p (2006).
	36.	 Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67, 301–320 

(2005).
	37.	 Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
	38.	 Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79, 

2554–2558 (1982).

https://doi.org/10.1021/cr60146a002
https://doi.org/10.1021/jp055682x
https://doi.org/10.1021/jp055682x
https://doi.org/10.1246/bcsj.82.594
https://doi.org/10.1021/ci034033k
https://doi.org/10.1021/jp0361125
https://doi.org/10.1021/jz201182w
https://doi.org/10.1021/jo00001a082
https://doi.org/10.1021/ja00088a003
https://doi.org/10.1021/ja954119x
https://doi.org/10.1002/anie.200603497
https://doi.org/10.1126/science.1169975
https://doi.org/10.1002/anie.201003179
https://doi.org/10.1021/acs.joc.0c01573
https://doi.org/10.1002/anie.201915181
https://doi.org/10.1002/anie.201406185
https://doi.org/10.1002/ajoc.201600539
https://doi.org/10.1002/cjoc.201800549
https://doi.org/10.1002/poc.3961
https://doi.org/10.1002/poc.3961
https://doi.org/10.1021/acscentsci.8b00357
https://doi.org/10.1021/acscentsci.8b00357
https://doi.org/10.1021/acs.jcim.9b00313
https://doi.org/10.1039/d0qo00544d
https://doi.org/10.1039/c9cc08526b
https://doi.org/10.1038/s41570-021-00260-x
https://doi.org/10.1039/d0re00378f
https://doi.org/10.1246/cl.200802
https://doi.org/10.1021/acs.jpca.0c01280
https://doi.org/10.1039/c6sc00705h
https://doi.org/10.1039/c6sc00705h
https://doi.org/10.1063/1.452288
https://doi.org/10.1007/bf01114537
https://doi.org/10.1063/1.456153
https://www.rdkit.org/
https://doi.org/10.1021/c160017a018
https://doi.org/10.1021/ci010132r
https://doi.org/10.1021/ci050413p


8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20207  | https://doi.org/10.1038/s41598-021-99369-8

www.nature.com/scientificreports/

	39.	 Ho, T. K. Random decision forests. in Proceedings of 3rd International Conference on Document Analysis and Recognition. 278–282 
(IEEE, 2021).

	40.	 Ke, G. et al. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural. Inf. Process. Syst. 30, 3146–3154 (2017).
	41.	 Tetko, I. V. et al. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: Focusing on 

applicability domain and overfitting by variable selection. J. Chem. Inf. Model. 48, 1733–1746 (2008).

Acknowledgements
This work was supported by the Institute of Global Prominent Research, Chiba University. Numerical calcula-
tions were carried out in the SR24000 computer at the Institute of Management and Information Technologies, 
Chiba University.

Author contributions
M.N. conceived this research and performed all calculations. All authors discussed and co-wrote the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​99369-8.

Correspondence and requests for materials should be addressed to M.N. or T.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-99369-8
https://doi.org/10.1038/s41598-021-99369-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Machine learning enabling prediction of the bond dissociation enthalpy of hypervalent iodine from SMILES
	Methods
	Results and discussion
	Conclusions
	References
	Acknowledgements


