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1  Introduction

Despite immense technological advances in medicine,
pathogenic organisms remain the source of much human
morbidity and mortality. HIV/AIDS, acute lower respirato-
ry tract infections, hemorrhagic fever, diarrheal diseases,
tuberculosis and malaria are particularly notorious for
high mortality rates [1–3]. The continuous emergence of
new diseases and drug-resistant pathogens has height-
ened the global burden of infectious diseases in the 21st

century [1, 4]. To tackle such biological threats, an
improved understanding of pathogenic microorganisms
and their interactions with host organisms is needed

since pathogen-host molecular interactions have crucial
roles in initiating, sustaining, or preventing infection.
Pathogenic microorganisms communicate with human
cells through interactions with human proteins both on
the surface of the cell and within the interior of the cell.
These interactions allow the microorganisms to enter the
host cell and manipulate cellular mechanisms in order to
use the host cell’s capabilities to their own advantage,
resulting in infection in the host organism. Detailed
knowledge of pathogen-host protein interactions may
enable us to comprehend the mechanisms of infection
and to identify better strategies to prevent or cure infec-
tion [5, 6]. However, the identification of new drug and
vaccine targets for infectious diseases is only possible
when the molecular machinery within individual patho-
genic and host organisms is understood. For instance,
anti-infection therapeutics should target essential genes
in the pathogens which have no homology with human
genes [7].

The very first genome sequencing was published in
1977 with the DNA sequence for the genome of a virus,
bacteriophage phiX174 [8]. Following the sequencing of
the bacterial pathogen Haemophilus influenzae in 1995 [9]
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Saliha Durmuş Tekir and Kutlu Ö. Ülgen

Department of Chemical Engineering, Boğaziçi University, Istanbul, Turkey
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and the human genome in 2000 [10], sequence data for
prokaryotic and eukaryotic genomes have appeared at an
accelerated rate. Today, genomic data for most of the
pathogen and host organisms are available [11]. These
data are used to study individual genes and correspon-
ding proteins as well as to identify intra- and interspecies
connections between proteins. In the light of these
advances, the initial steps towards complete understand-
ing of infection mechanisms through protein interactions
have been recently published. In this review, the efforts to
systematic determination and analysis of protein interac-
tion networks underlying infection pathogenesis are sum-
marized (mainly in a chronological order) to present the
current picture of the research on infectious diseases. 

2  PPI networks related to human pathogens

From a classical perspective, a protein is a functional unit
that specifies a small, but discrete, part of the cellular
physiology of an organism. In the post-genomic era, a pro-
tein is seen to function as an element within network of
its interaction, and its role should be evaluated within this
network together with its interacting partners [12].
Advances in genomics and proteomics have been fol-
lowed by the first large-scale efforts to identify functional
networks of interacting proteins using the two-hybrid
method [13–15], pull-down assays [16, 17], and protein
chips [18]. To increase our understanding of the mecha-
nisms of infection, protein-protein interaction (PPI) net-
works of pathogenic organisms should be determined in
order to capture their functional and structural organiza-
tions. Pathogenic PPI maps reveal biological pathways
and processes, allowing prediction of protein functions
and discovery of new drug and vaccine targets.

The first genome-wide protein interaction networks
were determined for viruses [19–21]. The first large-scale
bacterial networks [22–24] followed successes in eukary-
ote mapping [15, 25–27]. Today, the genome-wide PPI
maps for a number of pathogens and hosts are available in
public databases: BIND [28], BioGrid [29], DIP [30], HPRD
[31], IntAct [32], MINT [33], MIPS [34], Reactome [35] and
STRING [36].

2.1  PPI networks of viral pathogens

Primarily due to their small genome size, whole genome
PPI maps were first constructed for viruses. The first inter-
action map of whole proteome was determined for
Escherichia coli bacteriophage T7, mapping 25 interac-
tions among viral proteins [19]. Subsequently, genome-
wide analyses of important human pathogens, hepatitis C
virus [20, 37], vaccinia virus [21], herpesviruses [38, 39],
and SARS coronavirus [40, 41] were performed through
intraviral PPI maps. 

Hepatitis C virus (HCV), a flaviviridae family member
causing severe liver disease, is a positive-sense single-
stranded RNA virus. It encodes only a single polyprotein
which is co- or post-translationally processed into at least
10 viral proteins [42]. A controlled two-hybrid strategy
based on a random genomic HCV library screen was used
by Flajolet et al. [20], resulting in the identification of
known and novel PPIs. Interactions among structural and
non-structural proteins were revealed in the study, lead-
ing to the conclusion that almost all of the viral proteins
encoded by the genome function in the HCV life-cycle, as
in the cases of other members of the flaviviridae [43]. The
roles of these functional interactions were discussed
within the framework of the constructed genome-wide
interaction map. Interacting domains of the viral polypro-
tein were also identified to shed light on the development
of anti-viral agents [20]. Another genome-wide PPI map of
HCV was then generated for the viral non-structural pro-
teins [37].

Vaccinia virus, well-known as a smallpox vaccine and
also the source of potential recombinant vaccines against
cancer and infectious diseases, is a member of poxviridae
family. It is a large, double-stranded DNA virus. Poxvirus-
es replicate themselves in the cytoplasm of the host cells
without depending on the host’s transcriptional machin-
ery. The large genome of vaccinia virus can potentially
express more than 200 proteins [44, 45]. McCraith et al.
[21] performed a comprehensive two-hybrid analysis of
full-length vaccinia virus proteins and detected 37 PPIs
(including 28 novel interactions) among both character-
ized and uncharacterized proteins. Many of the PPIs
mapped involved one partner which was known to func-
tion in a specific process, coupled with another of
unknown function, allowing functions to be assigned to
previously unannotated proteins within DNA replication,
transcription, virion structure, or host evasion.

Another double-stranded DNA virus family is her-
pesviridae whose members encode 70-170 proteins. Her-
pesviruses cause human diseases such as Kaposi sarco-
ma, B-cell lymphomas, chickenpox, shingles, and naso -
pharyngeal carcinoma [46–48]. The genome-wide intravi-
ral protein interaction maps for three members of this
family, Kaposi sarcoma-associated herpesvirus (KSHV),
varicella-zoster virus (VZV), and Epstein-Barr virus (EBV)
were generated by two-hybrid and analyzed comprehen-
sively to reveal viral network properties [38, 39]. In the
work of Uetz et al. [38], 123 PPIs for KSHV and 173 PPIs for
VZV were identified, the largest dataset published to
date, allowing the construction of the first viral networks.
Topological network analyses of these interactome maps
indicated that the viral networks appear as a single, high-
ly coupled module (Fig. 1) with relatively many hubs and
few peripheral nodes [38] in contrast to scale-free cellular
networks with well-separated functional modules [49, 50].
Just after this study was published, Calderwood et al. [39]
reported the detection of 43 PPIs among EBV proteins.

www.biotechnology-journal.com
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The construction of a PPI map for EBV by merging these
interactions with already published ones resulted in a net-
work of 52 proteins with 60 interactions. This large-scale
network allowed the prediction of functions of uncharac-
terized proteins, further defining viral mechanisms. In
these consecutive studies [38, 39], core proteins common
to all herpesviruses and noncore ones specific to each
strain were investigated thoroughly.

The severe acute respiratory syndrome coronavirus
(SARS-CoV) is a positive-sense single-stranded RNA
virus belonging to the family of the largest RNA viruses
known, coronaviridae. Its genome encodes 14 open read-
ing frames expressing up to 30 structural and non-struc-
tural proteins that have roles in viral replication, assembly,
and other functions for viral amplification in host cells [40,
41, 51]. For a genome-wide analysis of PPIs of SARS-CoV,
interactions between all SARS-CoV proteins were deter-
mined [40, 41] by two-hybrid producing 65 and 40 inter-
actions, respectively. Intraviral PPIs were analyzed to elu-
cidate the functions of the proteins as well as to identify
the essential proteins in viral replication. von Brunn et al.
[40] compared the intraviral network topology of SARS-
CoV with a previously defined viral network [38] and cel-
lular networks [52–54], concluding SARS-CoV network
contained similarities to the KSHV network [38]. Insights
gained into molecular mechanisms and topological net-
work properties provided by the genome-wide analyses of
intraviral PPI maps (Table 1) may be used as a basis for fur-
ther characterization of the functions and mechanisms of
viral proteins, especially for other members of the same
virus families.

2.2  PPI networks of bacterial pathogens

Having successfully built genome-wide PPI maps for
viruses, similar two-hybrid methodology was applied to
construct PPI networks for the larger, more complex
genomes of pathogenic bacteria. The first prokaryotic 
PPI map was built for Helicobacter pylori [22]. Other 
large-scale prokaryotic networks eventually emerged 
for Campylobacter jejuni [55], Treponema pallidum [56]
Mycobacterium tuberculosis [57], and Bacillus subtilis
[58]. Genome-scale analysis of interacting proteins that
assemble into protein complexes were performed for
E. coli [23, 24] and Mycoplasma pneumoniae [59].

The first large-scale intrabacterial PPI map was con-
structed for the human gastric pathogen, and gram-neg-
ative bacterium H.  pylori, identifying 1280 interactions
between 46.6% of all 261 bacterial proteins using the two-
hybrid method [22]. The comparison of these H.  pylori
PPIs with previously described interactions between
orthologous E. coli proteins resulted in prediction of pro-
tein functions within biological pathways such as chemo-
taxis and urease activity,  essential for H.  pylori patho-
genicity. In this study, the interacting domains of H. pylori
proteins were also identified and used in protein function
predictions. Interacting domains may serve in mapping
new functional domains, providing crucial information for
antibacterial drug design studies.

Gram-negative bacterium E. coli, the main cause of
urinary tract infections and a model bacterial system, is
one of the best characterized and early studied organisms

Biotechnol. J. 2013, 8, 85–96
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Figure 1. PPI map of KSHV obtained from IntAct. The figure was drawn in
Cytoscape ver. 2.8.2.

Table 1. Examples of PPI networks of pathogens detailed in the literaturea)

Pathogen name Pathogen type Number Refer-
of PPIs ences

E. coli bacteriophage T7 DNA virus 25 [19]
HCV RNA virus NA [20]
Vaccinia virus DNA virus 37 [21]
H. pylori Gram- bacteria 1280 [22]
E. coli Gram- bacteria 716 [23]
P. falciparum Protozoa 2823 [72]
KSHV DNA virus 123 [38]
VZV DNA virus 173 [38]
E. coli Gram- bacteria 11 511 [24]
EBV DNA virus 43 [39]
SARS-CoV RNA virus 65 [40]
C. jejuni Gram- bacteria 11 687 [55]
T. pallidum Gram- bacteria 3649 [56]
SARS-CoV RNA virus 40 [41]
M. pneumoniae Bacteria without 178 [59]

cell wall
M. tuberculosis Bacteria without 8042 [57]

cell wall
B. subtilis Gram+ bacteria 793 [58]

a) Abbrevations: NA, not available
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[60-62]. However, any large-scale analysis of protein com-
plexes in E. coli was not performed until the studies of
Butland et al. [23] and Arifuzzaman et al. [24]. First, 716
binary interactions involving 83 essential and 152 non-
essential proteins, were identified by pull-down assay
using tandem affinity purification-mass spectrometry,
targeting 1000 ORFs (about one-quarter of the E.  coli
genome) [23]. A small number (15%) of these interactions
were already available in DIP, BIND, and STRING. Ten
newly described E. coli PPIs were found as orthologous to
the interactions reported for H. pylori [22]. The novel inter-
actions were analyzed for functional annotations of
uncharacterized proteins, allocating them within ribo-
some function, RNA processing, RNA binding, and so on.
The graph theoretical analysis of the PPI map of E. coli
revealed scale-free behavior and a high correlation
between connectivity and the degree of conservation.
The genome-wide PPI map of E.  coli K-12 strain with
11 511 interactions among 2667 proteins was then con-
structed by a similar method [24]. The comprehensive
analysis of this large-scale network also validated the
scale-free nature and the connectivity-conservation cor-
relation found previously [23]. Arifuzzaman et al. [24] iden-
tified 107 functional units which have roles in metabolic
pathways, transcriptional and translational machinery,
recombination and flagella assembly. Analysis of PPIs
based on this functional unit categorization provided fur-
ther functional annotations.

The gram-negative, food-borne pathogen C. jejuni is
the major cause of gastroenteritis. The proteome-level
analysis revealed 11687 interactions involving 80% of
1654 C. jejuni proteins [55], the most comprehensive bac-
terial PPI map determined by two-hybrid. A scale-free
network was obtained, removing low confidence-scored
interactions. This PPI map of C. jejuni was used to identi-
fy evolutionarily conserved subnetworks through compar-
ison with protein networks of H.  pylori [22], E.  coli [23] 
and Saccharomyces cerevisiae in DIP. Further analyses of
the identified conserved sub-networks allowed the pre-
diction of new C.  jejuni interactions using orthologous
interactions. This comparative analysis also enabled the
identification of essential C  jejuni genes based on their
orthology to essential genes in other organisms. This
comprehensive interactome data were next used to pre-
dict protein roles and to map functional pathways such as
chemotaxis. 

The causative agent of syphilis, T. pallidum, has one of
the smallest genomes known in extracellular bacteria,
encoding 1039 proteins [63]. The global PPI network of
T.  pallidum, involving 3649 interactions connecting 
726 bacterial proteins, was identified by two-hybrid 
[56]. The high-confidence subset connects 576 proteins
by 991 interactions. In that study, an integrated network
of DNA-metabolism related processes was constructed
and 18 proteins were functionally annotated within this
network. Additionally, various orthologous interactions

were predicted for completely sequenced genomes,
allowing the description of phylogenetically conserved
interaction patterns.

Atypical pneumonia causing human pathogen,
M. pneumoniae also has one of the smallest genomes in
self-replicating organisms with 689 protein-encoding
genes, making it a good model organism to study pro-
teome organization in prokaryotes [64]. A proteome-wide
analysis was performed by tandem affinity purification-
mass spectrometry, identifying 62 homo-multimeric and
116 hetero-multimeric protein complexes [59]. About a
third of the found hetero-multimeric complexes were
observed to interact with proteins forming 35 larger, mul-
tiprotein complexes implying higher level of proteome
organization and protein multifunctionality, allowing
functional annotations of assemblies as well as prediction
of biological roles of individual proteins within the com-
plexes.

M.  tuberculosis causes millions of deaths each year
with tuberculosis infection [65]. After computational
efforts to construct large-scale PPI maps of M. tuberculo-
sis [66, 67], its genome-wide network was identified
experimentally by two-hybrid [57]. This global network is
composed of 8  042 interactions among 2907 proteins
which represent 74.1% of the whole proteome. The topo-
logical properties of the undirected network of these inter-
actions were calculated and compared with those of the
previously defined prokaryotic PPI networks [22–24, 55,
56]. Similar scale-free behavior following a power-law dis-
tribution was observed. In fact, the networks obtained by
pull-down assay [23, 24] differ in values of clustering co -
efficient from the networks obtained by two-hybrid analy-
sis [22, 55, 56]. Moreover, Wang et al. [57] performed a
cross-species network comparison analysis of M. tuber-
culosis interactions with the available large-scale PPI data
[22–24, 55,56] and identified conserved sub-networks.
Additionally, the highly connected critical proteins and
mechanisms of the protein secretion pathways which
have roles in its pathogenesis were revealed. 

A large-scale PPI network was recently constructed
for the gram-positive bacterium B. subtilis (which is rarely
pathogenic) by two-hybrid [58]. This network of 793 inter-
actions involves 287 bacterial proteins. Due to its role as a
model organism, many studies were performed to char-
acterize the biological functions of its PPIs in cellular
processes [68–70]. However, many processes remained
uncharacterized. Hence Marchadier et al. [58] performed
a comprehensive analysis with the integration of tran-
scriptomic data focusing on cell division, cell responses to
stresses, the bacterial cytoskeleton, DNA replication and
chromosome maintenance. These sequential efforts on
construction of large-scale PPI networks for prokaryotes
(Table 1) constitute the first comprehensive description of
the intraspecies mechanisms of the bacterial pathogens. 

www.biotechnology-journal.com
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2.3  PPI networks of protozoan pathogens

The protozoan pathogen Plasmodium falciparum causes
malaria which results in deaths of nearly a million of peo-
ple each year [71]. A comprehensive protein interaction
map of this pathogen was generated by two-hybrid, iden-
tifying a highly interconnected, scale-free network of 2823
interactions within 1267 proteins (~25% of the predicted
P.  falciparum proteins) [72]. In this network, 33% of the
interactions are between two uncharacterized proteins
whereas 49% of the interactions include one such protein.
Bioinformatic analysis of this network yielded functional
annotations of the proteins within the processes; chro-
matin modification, transcription, messenger RNA stabil-
ity, ubiquitination, and invasion of host cells. More
detailed studies of PPIs within P. falciparum are required
in order to unravel its pathogenesis mechanisms thor-
oughly.

2.4  The impacts of pathogenic PPI maps

Despite the increasing rate in the identification of
genome-wide PPI networks, they remain unconstructed
for most pathogens. In the light of accelerating advances
in genomics, proteomics, and interactomics, large-scale
maps for many more organisms are expected to be built in
the near future. Increasing numbers of PPI networks will
allow the comparison of networks across diverse organ-
isms, resulting in generalized conclusions about patho-
genic molecular mechanisms. The first examples of such
comparative studies have been highlighted in the sec-
tions 2.1 and 2.2 above. Integration of several high-
throughput interaction datasets to generate more detailed
networks is also possible, as indicated by recent examples
for the E. coli system [73, 74]. The frequency of such inte-
grated networks is expected to increase, owing to the
large number of diverse data sets. These will be invalu-
able in defining whole proteomic maps of the pathogens.

One of the most striking results of bioinformatic analy-
ses on the constructed PPI maps is the identification of
essential proteins functioning within pathogens. These
proteins should be examined thoroughly to test their
potential as novel therapeutic targets. The exploration of
genome-wide PPI maps of the pathogens permits the
assignment of unannotated proteins to biological path-
ways with function prediction. The proteins annotated to
the host invasion processes may provide a launching
point for pathogen-host interaction studies.

3  Pathogen-human interaction networks

Biochemical interactions of pathogens with their hosts
are necessary to invade the host organism. These con-
nections between pathogens and hosts include interac-
tions between proteins, nucleotide sequences, and small

ligands [75, 76]. However, the protein interactions of
pathogen-host systems have been identified as the most
important, and therefore the most studied, type of
pathogen-host interactions (PHIs) [76, 77]. Since these
interspecies crosstalks determine the pathogenesis,
focusing on the whole PHI system, instead of investigat-
ing a pathogen or host individually, may allow us to
 capture critical mechanisms (i.e. strategies used by
pathogens and host immune responses) during infection
that cannot be provided by traditional methods. 

Due to a lack of sufficient experimental PHI data until
recent years, many computational PHI prediction meth-
ods have been developed [78–84]. These studies focused
mainly on interactions of P.  falciparum and human
immunodeficiency virus (HIV), as these are some of the
most threatening pathogens to humans. Very recently
experiments have been carried out to determine the first
large-scale molecular interactions between human and
viruses [39, 85, 86] and bacteria [87, 88]. As a result of an
increase in data available for pathogen-host systems, PHI-
specific databases have been introduced such as PHI-
base [89], VirusMINT [90], VirhostNet [91], PATRIC [92],
and PHISTO [93]. Although these advances in data
archiving are promising, most data relevant to PHI are still
buried in the biomedical literature. Some rare efforts have
been performed to obtain hidden PHIs from the literature
by text mining [94–96].

3.1  Virus-human interaction networks 

As in the case of intraspecies pathogen PPIs, large-scale
PHI data were generated for viral systems before bacteri-
al systems (Table 2). The first examples are for commonly
observed human pathogens, EBV [39], HCV [85] and
influenza A virus (H1N1 and H3N2) [86] and then recent-
ly for HIV [97].

In Calderwood et al. [39], protein interactions between
herpesvirus, EBV and human were mapped by two-
hybrid in conjunction with EBV intraviral PPI mapping,
providing 173 PHIs between 40 EBV proteins and 112
human proteins. A systematic analysis of these interac-
tome maps of PPIs and PHIs enabled hypotheses of the
roles of EBV proteins in pathogenesis to be generated.
Furthermore, intraspecies protein interaction data for
human were integrated from databases (BIND, DIP, HPRD,
MIPS) and from the literature [52, 53] to analyze the organ-
ization of the human proteins targeted by EBV within
human molecular machinery. It was found that EBV pro-
teins tend to target human proteins which are highly con-
nected (hubs) and central to many paths (bottlenecks) in
the human PPI network. On the other hand, the degree
distribution of the EBV-human protein interaction net-
work could not be fitted to any model because of its
incompleteness (Fig. 2). Attempts to analyze incomplete
maps of PPIs and PHIs are still able to supply a partial
understanding of mechanisms underlying infection. 

Biotechnol. J. 2013, 8, 85–96
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A similar thorough analysis was earlier performed with
herpesviral protein networks of KSHV and VZV and their
interaction with the human proteome [38]. In that study,
protein interactions between herpesviruses and human
were predicted using the interacting orthologs of both
proteins in other organisms [54]. Combined virus-human
networks were constructed by starting with the viral net-
works, adding their human protein targets, and then
adding the cellular interactions among the targeted
human proteins. The topological analyses of the com-
bined herpesviruses-human networks revealed distinct
properties from both viral and human interactomes pro-
viding insights into the impact of the two organisms on
each other [38].

A proteome-wide PHI map for the flavivirus HCV was
mapped by two-hybrid and then by literature mining of
previously found interactions between HCV and human
[85]. A map of 481 interactions between 11 HCV proteins
and 421 human proteins was generated (314 PHIs by two-
hybrid). 65% of this PHI network included novel interac-
tions. The integrated human network of 44 223 PPIs
among 9520 proteins  [98] was used to evaluate the inter-
play between HCV and human. Very similar behavior to
EBV [39] was observed for HCV in terms of attacking hub
and bottleneck proteins in the human network. To assess
the human pathways targeted by HCV, KEGG functional
annotation pathways [99] were used. Four pathways were
detected to be enriched in HCV-targeted human proteins.
Three of them were associated already with HCV clinical

www.biotechnology-journal.com

Table 2. Examples of PHI networks detailed in the literature

Pathogen name Pathogen type Number Number of interacting Number of interacting 
of PHIs pathogen proteins human proteins References

EBV DNA virus 173 40 112 [39]
HCV RNA virus 481 11 421 [85]
Influenza A virus RNA virus 135 10 87 [86]
(H1N1 A/PR/8/34)
Influenza A virus RNA virus 81 10 66 [86]
(H3N2 A/Udorn/72)
B. anthracis Gram+ bacteria 3073 943 1748 [87]
Y. pestis Gram+ bacteria 4059 1218 2108 [87]
F. tularensis Gram- bacteria 1383 349 999 [87]
Y. pestis Gram+ bacteria 204 66 109 [88]
HIV RNA virus 497 16 435 [97]

Figure 2. PHI map of EBV-Human
obtained from PHISTO. Light grey nodes
are human proteins whereas dark grey
nodes are EBV proteins. The figure was
drawn in Cytoscape ver. 2.8.2.



© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 91

syndromes as insulin, TGF-β and Jak/STAT pathways.
The last enriched pathway, focal adhesion, is a novel
observation as a human pathway affected during HCV
infection [85].

Influenza A is a member of negative-sense single-
stranded viruses of orthomyxoviridae family. It is the
sources of all flu pandemics infecting multiple species.
For H1N1 A/PR/8/34 strain of influenza virus, 31 intraviral
PPIs among 10 viral proteins and 135 PHIs between 10
viral and 87 human proteins, most of which are expressed
in primary human bronchial cells, were detected by two-
hybrid [86]. Some of the PHIs constructed had been pub-
lished previously [100]. The topology of the constructed
intraviral network revealed a highly interconnected
nature, as observed previously for other viral networks [38,
101]. In the case of the influenza A-human interaction net-
work, important properties about connectivity of proteins
were observed. First, viral proteins interact with signifi-
cant number of human proteins, reflecting the multifunc-
tionality of the small number proteins encoded in RNA
viruses. Second, each of 24 human proteins connects with
two or more viral proteins forming virus-human multipro-
tein complexes. Additionally, it was observed that viral
proteins generally target human proteins which are high-
ly connected within their own network, as it was the case
in herpesviruses-human system [39]. In Shapira et al. [86]
another PHI network was identified for strain of influenza
virus, H3N2 A/Udorn/72 by the same experimental
approach. This PHI network consists of 81 interactions
between 10 viral and 66 human proteins, reflecting a sim-
ilar nature to the network for H1N1 strain-human system.
This confirms the conserved functions of influenza virus
proteins through strains. Besides direct physical interac-
tions between viral and human proteins, host responses
in bronchial cells  to influenza infection was identified 
by expression profiling, generating a regulatory map of
interactions between influenza proteins and their human
targets. Comprehensive analysis of the physical and reg-
ulatory maps of the PHI system elucidated human mech-
anisms involved in infection. For example, NF-κB, mito-
gen-activated protein kinase, apoptosis, and Wnt signal-
ing pathways are regulated through transcriptional
and/or physical interactions during influenza A infection.

One of the most dangerous human pathogens, HIV,
belongs to positive-sense single-stranded RNA virus fam-
ily retroviridae. Acquired immunodeficiency syndrome-
causing HIV has been extensively studied since its first
observation near the end of the 20th century [102–105].
Similar to other RNA viruses, HIV has a small genome and
depends largely on human cellular machinery to be repli-
cated. Identifying the physical contacts between HIV and
human proteins during HIV replication is critically impor-
tant for a full understanding of HIV infection. Being one of
the most studied pathogens, there are many PHI data for
HIV-1 in VirusMINT and PHISTO. The current PHI data
have been produced mainly by small-scale experiments

[106–108]. Very recently, a global PHI network was gener-
ated for HIV-human protein complexes by affinity tagging
and purification mass spectrometry, producing 497 PHIs
between 16 HIV-1 proteins and 435 human proteins [97].
It was observed that HIV-targeted human proteins are
highly conserved across primates. The novel interactions
identified in that study requires further work to detail
their biological significance in terms of HIV infection.
Besides whole proteins, domains of the interacting pro-
teins were investigated and the enriched domain types 
in targeted human proteins were indicated for facilitat-
ing future structural modeling studies regarding HIV-
human system. The first large-scale interaction networks
between viruses and humans [39, 85, 86, 97] provide cru-
cial clues about the viral infections, verifying the critical
importance of PHI analyses in infection researches.

3.2  Bacteria-human interaction networks 

Until very recent years, the PHI data were scarce for bac-
terial systems because of lack of any large-scale experi-
ments. The first extensive bacterial PHI networks were
identified for important human pathogens, Bacillus
anthracis, Francisella tularensis, and Yersinia pestis [87],
then another high-throughput experimental study gener-
ating PHI data of Y. pestis was reported [88]. 

Gram-positive bacteria B.  anthracis and Y. pestis and
gram-negative bacterium F.  tularensis are respiratory
pathogens causing anthrax, bubonic plague, and acute
pneumonic disease, respectively. Using a two-hybrid
assay, large-scale interaction data were generated
between these bacteria and human producing 3073 PHIs
between 943 B. anthracis proteins and 1748 human pro-
teins, 4059 PHIs between 1218 Y. pestis proteins and 2108
human proteins, and 1383 PHIs between 349 F. tularensis
proteins and 999 human proteins [87]. The first conclusion
of computational analyses of these comprehensive bacte-
ria-human networks, in combination with the integrated
human PPI network from databases BIND, DIP, HPRD,
IntAct, MINT, MIPS, and Reactome, was that bacterial
proteins tend to target hubs and bottlenecks in the human
network. Secondly, the roles of human proteins targeted
by these bacteria were investigated using their gene
ontology annotations [109]. The tendency of all three
pathogens to target human proteins involved in immune
responses was observed as previously reported [110–112].
Besides being effectors of immune signaling, the bacte-
ria-targeted human proteins also have crucial roles in
apoptosis [87]. Thirdly, the conserved protein interaction
modules of the three PHI networks were computed [113,
114] for a more systematic comparative analysis. Con-
served modules revealed common attacks by the bacteri-
al pathogens to same human pathways.

Subsequently, another PHI map was generated for
plague causing Y. pestis by a different two-hybrid strate-
gy by choosing only potential virulence factors as bait pro-
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teins [88]. 204 PHIs were yielded between 66 Y. pestis pro-
teins and 109 human proteins and then 23 previously
reported PHIs were integrated to construct a comprehen-
sive network between Y.  pestis and human. A graph
 theoretic analysis confirms that Y.  pestis preferentially
targets hub and bottleneck proteins in the human intra-
network as concluded previously for viruses [39, 86] and
bacteria [87]. Signaling pathways, crucial for human
immune system, were found to be enriched in human pro-
teins targeted by Y. pestis. These pathways include mito-
gen-activated protein kinase signaling and Toll-like
receptor signaling and also pathways functioning in focal
adhesion, regulation of cytoskeleton, and leukocyte
transendoepithelial migration. Finally, Y. pestis-targeted
human proteins were compared with those targeted by
viruses whose PHI networks were identified previously.
16 of 109 Y. pestis-targeted human proteins are included
in PHI networks of EBV [39] and HCV [85] indicating the
common infection strategies of both viruses and bacteria.
The recent detected first large-scale PHI networks of bac-
teria-human systems [87, 88] contribute largely to the
understanding of bacterial infection mechanisms with
immune evasion.

3.3  Analyses of comprehensive PHI data 

As PHI data available for various pathogens increase, a
need to analyze comprehensive PHI data for all pathogen
types together arises in order to draw a generalized pic-
ture. Although infection mechanisms of individual path -
ogens have been studied through intraspecies pathogen-
ic PPI maps and interspecies PHI maps, a general
overview of infection mechanisms was missing until
analyses of PHI data from different infection agents were
attempted [6, 93].  

In the absence of large-scale PHI networks for bacter-
ial, protozoan and fungal systems, Dyer et al. [6] per-
formed the first global analysis of 10 477 protein interac-
tions between 190 pathogen strains of viruses, bacteria,
protozoa, and human through properties of targeted 1233
human proteins. Diversity of the available PHI data was
not rich, 98.3% of 10 477 PHIs belonged to the virus-
human systems with 77.9% of the interaction data drawn
from HIV – human interaction systems. The importance of
the pathogen-targeted proteins was evaluated within the
intraspecies human PPI network of 75 457 interactions.
These PHI and PPI data were integrated from public data-
bases; MINT, IntAct, DIP, HPRD, Reactome, BIND and
MIPS. Firstly, targeting hub and bottleneck proteins was
concluded to be global behavior for all pathogens, as
reported for individual pathogen strains previously [39,
86–88]. Gene ontology [109] functions enriched in the tar-
geted human proteins by different pathogens revealed
common infection mechanisms. Attack of human tran-
scription factors and key proteins that control the cell
cycle and regulate apoptosis and transport of genetic

material across the nuclear membrane were found to be
among the common viral strategies. Despite its scarcity
(174 interactions in the datset), bacterial PHI data allowed
identification of specific human proteins that function in
the host immune response (via Toll-like receptors and I-κB
kinase/NF-κB signaling cascade) as a target of bacterial
infection strategy [6].

Recently we performed another study with compre-
hensive PHI data to explore common and special infection
strategies for viruses and bacteria [93]. A significant
amount of bacterial PHIs, constituting 36.5% of all data,
was avaiable thanks to Dyer et al. [87]. We analyzed 
23 435 interactions between 3419 proteins of viral, bacte-
rial, protozoan and fungal pathogens (totally 257 strains)
and 5210 proteins of human obtained from PHISTO
(www.phisto.org). To generate the intra species human
protein network, 194006 PPIs were integrated from
BioGrid, DIP, IntAct, MINT and Reactome. The significant
amount of bacterial and viral PHI data allowed us to focus
on comparisons between their specific infection mecha-
nisms. Firstly, attacking hub and bottleneck proteins in
the human PPI network was verified as a common infec-
tion strategy of both bacteria and viruses. Furthermore,
viruses were observed to target human proteins of much
higher connectivity and centrality values in comparison
to bacteria. Secondly, gene ontology enrichment analysis
of the targeted human proteins verified the special mech-
anisms of bacteria and viruses use to manipulate of
human immune defense mechanisms and cellular
processes, respectively (as reported in Dyer et al. [6] but
relying on lower amounts of PHI data). A first attempt at
the  investigation of the human proteins targeted by both
bacteria and viruses revealed that attacking human meta-
bolic processes is a common strategy used by both
pathogens during infections [93]. Global analysis of PHI
data provides insights into the strategies adapted by bac-
teria and viruses to subvert human cellular processes and
immune system for the infection. However, large-scale
PHI networks for pathogens other than bacteria and virus-
es are still undetermined, leaving their pathogenesis
mechanisms to be relatively uncharacterized.

3.4  The impact of PHI Networks

Research on infectious diseases through PHIs has accel-
erated within the post-genomic era (Fig.  3). However,
large-scale PHI networks have been infrequently studied.
Efforts to identify and analyze large-scale PHIs for diverse
pathogen types would be expected to parallel the accel-
eration of biotechnology and bioinformatics research.
Increasing amounts of data available will allow more com-
plete data sets to be compiled, resulting in characteriza-
tion of topological properties of PHI networks. The first
attempt to fit the degree distribution of EBV-human inter-
action network failed due to scarcity of data [39]. On the
other hand, bioinformatic analyses of the pathogen-tar-
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geted human proteins succeeded in unraveling some
infection strategies such as targeting human hubs and
bottlenecks, subverting cellular processes for the usage of
pathogens’ own advantages and evasion of immune
defenses [6, 39, 85, 87, 88, 93]. The huge amount of data
expected to be generated for PHI systems will enable us
to capture all details of infection processes. potentially
leading to the development of  new and more efficient
therapeutics.

Conventional treatments for infectious diseases often
aim to kill pathogens by targeting their essential proteins.
This approach unfortunately forces the pathogens to
evolve for survival and consequently selects resistant
strains (especially in the case of RNA viruses with a high
mutation rate). To fight drug-resistant patho gens, novel
alternative therapeutics are emerging which target host
proteins required by pathogens to replicate and persist
within the host organism. If these host factors are indis-
pensable for pathogens, but not essential for host cells,
their silencing may inactivate pathogenic activity, allow-
ing them to serve as therapeutic targets [4, 115]. In the
light of PHI studies, some human factors required by viral
and bacterial pathogens have been determined for HIV
[115-119], HCV [120], West Nile virus [121], Influenza virus
[122, 123], and M. tuberculosis [124] in recent years.

Despite the efforts reviewed here, the use of systems
biology approaches to investigate PHI is still considered
relatively undeveloped. The availability of new PHI net-
work data, together with further topological and function-
al analyses of pathogen-host systems, are expected to
shed more light on infection mechanisms and novel ther-
apeutic targets for infectious diseases in the near future.

We particularly thank Dr. Tunahan Çakır for critical read-
ing of the manuscript and for his contributions to Figure
3. The financial support was provided by the Research
Funds of Bogaziçi University, through project 5554D. The
doctoral scholarship for Saliha Durmuş Tekir is sponsored
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