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ABSTRACT
Objective: To classify wear and non-wear time of
accelerometer data for accurately quantifying physical
activity in public health or population level research.
Design: A bi-moving-window-based approach was
used to combine acceleration and skin temperature
data to identify wear and non-wear time events in
triaxial accelerometer data that monitor physical
activity.
Setting: Local residents in Swansea, Wales, UK.
Participants: 50 participants aged under 16 years
(n=23) and over 17 years (n=27) were recruited in two
phases: phase 1: design of the wear/non-wear
algorithm (n=20) and phase 2: validation of the
algorithm (n=30).
Methods: Participants wore a triaxial accelerometer
(GeneActiv) against the skin surface on the wrist
(adults) or ankle (children). Participants kept a diary to
record the timings of wear and non-wear and were
asked to ensure that events of wear/non-wear last for a
minimum of 15 min.
Results: The overall sensitivity of the proposed
method was 0.94 (95% CI 0.90 to 0.98) and specificity
0.91 (95% CI 0.88 to 0.94). It performed equally well
for children compared with adults, and females
compared with males. Using surface skin temperature
data in combination with acceleration data significantly
improved the classification of wear/non-wear time
when compared with methods that used acceleration
data only (p<0.01).
Conclusions: Using either accelerometer seismic
information or temperature information alone is prone
to considerable error. Combining both sources of data
can give accurate estimates of non-wear periods thus
giving better classification of sedentary behaviour. This
method can be used in population studies of physical
activity in free-living environments.

INTRODUCTION
Increasing evidence has shown that physical
activity (PA) has strong positive associations
with health.1–6 For example, there are signifi-
cant health benefits from engaging in at
least 150 min of moderate-intensity activity or
75 min of vigorous-intensity activity per

week.6 On the contrary, sedentary lifestyles
and physical inactivity have proved to be the
major contributors to childhood obesity, car-
diovascular disease and type 2 diabetes melli-
tus in adults.7 8 Accurate and reliable
assessment of PA is crucial to investigating
and understanding the relationship between
PA and health.9 10 The complex nature of PA
in a free-living setting makes it difficult to
accurately measure all of its aspects and
assess the impact on outcome parameters,
such as energy expenditure,2 outside labora-
tory settings.2 9–12 A robust and comprehen-
sive measure of PA that is applicable to
surveillance, epidemiology, clinical and inter-
vention research, still does not exist.13

Ideally, a valid, feasible assessment of PA
should be conducted with minimal discom-
fort to the participant.2 In medical and sport
science research, body-worn accelerometers
are used to provide objective measurements
of PA duration, frequency and intensity.

Strengths and limitations of this study

▪ This study combines movement information and
skin surface temperature information to signifi-
cantly improve the global performance of wear
and non-wear classification in monitoring phys-
ical activity.

▪ This study is one of the very few studies on
identifying wear time and non-wear time events
using raw accelerometry data.

▪ This study conducted high validity in classification,
which might be especially important for cohort
studies that investigate the link between baseline
physical activity assessment and health risks and
disease outcomes over long time periods.

▪ This technique is only applicable to accelerometers
with a temperature sensor, however, such types of
accelerometers are gaining popularity.

▪ The temperature threshold identified in this study
is UK-specific, repeated validation of optimal
temperature thresholds should be undertaken in
countries of different climates.
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However, accelerometers collect data continuously even
during periods of non-wear (ie, periods when partici-
pants may not be wearing their monitor, such as during
sleeping, showering and aquatic activities, and periods
when participants forget to reattach a monitor).
Therefore, it is challenging to distinguish times of seden-
tary behaviours (eg, watching television) and times of
non-wear.14–18 Misclassification of wear time and
non-wear time will result in unnecessary loss of valuable
data and errors in estimates of PA level, which, in turn,
could lead to errors in estimates of energy expenditure,
and thus bias in understanding the relationship between
PA patterns and health outcomes.
Automated estimation of accelerometer wear time and

non-wear time is particularly desirable for large cohort
studies, but such algorithms have not yet been standar-
dised and their accuracy needs to be enhanced.15 16 19

A number of previous studies have sought to classify
non-wear time. For example, estimation of wear time
and non-wear time for dual-axis accelerometers, such as
the Omron HJ-720-ITC pedometer, has been conducted
by recording daily step counts.20 However, such a rule of
thumb was only applicable to pedometers and only in
terms of days, with no way of identifying a finer time
resolution, such as minutes. A wide range of criteria
have been suggested to automatically detect wear time
and non-wear time for uniaxial accelerometers. For
example, a recommendation from ActiGraph is to con-
sider bouts of consecutive zero activity ‘counts’ for 20
min or more as non-wear, but the definition on the
length of the bouts of consecutive zero activity ‘counts’
as non-wear can be arbitrary.16 18 21–23 In addition, the
classification of non-zero counts can be made problem-
atic by artefactual movements during non-wear periods;
for example, a monitor left unworn in a moving car
could record acceleration data similar to that of a
monitor worn by a passenger in a moving car, or pro-
longed periods of motionless sitting may appear
non-wear. Hutto et al19 have estimated wear and
non-wear time for the energy expenditure and step
count monitor, Actical accelerometer, in older adults.
Their estimates of wear and non-wear time were based
on different time lengths of consecutive zeroes, such as
60, 90, 120, 150 and 180 min, in comparison with esti-
mates derived from log sheets. Their study indicated
that using at least 120 min of consecutive zero counts
can provide dependable estimates of wear and non-wear
time in older adults wearing the Actical accelerometer.19

To our knowledge, currently, only two methods have
been proposed to classify wear time and non-wear time
for triaxial accelerometers.24 Using the wrist-worn, tri-
axial STMicroelectronics (GENEA) accelerometer, the
first method was based on SD of the three axes of accel-
eration for consecutive blocks of 30 min25 and modified
60 min.26 A similar procedure was applied to the triaxial
GeneActiv accelerometer for detecting non-wear time
events.27 The second method of classifying non-wear
time, proposed by Choi et al,16 24 used the wrist-worn,

triaxial Actigraph GT3X and was intended to improve
the accuracy of a previously developed algorithm
designed for the uniaxial Actigraph GT1M monitor.
This method used a 90 min time window (as detection
criteria for wear time and non-wear time classification)
and vector magnitude counts (ie, three axes measure-
ments), and was reported to reduce misclassification of
sedentary behaviour as non-wear compared with the pre-
vious (uniaxial) algorithm. However, such estimations
may misclassify non-wear periods that are shorter than
the minimum length of the algorithm criteria (eg,
<90 min) or wear periods (eg, external movement but
no meaningful PA has occurred).28

In terms of types of accelerometry data, the majority
of the existing automated methods for classifying wear
time and non-wear time events focused on the ‘count’
accelerometry data. A count is a manufacturer-
dependent output value, an arbitrary unit aimed to be
proportional to the average acceleration over a selected
time interval (epoch).29 Counts are inherently neither
meaningful nor interpretable. It is often unclear what a
count truly means, physically or physiologically, as the
underlying data processing method and assumptions are
often concealed from the end user. Moreover, the
process of computing the counts often leads to loss of
valuable information. In contrast, only a very few studies
have been based on raw accelerometry (eg, movement
data in X-Y-Z directions in g).25 The raw accelerometry
data facilitate easier interpretation to enable the end
users to gain greater control over data processing, so
that more efficient methods can be developed.
Therefore, there are clear demands to develop an auto-
mated classification algorithm to define wear time and
non-wear time that minimises the potentials for mis-
classification error due to intermittent monitor removal
and short periods of sedentary time.
In this paper, we develop an automated wear time and

non-wear time estimation algorithm that uses objective raw
acceleration data in combination with a novel measure—
surface skin temperature—in order to enhance the detec-
tion of intermittent monitor removal and improve overall
classification performance.

MATERIALS AND METHODS
Study participants
Fifty participants were recruited in two phases.
Participants in phase 1 were used to design the algorithm
(including seeking optimal parameters), and those in
phase 2 to validate the algorithm. The participants wore
the accelerometers in their own homes while attending
to their normal daily activities, and were instructed to
wear the accelerometers firmly on the skin surface even
during sleep. They were asked to wear or remove acceler-
ometers at intervals lasting at least 15 min. Participants
synchronised the clocks they used with the clocks in the
accelerometers before wearing them, and kept diaries of
the exact timings of accelerometer wear and removal,
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which were compared with the predictions derived by the
classification method for performance evaluation.
Parents completed and maintained the diaries for those
children aged under 10 years. The study had approval
from the Multicentre Ethics Committee for Wales and
participants gave consent (or parental assent in the case
of children) to be included in the study.

Accelerometer: GeneActiv watch
In this study, we used the triaxial accelerometer watch—
GeneActiv, produced by ActivInsight Ltd. This monitor pro-
vides the end user with raw accelerometry data (ie, unfil-
tered acceleration signals) in three axes (forward/
backward, up/down, left/right), therefore offering the
end user greater control over data processing, and a
measure of surface skin temperature. The GeneActiv was
chosen because it is portable, non-intrusive and water-
proof, and therefore suitable for continuous 24 h use in
free-living conditions. The size of the GeneActiv is 43
mm×40 mm×13 mm, and the weight is 16 g (without
strap). The unit can be worn on the ankle by young chil-
dren to ensure it remains in place and is not easily or
unwittingly removed, or by working adults when employ-
ment regulations restrict the wearing of watches. These
properties make it particularly suitable for monitoring
both child and adult PA. Its reliability and validity have
been extensively assessed.27 30 The GeneActiv contains suffi-
cient memory to store up to 60 days of data when sampling
at 10 Hz frequency, or 7 days at 100 Hz. When activated,
the GeneActiv continuously tracks and stores activity infor-
mation whether or not it is worn. An example of its output
is illustrated in online supplementary table S1.
For the purposes of this study, the accelerometer was

worn on the wrist by adults and, in order that it not be
easy to remove, on the ankle by children. The require-
ment for wearing or removing accelerometers at inter-
vals lasting at least 15 min by participants is to make sure
the accelerometer temperature measurements correctly
reflect the changes of events—wear and non-wear,
respectively.
All accelerometers had resin straps. Acceleration was

sampled at 100 Hz (maximum sampling frequency) and
data were stored in gravity units for offline analyses.
There are no missing data in the data sets collected
from the two phases.

Time series analysis and algorithm development
Temperature only
Our pilot data showed that patterns of accelerometer
temperature vary systematically along with wear and
non-wear status (see online supplementary figure S1). In
most cases, temperatures increased during wear, and
decreased after the accelerometer was removed. This
was, therefore, the basis for our classification algorithm.
Three steps are required to examine the lingering

effects of preceding temperature values. The first step is
to use the autocorrelation function (ACF) to examine
the patterns of lingering effects of preceding

temperatures. The ACF measured the internal associ-
ation between temperature observations at different
times (see online supplementary figure S2). For
example, choosing an arbitrary spot in PA time, one
might ask: “On the average, what does the temperature
time series look like in 30 min time of PA, compared to
now?” This is a question about how strong the internal
association within the series is at a period of 30 min.
Such an association could be very strong and positive
(ie, the series in 30 min is similar to now), or be very
strong and negative (ie, the series in 30 min is very dis-
similar to now) or there could be a weak or no relation-
ship (ie, there is no identifiable association). ACF
provides an important guide to the persistence in an
accelerometer temperature time series. It quantifies the
degree of internal association between observations at
different times using a value within the interval (−1 to
1): a value of +1 indicates a strong positive association, a
tendency for a system to remain in the same state from
the past values of one observation to now; −1 indicates a
strong negative association, a tendency for a system to
evolve in the different state at one observation from the
past values; and 0 indicates no association between one
observation and its past values. The distinct cut-off of
the ACF of the temperature time series suggests that a
moving average model might be appropriate for these
data, particularly, the accelerometer temperature was
heavily subjected to noise or rapid fluctuations caused
by routine activities (eg, cooking with hot implements,
or washing hands with cold or hot water). In the second
step, the low-pass filter (moving average model) was
used to smooth the data and remove short-term tem-
perature fluctuations. The moving average was deter-
mined using the mean of the previous historical
temperature sample (K). It can be considered as a
moving window technique, with output obtained by
multiplying the signal by a rectangular window, the
height of which is 1/K, which moves as the time step is
updated (see online supplementary figure S3). In the
third step, temperature data were then used to construct
a classifier for detecting the trends. Let Tt represent the
smoothed accelerometer temperature at time t. First, a
threshold temperature T0 was defined, so that above the
T0, the accelerometer was classified as wear. For a tem-
perature below the T0, the classification was carried out
based on the trend of temperature changes. In general,
if there was an increasing trend, the accelerometer was
classified as wear; if the trend was decreasing, the classifi-
cation was non-wear. The key and difficult task was to
identify the trends of the temperature changes that are
not masked by short-term fluctuations.
Our detections of ‘increasing’ or ‘decreasing’ trends

were based on two moving average windows (bi-windows)
of temperature (see figure 1). To assess whether the
temperature at time t (Tt) followed an increasing or
decreasing trend, the temperature Tt was compared with
the previous temperature Tt�wsat time t−ws, where ws

represented the size of window W1. Note that the value

Zhou S-M, et al. BMJ Open 2015;5:e007447. doi:10.1136/bmjopen-2014-007447 3

Open Access



of Tt was the average of the temperatures within the
window W1, and the value of Tt�ws the average of the
temperatures within the window W2. The size of window
W2 was the same as the W1. Then, classification rules
based on temperature alone are as depicted below.
1. If Tt . T0 the accelerometer is classified as ‘wear’.
2. If Tt , T0 and if Tt . Tt�ws , the trend of the tem-

perature change is assessed as increasing, and the
accelerometer is classified as ‘wear’.

3. If Tt , T0 and if Tt , Tt�ws , the trend of the tem-
perature change is assessed as decreasing and the
accelerometer is classified as ‘non-wear’.

4. If Tt , T0 and Tt ¼ Tt�ws , the status of the acceler-
ometer remains unchanged.

Acceleration only
With the seismic acceleration alone in the three axes,
the wear time and non-wear time was detected in previ-
ous studies.25 27 A block of accelerometer was classified
as a non-wear if the SD of acceleration values in
the current moving window was less than 13 mg
(1 mg=0.00981 m/s2) and the value range less than
50 mg for at least two out of three axes. These thresh-
olds were chosen according to acceleration signals for a
large cohort study using GeneActiv accelerometers.27

Combining temperature and acceleration
We combined accelerometer temperature and acceler-
ation data (CTA) to develop the automated wear time
and non-wear time detection algorithm as follows:
1. An event was classified as non-wear if the tempera-

ture Tt was below the T0 and the SD of seismic accel-
eration values in the current moving window W1 was
less than 13 mg for the three axes.

2. An event was classified as wear if the temperature Tt

was above the T0. The algorithm under this case is
very useful in some scenarios, such as watching TV,
sleeping, etc, where movement would be ‘low’ while
accelerometer temperature could be ‘high’.

3. For cases where the temperature was below T0, but
the SD of seismic acceleration values was greater than
13 mg, the classification of wear or non-wear was
made in terms of the smoothed temperature trends
(as described above in case 1).
Figure 2 depicts the pseudo codes for implementing

the CTA method.
In this study, we set ws (the size of the window) at

1 min for the algorithms of temperature only, acceler-
ation only and CTA described above, and moving
window is updated forward at every time step by 1 s. It is
noted that the size of moving window in this study is dif-
ferent from the ones in previous studies.25–27 In add-
ition, although it is required to wear or remove
accelerometers at intervals that last at least 15 min, these
first 15 min data about each wear or non-wear event are
included in the study.

Parameter estimation and validation of the proposed
method
The algorithms relied on certain parameters for which
values were provided by the user, and the classifier’s per-
formance was compared with known periods of wear
and non-wear from the time-log diaries. These two exer-
cises were conducted on separate data sets in this study.
In each of the following investigations, our data set from
phase 1 was used to design the algorithm (to estimate
the optimal parameters), and data set from phase 2 was
used as an independent assessment of the performance
of the proposed method.
The classifier’s performance was assessed in terms of

sensitivity (the proportion of actual wear events correctly
identified by our model), specificity (the proportion of
actual non-wear events correctly identified by our
model), positive predictive value (PPV) (the proportion of
predicted wear events that were truly wear), negative pre-
dictive value (NPV; the proportion of predicted non-wear
events that were truly non-wear) and classification rate
(CR), where the CR was calculated as the ratio of true
positive rate (TPR) and true negative rate to the total
sampling points.
In considering the acceleration threshold parameter

to be fixed at the standard value (from previous
studies25), two parameters needed to be defined for our
algorithm: the size of the moving window ws, and the
temperature threshold T0. Since our aim was to develop
a classifier that can be applied in real time with minimal
restrictions, we fixed a priori the value of ws (size of the
window) at 1 min (ie, using 1 min of PA data points to
predict the current accelerometer status). This left only
the T0 to be estimated from the phase 1 data.
Clearly, the classification performance depended on

T0, with an important trade-off between sensitivity and
specificity. In general, it is intuitive that using a high
temperature threshold will lead to good specificity
(non-wear is unlikely to be misclassified as wear) but
poor sensitivity (wear will often be incorrectly classified
as non-wear). In contrast, using a low temperature

Figure 1 Bi-moving-window for classifying trends in

temperature change: W1 represents the window at time t, and

the time period over which the observed temperature at t is

smoothed (moving window). W2 represents the window at time

t−ws. A difference between (smoothed) temperatures

calculated in each window is used to indicate an increasing or

decreasing temperature trend (avoiding spurious conclusions

due to very short-term fluctuations). Both W1 and W2 are of

equal size ws.
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threshold will lead to high sensitivity (wear is unlikely to
be misclassified) but at the expense of low specificity
(non-wear will often be misclassified). To strike a
balance, a receiver operating characteristic (ROC) plot
was constructed for the relationship between sensitivity
and 1-specificity, generated by applying the algorithm
with a range of T0 values (15–38°C) to the pooled wear/
non-wear events from the training phase 1 data set. The
top left corner of the ROC plot represents the perfect

classification with 100% sensitivity (no false negatives)
and 100% specificity (no false positives). Therefore, the
best value of T0 was identified as that point on the ROC
curve nearest the top left coordinate (ie, high sensitivity
without losing too much specificity)31 (see figure 3),
which would give the highest sum of sensitivity and
specificity.
After identification of the parameter T0, the

Temperature alone based method in (1) and CTA method

Figure 2 Pseudo codes for proposed algorithm to classify wear and non-wear events based on acceleration, temperature and

trends in temperature.
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in (3) with the optimal T0 were applied to the validation
samples (phase 2, n=30) separately. The algorithm
based on only acceleration in (2) does not need more
hyperparameters to be identified, except the known
threshold. The sensitivity, specificity, and PPV and NPV
values were calculated for all events on an individual
participant level, and these values were averaged (with
95% CIs) to form our overall assessment of model per-
formance. Comparisons of performance were made
between subgroups of children and adults, and between
males and females (with 0.01 significance level), using
Behrens-Fisher statistical test3 32 (for which no assump-
tions of equal variances were made).

RESULTS
Data collection
The 50 participants, 30 females and 20 males, included
23 children (aged under 16 years) and 27 adults (aged
17 years and older). The 20 participants (including
7 children) were recruited in phase 1 and the rest
recruited in phase 2. Our algorithm aims to classify the
wear time and non-wear time events in seconds. Once
an accelerometer was switched on, the data collection
started to record its working condition, no matter
whether it was worn by a participant or not. The total
728.6 h of working conditions of the accelerometers
allowed us to collect 2 622 974 accelerometer data
samples in seconds for this study, among which the
wearing periods had 716 983 samples (199.2 h) and
non-wear periods 1 905 991 samples (529.4 h).

Temperature autocorrelation
The ACF characterises the persistence of the state of
observations within time series. The accelerometer tem-
peratures demonstrate the strong ‘increasing’ or ‘decreas-
ing’ trends along with the variations of the wear time and
non-wear time status. The left plot of online

supplementary figure S2 depicts an example of time
series of the accelerometer temperatures with over 15 h,
while the right plot shows the corresponding empirical
autocorrelations of this time series (the correlogram), in
which the dashed lines are the 95% confidence bands.
The autocorrelation at lag zero is always one. This is
because a series is always perfectly correlated with itself.
At lag 1–128, the autocorrelation values are very close
to 1, which means that temperatures given at 2 min inter-
vals are very similar to each other (either before or after).
Indeed, all autocorrelation up to lag 982 (seconds) are
greater than 0.8, indicating highly linear association up
to 16.4 min apart. At the 95% confidence level, the auto-
correlations at lag 1 up to 111.9 min demonstrate statistic-
ally significant positive associations. A different picture
emerges when looking at instances of time separated by a
larger number of lags. The autocorrelation taken
115 min apart is −0.013. This indicates that the observa-
tions of temperature 115 min apart are dissimilar.

Algorithm temperature threshold
Inspection of the ROC curve for the algorithm’s per-
formance (on phase 1 data) resulted in an optimal esti-
mate of T0=26°C, achieving the performance of
sensitivity 0.954, specificity 0.906 and overall CR 0.941
(see figure 3).

Validation performance: sensitivity and specificity
Averaging the classification performances over all partici-
pants in the validation set, table 1 summarises them in
terms of CR, sensitivity, specificity, PPV and NPV. The pro-
posed CTA classifier achieved an overall sensitivity of 0.94
(95% CI 0.90 to 0.98), specificity of 91% (95% CI 0.88%
to 0.94%), PPV as 0.81 (95% CI 0.75 to 0.88) and NPV as
0.95 (95% CI 0.89 to 1.00). In terms of average misclassifi-
cations per day, the proposed CTA method achieved 53.1
misclassified minutes per day, while the acceleration alone
method generated 257 misclassified minutes per day and
the temperature alone method produced 468 misclassified
minutes per day. For all performance characteristics, the
statistical t test showed that the proposed CTA method
achieved considerable improvements on the classification
performance over the existing methods that use acceler-
ation alone (p=0.009) or temperature alone (p<0.001).

Children versus adults
Table 2 summarises the classification performances for
children versus adults. In children, the proposed CTA
method led to a sensitivity of 0.96 (95% CI 0.94 to 0.99)
and specificity of 0.93 (95% CI 0.90 to 0.96). As a com-
parison, the acceleration alone classifier25 achieved sen-
sitivity 0.76 (95% CI 0.6 to 0.93) and specificity 0.89
(95% CI 0.84 to 0.94), the temperature alone classifier
generated sensitivity 0.96 (95% CI 0.93 to 0.99) and spe-
cificity 0.64 (95% CI 0.59 to 0.69). In adults, the CTA
method sensitivity was 0.93 (95% CI 0.88 to 0.98) and
specificity 0.88 (95% CI 0.82 to 0.94). Thus, the CTA
method performed equally well for the groups of

Figure 3 Receiver operating characteristic curve for seeking

optimal temperature threshold (FPR, false positive rate; TPR,

true positive rate).
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children and adults. No statistically significant difference
was found between classification of children’s events
(wear time and non-wear time) and adults’ events by the
CTA method (p=0.36).

Females versus males
Table 3 summarises the classification performances for
females versus males. For females, the CTA method led
to a sensitivity of 0.92 (95% CI 0.86 to 0.99) and specifi-
city of 0.91 (95% CI 0.86 to 0.96). As a comparison, the
acceleration alone classifier achieved sensitivity 0.88
(95% CI 0.73 to 1.00) and specificity 0.88 (95% CI 0.78
to 0.97), the temperature alone classifier generated a
sensitivity 0.92 (95% CI 0.85 to 0.99) and specificity of
0.62 (95% CI 0.54 to 0.70). For males, sensitivity was
0.95 (95% CI 0.91 to 1.00) and specificity 0.91 (95% CI
0.87 to 0.95). No statistically significant difference was
found between classification of females’ events (wear
time and non-wear time) and males’ events by the CTA
method (p=0.75).
It is noteworthy that, no doubt, the children have dif-

ferent patterns of PA from those of adults,33 and
females’ patterns of PA could be different from males’
patterns as well,34 but the events of wear time and
non-wear time variations were not found to be signifi-
cantly different between these corresponding groups in
our study.

DISCUSSION
The clinical consequence of misclassification of acceler-
ometer wear time and non-wear time would be overesti-
mation or underestimation of the intensity level of PA
and energy expenditure, thus misleading the interpret-
ation of the relationship between PA and health out-
comes.16 This study provides a simple and efficient
methodology on use of short time periods of consecutive
data blocks (1 min) to accurately predict triaxial acceler-
ometer wear time and non-wear time status. We have
rigorously assessed the method, which shows that the
traditional acceleration alone method tended to predict
non-wear events better than wear events, while tempera-
ture data alone predicted wear but not non-wear well.
Our proposed CTA method generated an average sensi-
tivity of 95% and specificity of 91%, and hence per-
formed very well for both categories—significantly
better than the methods of acceleration (p=0.009) and
temperature (p<0.001) alone.
Using time series analysis would provide a novel way of

employing multiple sensors (those of acceleration and
temperature), which can improve the estimation of the
accelerometer status. By generating more accurate time
spent in sedentary and active behaviours in free-living
conditions, this method will benefit population studies
of PA to gain correct insights into PA and its impact on
health, particularly paediatric population studies to

Table 1 The performance of classifying wear and non-wear events: mean and 95% CIs

Method CR (95% CI)

Sensitivity

(95% CI)

Specificity

(95% CI) PPV (95% CI) NPV (95% CI)

The proposed CTA

method

0.95 (0.92 to 0.97) 0.94 (0.90 to 0.98) 0.91 (0.88 to 0.95) 0.82 (0.76 to 0.88) 0.95 (0.89 to 1.00)

The temperature alone 0.75 (0.67 to 0.82) 0.93 (0.90 to 0.98) 0.64 (0.59 to 0.69) 0.53 (0.36 to 0.69) 0. 95 (0.89 to 1.00)

The acceleration alone 0.80 (0.71 to 0.90) 0.76 (0.64 to 0.89) 0.89 (0.84 to 0.94) 0. 75 (0.67 to 0.83) 0.74 (0.60 to 0.89)

CR, classification rate; CTA, combining temperature and acceleration; NPV, negative predictive value; PPV, positive predictive value.

Table 2 The performance of classifying wear and non-wear events for children versus adults

Method CR (95% CI)

Sensitivity

(95% CI)

Specificity

(95% CI) PPV (95% CI) NPV (95% CI)

Children (5–16 years)

The proposed CTA

method

0.96 (0.95 to 0.98) 0.96 (0.93 to 0.99) 0.94 (0.91 to 0.97) 0.79 (0.70 to 0.89) 0. 97 (0.93 to 1.00)

The temperature

alone

0.73 (0.64 to 0.82) 0.96 (0.93 to 0.99) 0.64 (0.59 to 0.69) 0.45 (0.24 to 0.67) 0.97 (0.93 to 1.00)

The acceleration

alone

0.79 (0.65 to 0.92) 0.73 (0.55 to 0.92) 0.89 (0.85 to 0.94) 0.69 (0.60 to 0.79) 0.75 (0.55 to 0.95)

Adults (≥17 years)

The proposed CTA

method

0.93 (0.88 to 0.98) 0.90 (0.82 to 0.99) 0.88 (0.82 to 0.94) 0.86 (0.78 to 0.93) 0.92 (0.78 to 1.00)

The temperature

alone

0.77 (0.64 to 0.9) 0.90 (0.82 to 0.99) 0.65 (0.55 to 0.75) 0.63 (0.37 to 0.9) 0.92 (0.79 to 1.00)

The acceleration

alone

0.83 (0.70 to 0.96) 0.80 (0.65 to 0.97) 0.89 (0.79 to 0.99) 0.83 (0.70 to 0.95) 0.74 (0.51 to 0. 97)

CR, classification rate; CTA, combining temperature and acceleration; NPV, negative predictive value; PPV, positive predictive value.
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capture sporadic, short bursts of PA. On the other hand,
sleep is the most challenging type of activity for classifi-
cation.35 Out pilot data showed that the temperature
signals of accelerometers during participants’ sleeping
remained very high, which provides a unique indication
to help reduce the risk of incorrect non-wear time
detection.
Our proposed CTA method has several advantages:

(1) This study is one of the very few studies on identify-
ing wear time and non-wear time events using raw accel-
erometry data, which are fundamentally different from
the majority of studies of this kind based on count
output accelerometry values. (2) The study has high val-
idity in classification. This characteristic might be espe-
cially important for cohort studies that investigate the
link between baseline PA assessment and health risks
and disease outcomes over long time periods.16 36–39

(3) The requirement for only 1 min periods of data, in
contrast to existing methods based on much longer data
blocks (often in the order of 30 min or more), would
prove useful for research on paediatric populations to
capture sporadic, short bursts of activity expected from
younger participants,11 33 in which the whole activity
often does not last very long. However, without the aid
of temperature signals, the use of a 1 min window for
acceleration data alone would increase the risk of incor-
rect non-wear time detection, particularly during sleep.
Our proposed CTA method offers a novel way of com-
bining temperature and acceleration information to
improve the classification of wear time and non-wear
time events. (4) Reduced misclassification due to arte-
factual monitor movements during non-wear. (5) The
potential to develop further non-wear algorithms for
other accelerometers that measure skin surface tempera-
ture data (such as SenseWear Armband40), based on the
principles of the method reported herein. (6) The
potential to develop further non-wear algorithms by
combining the temperature only algorithm with other
acceleration only algorithms. Our current CTA simply
combines the temperature only algorithm with the accel-
eration only algorithm used in certain previous
studies.25 27 In other words, given an acceleration only

algorithm, increased accuracy of estimating wear and
non-wear events is expected to gain by integrating with
the temperature only algorithm described in this paper.
Our proposed method has some potential limitations

for practical applications. First, this technique is only
applicable to accelerometers with a temperature sensor;
however, such types of accelerometers are gaining popu-
larity. Nevertheless, this study may stimulate other manu-
facturers to include a skin temperature sensor standard
in their accelerometers. Second, if an accelerometer is
not worn firmly on the surface of the skin, for example,
if it is placed over or within clothing rather than directly
on the skin, the changes of temperatures may not be as
useful for classification. Third, the proposed method is
based on requests that participants should wear or not
wear accelerometers for at least 15 min to capture
adequate movement and temperature information for
the method before starting classification. It is possible
that performance of the classifier will not be as impres-
sive for shorter periods, though we suggest that errors in
events lasting less than this time would have a relatively
small impact on conclusions drawn from population
level studies. Fourth, despite concerns for participant
burden and the potential for classification error, the use
of time-log diaries to record periods of wear time and
non-wear time was deemed appropriate within this study
due to its relatively short duration. Longer term valid-
ation studies would likely benefit from using direct
observation by researcher or video as the ‘gold standard’
method of observing PA. Finally, for validation of the
temperature threshold (eg, UK-specific 26°C), one
needs to notice the impacts of some temperature varia-
tions on classification, such as in indoor activities and
outdoor activities by the same person, situations where
temperature changes across seasons. One possible solu-
tion is to perform multiple-fold cross-validations for the
best compromised threshold to aid the acceleration
information for improving classification. Therefore,
repeated validation of optimal temperature thresholds
should be undertaken in different situations and coun-
tries with different climates. Nevertheless, the benefits
offered by combining temperatures with acceleration

Table 3 The performance of classifying wear and non-wear events for females versus males

Method CR (95% CI)

Sensitivity

(95% CI)

Specificity

(95% CI) PPV (95% CI) NPV (95% CI)

Females

The proposed CTA

method

0.95 (0.92 to 0.98) 0.92 (0.86 to 0.99) 0.91 (0.86 to 0.96) 0.80 (0.70 to 0.89) 0.96 (0.91 to 1.00)

The temperature alone 0.76 (0.61 to 0.84) 0.92 (0.85 to 0.99) 0.62 (0.54 to 0.70) 0.49 (0.23 to 0.75) 0.96 (0.91 to 1.00)

The acceleration alone 0.85 (0.72 to 0.99) 0.87 (0.70 to 1.00) 0.89 (0.80 to 0.98) 0.75 (0.62 to 0.88) 0.82 (0.59 to 1.00)

Males

The proposed CTA

method

0.94 (0.90 to 0.98) 0.95 (0.90 to 1.00) 0.91 (0.87 to 0.96) 0.84 (0.75 to 0.92) 0.94 (0.84 to 1.00)

The temperature alone 0.76 (0.67 to 0.86) 0.95 (0.91 to 1.00) 0.66 (0.60 to 0.72) 0.55 (0.33 to 0.78) 0.94 (0.84 to 1.00)

The acceleration alone 0.76 (0.63 to 0.89) 0.68 (0.50 to 0.85) 0.89 (0.84 to 0.95) 0.74 (0.64 to 0.85) 0.69 (0.49 to 0.89)

CR, classification rate; CTA, combining temperature and acceleration; NPV, negative predictive value; PPV, positive predictive value.
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information would exceed them, in particular, the
increased accuracy to be gained. It is noted that when
more information is introduced, advanced system model-
ling techniques41–43 may be needed to tackle increased
tasks, such as model overfitting, model transparency, etc,
in classifying the types of PA.

CONCLUSION
Using data either on acceleration or skin temperature
alone is inadequate to correctly classify periods of wear
and non-wear in some scenarios under a free-living con-
dition. Combining both types of data within a simple
and efficient algorithm requiring short time periods of
data capture can significantly improve the wear time and
non-wear time classification, and generate high accuracy
in adults and children of both genders, although more
work is need to modify the method of integrating accel-
eration and skin temperature information. More accur-
ate estimations of time spent in sedentary and active
behaviours in free-living conditions are expected by
using the proposed algorithm.
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