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Abstract
A hallmark trait of chickpea (Cicer arietinum L.), like other legumes, is the capability to con-

vert atmospheric nitrogen (N2) into ammonia (NH3) in symbiotic association withMesorhizo-
bium ciceri. However, the complexity of molecular networks associated with the dynamics

of nodule development in chickpea need to be analyzed in depth. Hence, in order to gain

insights into the chickpea nodule development, the transcriptomes of nodules at early, mid-

dle and late stages of development were sequenced using the Roche 454 platform. This

generated 490.84 Mb sequence data comprising 1,360,251 reads which were assembled

into 83,405 unigenes. Transcripts were annotated using Gene Ontology (GO), Cluster of

Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) met-

abolic pathways analysis. Differential expression analysis revealed that a total of 3760 tran-

scripts were differentially expressed in at least one of three stages, whereas 935, 117 and

2707 transcripts were found to be differentially expressed in the early, middle and late

stages of nodule development respectively. MapMan analysis revealed enrichment of meta-

bolic pathways such as transport, protein synthesis, signaling and carbohydrate metabolism

during root nodulation. Transcription factors were predicted and analyzed for their differen-

tial expression during nodule development. Putative nodule specific transcripts were identi-

fied and enriched for GO categories using BiNGO which revealed many categories to be

enriched during nodule development, including transcription regulators and transporters.

Further, the assembled transcriptome was also used to mine for genic SSR markers. In con-

clusion, this study will help in enriching the transcriptomic resources implicated in under-

standing of root nodulation events in chickpea.

Introduction
Symbiotic nitrogen fixation (SNF) is an important biological event that allows legumes to grow
efficiently under nitrogen limiting conditions and also has important agronomical and envi-
ronmental benefits. Due to their unique ability to form symbiotic relationship with a group of
nitrogen fixing bacteria called ‘Rhizobia’, legumes represent an important and diverse group of
plants since 50–70% of biological nitrogen fixation, leading to a terrestrial input of 40–50
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million tons of nitrogen per year [1], is carried out by symbiotic nitrogen fixation. Chickpea
(C. arietinum L.) 2n = 16, is one of the most important staple legume crops widely grown
across many semi-arid regions of the world including the Indian subcontinent and has the
capacity to fix large quantities of atmospheric nitrogen by forming a symbiotic interaction with
Mesorhizobium ciceri. This process of symbiosis and nodulation leading to N2 fixation is quite
complex and tightly regulated, but very scantily understood at the molecular level.

Initiation of root nodulation occurs when (Nodulation) Nod factor (NF) signals secreted by
the rhizobia are perceived by root hairs, which initiate curling of root hair followed by initia-
tion of cell division and nodule primordium formation which finally develops into the new
organ called ‘nodule’. Here the bacteria differentiate to form bacteroids and fix atmospheric N2

to ammonia for direct use of the plant. In return the plant serves as a carbon source for the bac-
teroids. At a cellular level, the NF perception is characterized by calcium spiking and induction
of NF induced genes.

Some of the genes involved at different steps in root nodule formation have been character-
ized in L. japonicus,Medicago truncatula and G.max. LjNFR1, LjNFR5 and MtDMI2/NORK
are known to be involved in perception of NOD factor signals by the root hair [2–4]. A number
of genes such as LjCASTOR, LjPOLLUX [5], MtDMI1[6], nucleoporins LjNUP85 and
LjNUP133 [7, 8], CCaMK encoded by MtDMI3 and LjCYCLOPS [9] are known to be involved
in calcium spiking and related signaling. Further, a number of genes downstream of the NOD
factor signaling pathway, including several transcription factors such as MtNSP1[10], MtNSP2
[11], LjNSP1, LjNSP2 [12], MtHAP2 [13] and LjNIN [14] have been characterized and shown
to be involved in regulation of genes expressed during various stages of nodule development.

Considerable progress has been made in the last few years in legume genomics, notably by
sequencing the genomes of legumes such as L. japonicus [15], G.max [16],M. truncatula[17],
Cajanus cajan [18] and Cicer arietinum [19, 20]. A number of transcriptome analyses have also
been carried out using microarray and next generation sequencing (NGS) technologies such as
Roche/454, Illumina/Solexa and ABI/SOLiD and have provided deep insights into the tran-
scriptional complexity of the organism [21, 22]. The Roche/454 Genome Sequencer FLX plat-
form has been shown to provide an improved coverage of transcriptome as compared to
conventional methods of EST sequencing [23] and has been used in studies involving differen-
tial expression analysis [24, 25].

In the recent decade, many studies reporting the high throughput transcriptome analysis of
root nodules in different legumes, especially the model legumes have become available. For
example, analysis inM. truncatula showed differential expression of genes in early stage of root
nodulation [26]. Expression profiling inM. truncatula showed that more than 750 genes are
differentially expressed during nodulation events [27]. Another analysis inM. truncatula
revealed the expression profiles of putative transcriptional regulators that orchestrate develop-
mental programs during nodulation [28]. In L. japonicus, transcriptome analysis using SAGE
showed 407 tags expressed in significantly higher amount in nodule when compared to root
[29]. Global analysis of the transcriptome in wild type and mutant L. japonicus at different
stages of symbiotic interactions revealed a large number of transcripts predicted to encode
transcriptional regulators, receptors and proteins involved in signal transduction. Moreover
many genes of unknown function were found to be regulated during nodule organogenesis
[30]. In crop legumes such as soybean, 1,973 genes were found differentially expressed during
nodulation using 3 different technologies i.e. microarray hybridization, Illumina sequencing
and quantitative real time RT PCR [31]. A genome based deep SuperSAGE study of mature
root nodules of chickpea has been performed recently [32] that showed only 71 genes to be dif-
ferentially expressed in root nodules. Hence, a high throughput, in depth analysis of the chick-
pea root nodule was desirable for gaining deeper insights into the overall transcriptional
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complexity of nodulation events. In this study, deep sequencing of the transcriptomes of nod-
ules at various stages of development was undertaken, the transcriptomes were assembled and
annotated and further analyzed to identify genes which were differentially expressed at various
stages of root nodule development. Further nodule-specific transcripts were also identified.
Moreover, significantly enriched transcriptional regulators and metabolic pathways were iden-
tified to provide insights into the various processes regulating chickpea root nodule
development.

Materials and Methods

Generation of nodule tissue
Chickpea seeds (Cicer arietinum cv. BG256) were surface sterilized using 70% ethanol (30 sec-
onds), followed by 0.1% HgCl2 (2 mins) and then rinsed in milli-Q water 4–5 times. Seeds were
soaked overnight in water and then allowed to germinate on an agar plate for 2–3 days.M.
ciceri was grown in Yeast Mannitol Broth (YMB) medium. Seeds were given infection by dip-
ping them inM. ciceri culture. Seeds were grown on sterilized sand and provided with nitrogen
free McKnight’s solution (McKnight, 1949), twice a week. Infected roots were harvested at 3
HPI (Hours post infection), 6 HPI, 12 HPI, 24 HPI, 36 HPI, 2 DPI (Days post infection) and
daily thereafter upto 28days. Three biological replicates of each tissue sample were pooled into
3 groups i.e. 3HPI-36HPI, 2DPI-10DPI and 11DPI-28DPI, and used as experimental tissue.
Correspondingly, uninfected roots (without nodules) at the same stages of development as
nodules, was also collected and used as control tissue.

RNA isolation and sequencing of cDNA libraries
Total RNA was isolated from the nodulating and non-nodulating root tissue by using LiCl pre-
cipitation method and a quality check was carried out on the bioanalyser as described by Prad-
han et al. [25]. mRNA was purified from total RNA samples using PolyATtract mRNA
Isolation System according to the manufacturer’s instructions (Promega Corporation,
Madison, WI, USA). Four cDNA libraries (3 libraries of nodulating tissue at various stages and
one control) were generated using the Universal RiboClone cDNA Synthesis System (Promega
Corporation, Madison, WI, USA). Double-stranded cDNA was synthesized using the Univer-
sal RiboClone cDNA Synthesis System (Promega Corporation, Madison, WI, USA) using ran-
dom hexameric primers and following the manufacturer’s protocol. All cDNA libraries were
sequenced using the Roche GS FLX Titanium series sequencing reagents and sequencer. A
stringent quality filtering using the NGS ToolKit [33] was done with average quality score of all
the reads above 30, with cut off phred quality score of 20 for over 70% of individual read length.
Reads were aligned to genome ofM. ciceri [34] (ASM18590v1) using BLASTN with e-value
1E-05, and reads mapped toM. ciceri genome were discarded.

Assembly and annotation
The high quality reads were mapped onto the reference genome using gsMapper and assem-
bled using Newbler 2.5.3 with default parameters. Assembled sequences were further clustered
using CAP3 [35]. To assign putative function to chickpea transcripts, they were subjected to
BLASTX search against annotated protein sequences present in UniProtKB/Swiss-Prot data-
base (http://www.uniprot.org/downloads). E-value�1E-05 was used to select the best BLASTX
hit. The GO slim terms for molecular function, biological process and cellular component cate-
gories associated with BLASTX hit of Uniprot protein sequences were assigned using perl
script, to corresponding chickpea transcript. Chickpea transcripts were aligned with COG
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database using BLASTX at E-value�1E-05 and were annotated using perl script. KEGG pathways
annotation was done online by KAAS (http://www.genome.jp/tools/kaas/) using single directional
best hit (SBH) method. To identify transcription factors, plant transcription factor database
(planttfdb.cbi.pku.edu.cn) was downloaded. HiddenMarkov Model (HMM) profiles were built
for each TF family and used in HMMsearch at E-value�1E-05. A microsatellite search program
MISA (http://pgrc.ipkgatersleben.de/misa/) was used to identify microsatellite motifs. All types of
simple sequence repeats (SSRs) were searched ranging from dinucleotide to hexanucleotides using
the following parameters: perfect repeats of dinucleotides� 6 repeats, trinucleotides� 4 repeats,
tetranucleotides� 3 repeats, pentanucleotides and hexanucleotides� 3 repeats. Primers were
designed from the flanking sequences of SSRs, using BatchPrimer3 v1.0 (http://probes.pw.usda.
gov/batchprimer3/).

Identification of nodule specific transcripts
In order to identify putative nodule specific transcripts, the assembled root nodule transcripts
were compared with the publicaly available chickpea transcripts from all other tissues of chick-
pea such as which includes shoot, root, mature leaf, flower bud and young pod [36] and seed
[25]. A TBLASTX analysis was done at E-value�1E-05 to align transcripts. Nodule transcripts
which did not find matches with any of the other tissue transcripts were considered as putative
nodule specific transcripts. These putative nodule specific transcripts were annotated by using
Non Redundant (NR) database of NCBI in Blast2GO. Further, they were subjected to GO
enrichment by using BiNGO 2.44 [37], in Cytoscape 2.8.3.

Differential expression analysis
Filtered reads of each stage were mapped onto the combined assembly using gsMapper 2.5.3
with default parameters. Reads Per Kilobase of transcript per Million mapped reads (RPKM)
[38] values were calculated using formula RPKM = [(Number of mapping reads)�1000�109/
(length of transcript)(number of total reads)]. The heat map was generated based on the log2-
transformed RPKM values using MeV v. 4.9 (http://www.tm4.org/mev.html), representing the
expression profile of transcripts. Differential expression of genes was calculated using DEGseq
package [39] in R, at p-value cut-off of 0.005 after Benjamini Hochberg adjustment [40]. To
investigate the role of differentially expressed transcripts in metabolic pathways, a BLASTX
search was done withM. truncatula peptides at E-value�1E-05, downloaded from Phytozome
9.1 (ftp://ftp.jgi-psf.org/pub/compgen/phytozome/v9.0/Mtruncatula/annotation/) and meta-
bolic pathways were searched using MapMan [41].

Quantitative Real-Time PCR (qRT-PCR) analysis
Quantitative real time PCR analysis was performed to generate the expression profile of some
genes in a number of tissues. Total RNA was isolated from 3HPI, 6HPI, 12HPI, 24HPI, 3DPI,
7DPI, 14DPI, mature nodule (21 DPI), uninfected root and shoot form 7 day old seedling,
using LiCl extraction method. Integrity of RNA was checked on 1.2% denaturing agarose gel.
First strand cDNA was made using iScripttmkit (BIO-RAD) according to manufacturer’s proto-
col. Primers were designed using Primer Express1 Software v3.0.1 (Life technologies). Quanti-
tative real time PCR was performed using Fast SYBR Green (Applied Biosystems) master mix
on a ViiA7 (Applied Biosystems) machine. EF-1α was used as internal control [42]. Fold
changes were calculated using (RQ = 2-ΔΔCT) formula. Melting curves were analysed to see the
homogeneity of the product formed in PCR reaction.
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Results

Sequencing and assembly of chickpea root nodule transcriptome
Four cDNA libraries were constructed from three stages of developing chickpea root nodule
(3HPI-36HPI (Hours post infection), 2DPI-10DPI (Days post infection) and 11DPI-28DPI) as
well as from non-infected chickpea root (Control) and sequenced on the Roche 454 GS FLX
Titanium platform. The sequence data obtained was deposited in the SRA database under the
accession numbers SRX330836, SRX330835, SRX330827 and SRX330813. A total of 1,360,251
reads (330,667 in uninfected root and 1,029,584 in root nodule) were generated amounting to
490.84Mb of sequence data (119.62 Mb in uninfected root and 371.22 Mb in root nodule). The
average read length was 360.84 bases. After stringent quality filtering using the NGS ToolKit
[33], 1,235,093 high quality reads (465.85 Mb) were obtained with average read length of 377
bases, accounting for 90.79% of the total raw reads (Table 1). A read distribution statistics
showed that 81% of the filtered reads were larger than 300 bases. Alignment of these raw reads
toM. ciceri genome [34] (ASM18590v1) resulted in further filtering of 11,680 reads.

Using Newbler v. 2.5.3, a total of 1,144,349 (93.53%) high quality reads representing 415.41
Mb were assembled into 87,342 contigs. These contigs were further assembled using the cap3
program which resulted in 83,405 unigenes with an average size of 388 bases with N50 value of
496 bases and N50 Index value of 18,391(Table 2; S1 Data; S1 Fig). This set of 83,405 unigenes
were used to perform a BLASTN search against the available chickpea gene models from the
whole genome sequence of chickpea [19] which resulted in alignment of 60,360 unigenes onto
20,406 gene models whereas 23,045 unigenes could not be aligned. These 23,045 unaligned uni-
genes were mapped onto the chickpea genome sequence, which revealed alignment of 22,693
unigenes with the chickpea genome. Some of these unigenes were validated by PCR amplifica-
tion to ensure their presence in the transcriptome (S2 Fig). Comparison of unigenes with the
Non-redundant (Nr) protein database of NCBI (ftp://ftp.ncbi.nlm.nih.gov) showed that
75.16% found a match while 20,711 did not find a match. Further, the assembly was validated
by aligning the assembled transcripts with some of the known proteomes of legumes (G.max,
L. japonicus andM. truncatula) and model plants available at phytozome (http://www.
phytozome.net/) such as Arabidopsis thaliana and Populus trichocarpa. BLASTX search against
proteome databases showed alignment of maximum number of chickpea nodule transcripts to
the proteome of G.max (69.84%) followed by P. trichocarpa (62.98%),M. truncatula (62.31%)
and L. japonicus (61.27%). As expected, least number of chickpea transcripts could be aligned
to the proteome of A. thaliana (59.69%) (S1 Table).

Functional Annotation
To assign putative function to chickpea transcripts, they were annotated using different strate-
gies i.e. Gene Ontology (GO) based, Cluster of Orthologous Groups (COG) based and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway assignment (S2 Table). Transcripts

Table 1. Summary of sequenced reads generated from control root and developing stages of root nodules.

Tissue Number of reads High quality reads (%) Longest read length Average read length

Control root 330,667 90.48 611 377

3HPI-36HPI 180,272 88.80 600 363

2DPI-10DPI 324,289 91.02 650 388

11DPI-28DPI 525,023 89.33 699 373

Total 1,360,251 89.94 699 377

doi:10.1371/journal.pone.0157908.t001
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were first subjected to BLASTX search against the non-redundant and annotated protein
sequences present in UniProtKB/SwisProt database. Of the 83,405 assembled unigenes, 32,429
showed a significant match with the UniProtKB/SwisProt database. Gene Ontology terms were
assigned to the transcripts (Fig 1A), which resulted into assignment of 5,299 GO terms which
were further classified into three principle categories i.e. Biological process, Molecular function
and Cellular component. As one GO term can be assigned to multiple transcripts and single
transcript can have multiple GO terms, 25,877 sequences were assigned 2,897 GO terms under
biological process category, 26,634 sequences were assigned 1,818 GO terms under molecular
function category and 15,410 sequences were assigned 584 GO terms under cellular process

Table 2. Assembly statistics.

Total number of contigs 83,405

Total number of bases 32,393,843

N50 value 496

N50 Index value 18,391

Average length of contigs 388

Largest length of contigs 8,483

doi:10.1371/journal.pone.0157908.t002

Fig 1. (A) GO annotations of chickpea root and nodule unigenes (B) Distribution of unigenes in different orthologous groups according to COG
database (C) Distribution of unigenes into biological pathways using KEGG.

doi:10.1371/journal.pone.0157908.g001
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category. In the biological process category most of the transcripts were associated with ‘cellu-
lar process’ followed by ‘metabolic processes’ and ‘response to stimulus’. Similarly in the cellu-
lar component category highest number of transcripts were associated with ‘cell’ followed by
‘membrane’ and ‘intracellular’ categories and in the molecular function category the largest
number of transcripts were grouped in ‘catalytic activity’ followed by ‘binding’ and ‘transferase
activity’ (Fig 1A).

The transcripts were also classified into protein families based on COG analysis which
assigned 9,982 putative proteins to 99 orthologous groups which were further classified into 24
families of orthologous groups (Fig 1B). Out of the 24 functional categories, maximum number
of putative proteins could be classified under categories 'General function prediction only'
(1947) followed by ‘Post-translational modification protein turnover and chaperones’ (1030),
‘Translation, ribosomal structure and biogenesis’ (886) 'carbohydrate transport and metabo-
lism' (707) and ‘Amino acid transport and metabolism’ (682). A number of transcripts were
also classified in categories like 'cell cycle control, cell division and chromosome partitioning',
'cell wall and membrane biogenesis’, 'nucleotide transport and metabolism' and 'signal trans-
duction mechanisms'.

To further understand the biological role of these transcripts, and to know the metabolic
pathways they work in, transcripts were mapped online by KEGG Automatic Annotation
Server (KAAS) (http://www.genome.jp/tools/kaas/) database. It revealed 24,489 unigenes to be
involved in 323 predicted KEGG metabolic pathways. Highest numbers of unigenes were
assigned to pathways related to ribosome (125), biosynthesis of amino acids (93), spliceosome
(91), RNA transport (90), and oxidative phosphorylation (82). A number of unigenes were also
assigned to pathways related to protein processing, carbon metabolism, cell cycle control and
plant hormone signal transduction. Genes were also represented in NOD- like receptor signal-
ing (4), calcium signaling (7) and nitrogen metabolism (11) pathways (Fig 1C).

Differential gene expression analysis of genes during root nodulation
In order to determine the levels of expression of the unigenes involved in root nodulation in C.
arietinum, the filtered reads from the root nodule transcriptome were mapped onto the assem-
bled transcriptome of 83,405 unigenes. We found 64.3% unigenes to be expressed in uninfected
root, 50.7% at early stage, 66.5% at middle stage and 76.3% at late stage of root nodulation. Dif-
ferential gene expression analysis, using DEGseq package [39] in R showed a total of 6,186 uni-
genes to be differentially expressed. Out of these, 3,760 unigenes were found to be differentially
expressed in nodule tissue with respect to control root tissue. A total of 935, 117 and 2707 uni-
genes were found to be differentially expressed in the case of early, middle and late stages
respectively, when compared to uninfected root. Further 928, 3787 and 2818 unigenes were
found differentially expressed between early and middle, early and late and middle and late
stages respectively.

A heat map of differentially expressed transcripts was plotted using log2 transformed
RPKM values (Fig 2A). It was observed that most of the differentially expressed unigenes in the
early stages encoded peroxidases, GDSLesterase/lipase, defensin like protein, glutathione S-
transferase, LRR receptor-like serine threonine-protein kinase, rch1-like, cell differentiation
protein and some transporters including aquaporin and cyclin dependent kinase. Moreover,
genes for proteins like Cytochrome p450, disease resistance protein rga4, β-amyrin, kinesin-
like calmodulin-binding, ethylene responsive transcription factor, methyltransferase like pro-
tein and ABC transporters were seen to be preferentially expressed in the middle stage while
genes for leghemoglobin, nodulins, nodule cysteine rich peptides, glutamate binding protein
and some transporters i.e. bidirectional sugar transporter sweet10-like, peptide transporters,
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lipid transporters, ammonium transporter, nitrate transporters etc. had higher expression in
the late stage (S3 Table).

The unigenes were further subjected to K-means clustering followed by figure of merit anal-
ysis (FOM) to classify differentially expressed genes in 20 clusters (S3 Fig). Cluster 3 showed
136 unigenes to be overall up regulated whereas cluster 6 showed 265 unigenes having a grad-
ual increase in expression during nodule development. Cluster 9 showed 144 unigenes showing
higher expression in early stage and cluster 1 represented 126 unigenes that were up regulated
in early as well as in late stage of nodulation. Cluster 13 was represented by 271 unigenes which
were up regulated in middle stage and cluster 5 showed 656 unigenes having higher expression
in late stage (S4 Table). Each of the stages of nodule development was characterized by differ-
ential expression of genes belonging to various biological processes and molecular functions.
Early stage showed highest number of unigenes involved in oxidation-reduction process fol-
lowed by many important processes such as cellular biosynthesis, transport, cell cycle, cell dif-
ferentiation and signal transduction. In middle stage maximum numbers of unigenes were

Fig 2. (A) Heatmap representation of differentially expressed unigenes in root and three stages of root nodule development. (B)
Heatmap of nodule-specific cysteine-rich (NCR) peptides showing their expression during late stage of root nodulation. (C) Heat map
of R-genes showing their expression pattern during root nodulation.

doi:10.1371/journal.pone.0157908.g002

Transcriptome Analysis of Chickpea Root Nodules

PLOS ONE | DOI:10.1371/journal.pone.0157908 June 27, 2016 8 / 21



categorized in organic substance metabolic process and primary metabolic process. Unigenes
belonging to biosynthetic process, signal transduction, regulation of biological process, cellular
component biogenesis and assembly and cell wall organization and assembly were also found
differentially expressed. Later stage was represented by abundance of unigenes belonging to
macromolecule metabolic process, organic substance biosynthesis process followed by trans-
port, nitrogen compound metabolic process and carbohydrate metabolic processes. Other
important categories were response to oxygen-containing compounds, symbiosis, encompass-
ing mutualism through parasitism, response to oxygen levels, tetrapyrrole metabolic process
and different transport processes such as carbohydrate transport, amide and amine transport,
oxygen transport and hormone transport. Some unigenes belonging to telomere capping, gluta-
mate biosynthetic process, protein folding, transcription regulation and anatomical structure
development were found gradually increasing during nodule development.

“Nodule-specific cysteine-rich” (NCR) peptides are the recently discovered defensin like
peptides that induce endoreduplication in rhizobia leading to differentiation of bacteria to
functional bacteroids [43]. A homology-based search usingM. truncatula NCR peptides was
performed in order to identify their homologs in chickpea. This resulted in identification of 24
NCR peptides in root nodule tissue. Average length of NCRs were found to be 66 amino acids
or 602 nucleotides and varied in size from 29–193 amino acids or 116–1659 nucleotides. An
in-silico expression analysis of the NCR peptides from the chickpea nodule transcriptome
showed that these genes had preferential expression in the later phase of nodule development
(Fig 2B, S5 Table). Furthermore, 16 R genes were found differentially expressed during root
nodulation and most of them belonged to CC-NBS-LRR family followed by TTR1-WRKY,
TIR-NBS-LRR and CC-NBS. Of these, 11genes were found to be down regulated during root
nodulation with the least expression being detected during early stage of nodule development
(Fig 2C, S6 Table).

In order to identify metabolic pathways preferentially expressed during root nodule devel-
opment, differentially expressed chickpea transcripts were compared withM. truncatula pro-
tein sequences and searched against metabolic pathways profile present in MapMan [41].
Differentially expressed genes were seen to be distributed in many primary as well as secondary
metabolic pathways (Fig 3). Primary metabolic pathways were majorly represented by cell wall
biogenesis and degradation (BIN 10, 67 transcripts), plant hormone synthesis (BIN 17, 43 tran-
scripts) tetrapyrrole synthesis (BIN 19, 1 transcript) nitrogen metabolism (BIN 12, 5 tran-
scripts), amino acid metabolism (BIN 13, 32 transcripts), cell signaling (BIN 30, 97
transcripts), cell organization and cytoskeleton (BIN 31, 57 transcripts) and various transport
systems (BIN 34, 125 transcripts) i.e. sugar transport, plant hormone transport, ion transport
etc. Secondary metabolic pathways were mainly represented by flavonoids and phenols biosyn-
thesis (BIN 16, 53 transcripts) (Fig 3A). In general, a number of transcripts were found to have
preferential expression during various metabolic pathways such as cell wall biosynthesis, sec-
ondary metabolism, degradation of amino acids, starch biosynthesis, ascorbate and glutathione
biosynthesis (Fig 3B).

Mining of nodule specific transcripts
The control root (uninfected) and nodule were found to express 53,408 and 78,737 unigenes
respectively with 48,740 unigenes in common. A comparison revealed 4,668 and 29,997 uni-
genes to be specifically expressed in uninfected root and nodule tissues respectively. In order to
identify transcripts specifically involved in the process of nodulation, a comparison of the nod-
ule transcriptome was done with the publicly available chickpea transcriptomes of tissues such
as chickpea shoot, root, mature leaf, flower bud and young pod [36](http://www.nipgr.res.in/
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ctdb.html) and with the transcriptome of chickpea seed [25]. A TBLASTX search was done
using chickpea nodule transcriptome as query. This alignment revealed 5,907 unigenes that did
not find a match with any of the transcripts reported in the aforementioned databases. These

Fig 3. Metabolic pathways analysis of differentially expressed unigenes using MapMan(A) Bin wise distribution of unigenes (B) Distribution of
unigenes in different metabolic pathways. Genes with upregulation in nodule tissue are shown in red and genes with reduced expression in nodule
are blue.

doi:10.1371/journal.pone.0157908.g003
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unigenes were therefore considered to be putative nodule specific transcripts and have been
referred to as such in subsequent analysis. Of these 5,907 nodule specific unigenes, only 649
could be assigned annotations (S7 Table) and the remaining 5,258 were predicted to be puta-
tively novel nodule transcripts.

Further, to identify the major functional categories of the nodule specific transcripts GO
enrichment analysis in BINGO 2.44 was performed (Fig 4, S8 Table). Transcripts involved in vari-
ous pathways occurring during development of root nodule such as response to bacterial stimuli,
signal transduction, ion transport, cell wall biogenesis, organ development were found to be
enriched. Moreover, transcripts involved in root nodule functioning, including oxygen binding
and transport, nitrogen fixation, and transport of amino acids were also found to be enriched.
Under Biological processes, cellular response to molecule of bacterial origin, cellular response to
biotic stimulus, oxygen transport, regulation of two-component signal transduction system (phos-
phorelay), cytokinin mediated signaling pathway and nitrogen fixation were among the most sig-
nificantly enriched. GO categories related to nucleic acid metabolism and cell cycle control were
also found to be enriched. Under Molecular functions, GO terms associated with oxygen binding,
two-component response regulator activity, RNA directed DNA polymerase, endopeptidase
inhibitor activity, NADH dehydrogenase activity were most significantly enriched in addition to
categories like RNA polymerase, DNA binding and transcription regulation activity.

Transporters play a very important role in development and functioning of the root nodule
by mediating influx and efflux of different ions and metabolites between the two counterparts
of symbiosis. Hence, a search of the putative nodule specific transcripts revealed the presence
of 17 transporters. Important transporters specifically present in nodules were amino acid
transporters, C4-dicarboxylate transporters, polyol transporters, ammonium ion transporters,
ABC transporters, potassium ion transporters, calcium transporters etc.

Transcription factors in chickpea root nodule development
Eukaryotes have developed a complex way of regulating expression of their existing genes
through a group of proteins known as transcription factors (TFs) that directly affect their
growth and development in a variety of ways. Peptide sequences of different TFs from five
legumes (Cajanus cajan, C. arietinum, G.max, L. japonicus andM. truncatula) were down-
loaded from the Plant Transcription Factor Database (http://planttfdb.cbi.pku.edu.cn) and
their HMM profiles were built using hmmbuild (HMMER 3.0, ftp://selab.janelia.org/pub/
software/hmmer) and used to search the chickpea nodule transcriptome. Out of 83,405 uni-
genes, 1606 unigenes were identified to be TFs belonging to 55 known TF families (Fig 5A).
The most abundant families were bHLH, WRKY, M-type, ARF and ERF families followed by
LBD, NAC, BES1, C2H2 and FAR1. Moreover MYB, bZIP, GRAS, HD-ZIP and NIN-like fami-
lies were also found in the dataset. The in-silico differential expression analysis of the 1606 TFs
revealed that 171 TFs belonging to 40 families were differentially expressed during root nodule
development (Fig 5B). Highest number of differentially expressed TFs belonged to WRKY fam-
ily followed by TALE, ERF, C2H2 and HD-ZIP. Many TF families well known to be involved
in root nodulation process such as ERF, GRAS and NIN-like were also found to be differen-
tially expressed. Moreover, 100 unigenes belonging to 35 families of plant TFs were found spe-
cifically expressing in nodule tissues (Fig 5C), of which TFs belonging to bHLH family were
found to be highest in number followed by the WRKY family.

Validation of digital expression data
To validate the RPKM based digital expression data, quantitative RT-PCR analysis was per-
formed using 8 different developing stages of nodules, root and shoot tissues of chickpea. Most
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Fig 4. GO enrichment of putative nodule specific transcripts of chickpea using BiNGO 2.44 (A) Biological processes and (B) Molecular
functions. Node size is proportional to the number of transcripts in each category and colors shaded according to the significance level;
yellow depicting low significance levels and red depicting higher significance levels.

doi:10.1371/journal.pone.0157908.g004
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of the genes chosen for this analysis included those predicted earlier to be involved in root nodu-
lation process in chickpea and hence, may serve to further validate our analysis. The list of prim-
ers used in qRT-PCR analysis is given in S9 Table. Real time analysis revealed that most of the
genes, which were earlier predicted to be involved in nodule functioning [19], showed preferential
expression in different stages of nodule development (Fig 6). These included the genes for NOD
factor receptors, bZIP transcription factor, early nodulin 93 (ENOD-93), NSP1,NSP2, CCaMK,
LjCYCLOPS homologue, aquaporin, a nodulin of unknown function and some other transcrip-
tion factors which were found to be upregulated in early to middle stages of nodule development.
Later stage of root nodule showed up regulation of leghemoglobin, senescence associated nodulin,
aquaporin and a R-gene. This analysis confirmed that the pattern of gene expression in in-silico
as well as that revealed by qRT PCR analysis were similar thereby implying that RPKM based dig-
ital expression analysis was a reliable method for determining differential gene expression.

Identification of SSRs in chickpea root nodule transcriptome
Simple Sequence Repeats (SSRs) are nucleotide repeats present in DNA sequences and are
known to serve as excellent molecular markers for genotyping purposes. Therefore, the

Fig 5. (A) Distribution of unigenes in TF families (B) Differential expression patterns of TFs in various stages of nodule development (C)
Distribution of putative nodule specific TFs in different families.

doi:10.1371/journal.pone.0157908.g005
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transcripts were searched for the presence of microsatellite motifs using MISA (MIcroSAtellite)
tool (http://pgrc.ipk-gatersleben.de/misa). A total of 11,318 SSR motifs were identified in 8,724
transcripts of C. arietinum with the frequency of one SSR per 2.86kb. Tri-nucleotide repeats
were found to be most abundant (44.71%), as expected in genic SSRs, followed by tetra-nucleo-
tide repeats (25.64%) and di-nucleotide repeats (13.27%). In the case of tri-nucleotide SSRs the
most abundant class was the GAA/TTC followed by AAT/ATT and CAA/TTG (Table 3). The
flanking sequences of the SSRs were used to design 6,950 pairs of primers (S10 Table) repre-
senting 5,398 transcripts for use as molecular markers.

Discussion
Symbiotic association between chickpea andM. ciceri is an economically important phenome-
non leading to fixation of large quantities of atmospheric nitrogen, which occurs in specialized
organs called ‘nodules’. The advent of NGS technologies has facilitated the deep transcriptome
analyses of cells, tissues and organs. Transcriptome has been utilized to analyze the symbiosis
in nodules of L. japonicus [44],M. truncatula [28] and G.max [31]. However the transcrip-
tomic analysis of developing nodules in chickpea has not been carried out even though the
transcriptomes of all other tissues have been reported [25, 36]. Hence this study was designed

Fig 6. Differential expression pattern of unigenes by qRT PCR analysis.

doi:10.1371/journal.pone.0157908.g006
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to gain an insight into the process of nodulation in chickpea by using the NGS technology to
sequence, assemble and analyze the chickpea root nodule transcriptome at various stages of
development. Reference based assembly was carried out as the chickpea genome was available
[19]. In a reference-based assembly approach, artifacts can be eliminated as any sequenced
read is assembled only if it aligns somewhere in genome. In addition, rare or low abundance
transcripts can be assembled and new transcripts can also be searched. Additionally, reference
based assembly also ensured removal of reads arising fromM. ciceri bacterial RNA contamina-
tion. The assembly was validated by aligning it to chickpea genome sequence and comparison
with other known protein databases. Approximately 72% of assembled transcripts got a match
when compared to gene models predicted in chickpea genome sequence, which represent
63.49% of predicted gene models [19]. On the other hand 73.64% transcripts found a match in
at least one of the five proteome databases. These results validated the quality of the assembly
and suggested wide coverage of gene models in the transcriptome. Only 38.88% of chickpea
transcripts found a match in UniProtKB/Swiss-Prot database. This could be attributed to the
low representation of functionally annotated genes in UniProtKB/Swiss-Prot database. GO
annotation of transcriptome revealed that the assembled transcripts had diverse functions.
Moreover, COG and KEGG annotation also suggested that they were involved in many meta-
bolic pathways. Overall, the annotation implied that the transcriptome had extensive coverage,
encompassing most of the genes involved in chickpea root nodulation.

Analysis of the differentially expressed genes across the early, middle and late stages with
respect to control (uninfected) root helped in identifying genes of nodule specific metabolic
pathways which were predominantly stage specific. Early and middle stages of nodule develop-
ment demonstrated up-regulation of genes associated with cell signaling, transcriptional con-
trol, cell differentiation and some antioxidant activity whereas the later stage was characterized
by the presence of many structural and functional proteins, some of which have been function-
ally characterized for establishing their role in nodule development. It has been seen that early
response to infection is similar for pathogenic and symbiotic bacteria such as production of
reactive oxygen species (ROS) [45]. ROS act as negative regulators of nodulation [46] by
restricting the entry of rhizobia into the plant. Genes such as Glutathione-S-transferase (gst)
and peroxidases are involved in the metabolism of ROS and up-regulation of these ROS metab-
olizing genes was observed during early stage of rhizobium infection in chickpea, which clearly
indicated their involvement in establishing successful infection [47]. Moreover, down regula-
tion of ‘Resistance genes’ during root nodulation was also observed which supported the notion
that defense response is inhibited during root nodulation for successful establishment of

Table 3. Numbers and distribution of SSRs in chickpea root and nodule tissue.

Total number of sequences examined 83,405

Total size of examined sequences (bp) 32,393,843

Total number of identified SSRs 11,318

Number of SSR containing sequences 8,724

Number of sequences containing more than 1 SSR 1,775

Number of SSRs present in compound formation 721

Distribution of SRRs across different repeat type classes

2 (dinucleotides) 1,503

3 (trinucleotides) 5,061

4 (tertanucletides) 2,903

5 (pentanucleotides) 934

6 (hexanucleotides) 917

doi:10.1371/journal.pone.0157908.t003
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symbiosis [48]. Cell wall dynamics plays an important role in infection and development of
nodules. Hence, transcripts related to cell wall biogenesis (cellulose synthesis and hemi-cellu-
lose synthesis) and cell wall degradation (pectate lyase) were also found to be up regulated. Pec-
tate lyase which is induced in plant cells in response to NOD factor, degrades the cell wall
locally to form the infection thread and is a prerequisite for bacterial infection and formation
of functional nodule [49].

Upregulation of many p450 family genes has been demonstrated in response to nodulation
[50] and similar results were also obtained in this study. β-amyrin synthase was found to be
upregulated, which has been reported to play an important role in root epidermal patterning
[51] and its over-expression has been shown to enhance root nodulation inM. truncatula [52].

Analysis of transcriptome from the later stage of nodule development revealed up regulation
of different transcripts, suggesting their involvement in the biological functioning of the
mature nodule such as nitrogen fixation and assimilation. Genes such as glutamine synthetase
(GS) and glutamate dehydrogenase (GDH) are known to be involved in nitrogen metabolism
and responsible for the assimilation of fixed nitrogen by the plant [53] and were found to be up
regulated in mature root nodule. Moreover, role of leghemoglobin in nodule functioning [54]
is well established as it is involved in maintaining oxygen homeostasis and hence its upregula-
tion in late stage in our data validated our study. NCR peptides are important for bacteroid dif-
ferentiation and formation of functional root nodules and are specific to the legumes of the
Inverted Repeat-Lacking Clade (IRLC) in the Leguminosae family, which includes chickpea
[55]. It has been established that the bacteroid differentiation stops completely after blocking
the delivery of symbiotic peptides to the bacteroids [56]. Significant expression of the NCR
peptides in the mature chickpea nodules suggested their role in bacteroid development, which
needs to be further investigated.

An important objective of this study was identification of genes specifically involved in root
nodulation events in chickpea. A set of 5907 nodule specific unigenes, which were present only
in root nodule tissue, when compared to other chickpea tissues, were identified, of which 649
could be annotated. This low frequency of annotation was probably due to the presence of
putative novel transcripts that could not find any match in the existing Non Redundant data-
base of NCBI. GO enrichment of putative nodule specific transcripts revealed their involve-
ment in cytokinin mediated signaling, two component signal transduction, oxygen binding
and transport, cell cycle control and transcriptional regulation etc., which are implicated in the
crucial process of nodule development. Moreover, exclusive presence of transcripts involved in
nitrogen fixation, cell communication and cell differentiation in the chickpea root nodule
clearly suggest the biological significance of these processes in the event of nodulation.

Another class of putative nodule specific genes, which attracted our interest, was the trans-
porters. The importance of transporters cannot be denied, as they are the proteins that work as
a bridge between the plant and the rhizobia, making symbiosis a feasible phenomenon. Primary
exchange between roots and rhizobia involve exchange of sugar (reduced carbon) for reduced
nitrogen (mainly in the form of NH4+) [53]. As C4-dicarboxylates are the principal source of
reduced carbon for the bacteriods in root nodule, hence C4-dicarboxylate transporters are
extensively involved in feeding bacteriods. Our results revealed the presence of 4 nodule spe-
cific malate transporters in chickpea, which may be putatively involved in supplying carbon
source to bacteriods [57]. Another significant observation was the presence of specific ammo-
nium ion transporters in chickpea. Earlier studies of soybean ammonium transporter have
shown them to be involved in transfer of fixed nitrogen from bacteroid to host [58]. Presence
of ATP Binding Cassette (ABC) type transporters was also justified since they are known to be
involved in secretion of flavonoids [59] and hence play a key role in helping rhizobia to recog-
nize its host plant and initiate infection. Moreover, presence of the calcium ion transporter that
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plays a role in NOD factor signaling was also significant and it would be interesting to explore
the roles of some of the putative nodule specific transporters that were identified in the chick-
pea nodule transcriptome.

Transcription Factors (TFs) play an important role in orchestration of the metabolic path-
ways by regulating gene expression of related encoding enzymes. Annotation of a large number
of transcripts as transcription factors in our data indicated a high degree of transcriptional reg-
ulation during nodule development. Occurrence of transcripts belonging to the RWP-RK
(NIN-like), bHLH, NAC, WRKY GRAS and MYB transcription factor families in our tran-
scriptome was significant, as some members of these families have an established role in root
nodulation. The Nodulation Inception Protein (NIN) belonging to RWP-RK family of tran-
scription factors is known to play a key role in nodule initiation [60]. Earlier studies have
shown that NSP1 of GRAS family is essential for all NOD factor induced changes in gene
expression [10], whereas NSP2 also plays a significant role in NOD signaling [11]. A transcrip-
tion factor of the bHLH family (MtbHLH1) has been known to play a very critical role in vas-
cular patterning and facilitating nodule to plant metabolic exchanges inM. truncatula [61]. A
global analysis of transcriptional reprogramming duringM. truncatula root nodule develop-
ment has shown up-regulation of many transcription factors [28], which was very similar to
the results obtained in our study.

In conclusion, this study was undertaken with the objective of in-depth analysis of the root
nodulation event in chickpea. The assembly and annotation of the chickpea root nodule tran-
scriptome indicated a good coverage of the genes reported in chickpea genome [19]. A number
of genes that have been reported to play important regulatory roles in root nodulation were
also found to be significantly expressed in the chickpea root nodule transcriptome, thereby cor-
roborating the various analyses presented in this study. Digital expression analysis also showed
that a number of TFs play an important role in the process of nodulation. In addition, this
study highlighted the involvement of NCR peptides and transporters in the process of nodule
formation and provides valuable foundation for further characterization of these genes to
study their role in development of chickpea root nodules. Therefore, the high quality of dataset
provided here will serve as a foundation for developing a functional genomics platform for
investigating the chickpea-rhizobia symbiosis leading to improvement of crop chickpea.
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