
F1000Research

Open Peer Review

, University of RostockDagmar Waltemath

Germany

, UniversityVanessa Díaz-Zuccarini

College London UK

Discuss this article

 (0)Comments

2

1

SOFTWARE TOOL ARTICLE

 Semi-automated Modular Program Constructor for
 physiological modeling: Building cell and organ models [version

3; referees: 2 approved]
Bartholomew Jardine, Gary M. Raymond, James B. Bassingthwaighte
Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA

Abstract
The Modular Program Constructor (MPC) is an open-source Java based
modeling utility, built upon JSim's Mathematical Modeling Language (MML) (

) that uses directives embedded in model codehttp://www.physiome.org/jsim/
to construct larger, more complicated models quickly and with less error than
manually combining models. A major obstacle in writing complex models for
physiological processes is the large amount of time it takes to model the myriad
processes taking place simultaneously in cells, tissues, and organs. MPC
replaces this task with code-generating algorithms that take model code from
several different existing models and produce model code for a new JSim
model. This is particularly useful during multi-scale model development where
many variants are to be configured and tested against data. MPC encodes and
preserves information about how a model is built from its simpler model
modules, allowing the researcher to quickly substitute or update modules for
hypothesis testing. MPC is implemented in Java and requires JSim to use its
output. MPC source code and documentation are available at

.http://www.physiome.org/software/MPC/

 Referee Status:

 Invited Referees

version 3
published
16 Jun 2016

version 2
published
06 Apr 2016

version 1
published
16 Dec 2015

 1 2

report

report

report

report

 16 Dec 2015, :1461 (doi:)First published: 4 10.12688/f1000research.7476.1
 06 Apr 2016, :1461 (doi:)Second version: 4 10.12688/f1000research.7476.2

 16 Jun 2016, :1461 (doi:)Latest published: 4 10.12688/f1000research.7476.3

v3

Page 1 of 18

F1000Research 2016, 4:1461 Last updated: 01 AUG 2016

http://f1000research.com/articles/4-1461/v3
http://f1000research.com/articles/4-1461/v3
http://www.physiome.org/jsim/
http://www.physiome.org/software/MPC/
http://f1000research.com/articles/4-1461/v3
http://f1000research.com/articles/4-1461/v2
http://f1000research.com/articles/4-1461/v1
http://dx.doi.org/10.12688/f1000research.7476.1
http://dx.doi.org/10.12688/f1000research.7476.2
http://dx.doi.org/10.12688/f1000research.7476.3
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.7476.3&domain=pdf&date_stamp=2016-06-16

F1000Research

 Bartholomew Jardine ()Corresponding author: barthj@uw.edu
 Jardine B, Raymond GM and Bassingthwaighte JB. How to cite this article: Semi-automated Modular Program Constructor for

 2016, :1461 (doi: physiological modeling: Building cell and organ models [version 3; referees: 2 approved] F1000Research 4
)10.12688/f1000research.7476.3

 © 2016 Jardine B . This is an open access article distributed under the terms of the , whichCopyright: et al Creative Commons Attribution Licence
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Research has been supported by NIH grants HL088516 (J.B. Bassingthwaighte) and HL073598 (J.B. Bassingthwaighte),Grant information:
BE08417 (J.B. Bassingthwaighte), the Virtual Physiological Rat program GM094503 (PI: D.A. Beard), and the Cardiac Energy Grid HL199122 (PI:
J.B. Bassingthwaighte). The grants supported the whole group.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 Competing interests: The authors declared no competing interests.

 16 Dec 2015, :1461 (doi:) First published: 4 10.12688/f1000research.7476.1

Page 2 of 18

F1000Research 2016, 4:1461 Last updated: 01 AUG 2016

http://dx.doi.org/10.12688/f1000research.7476.3
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.7476.1

Introduction
Many attempts have been made to provide modular modeling for
physiological applications (Erson & Cavuşoğlu, 2012; Krause
et al., 2010; Mirschel et al., 2009; Smith et al., 2009). We describe
our modeling utility as semi-automated modular programming
construction. It is simple and not conceptually novel, but is easy
to learn and use. For developing a series of models of increasing
complexity, Modular Program Constructor (MPC) can serve well
as the primary basis for coding new model components and for
incorporating modules of previously developed modeling code.
The perspective is to take a modular approach; this means that one
builds from simple modeling elements initially and then use multi-
modular constructs as modules in higher level models.

Modular model creation and construction rely, to varying degrees,
on meta-data to assist in reusing and merging previous models into
a new one. Antimony (Smith et al., 2009) is the simplest approach.
It requires the user to be familiar with the model and just specify
that you want to import it into the new model. It relies on the user
to resolve discrepancies between models. SemanticSBML (Krause
et al., 2010), SemGen (Gennari et al., 2011; Neal et al., 2015), and
Phy-Sim (Erson & Cavuşoğlu, 2012) make use of standard semantic
and ontological descriptions of a biological model to allow large
models to be broken down easily, without much user guidance, into
biologically meaningful components linked to their mathematical
description. Semantic and ontological metadata assists the con-
struction of new models by providing suggested connections or
relationships between models. This approach requires the user to
invest time in complete annotation of models with standardized
meta-data. The payoff is models that can be constructed and merged
together using biological rather than mathematical terms. ProMot
(Mirschel et al., 2009) enforces an object-oriented approach to
modeling (defining external interfaces for each object) and attempts
to use network theory to describe biological systems through
specifying elements and coupling elements. MPC relies on the user
to modularize a model using directives to specify them. MPC then
requires the user to specify how the new model makes use of the
modules. MPC only imposes unit balance constraints indirectly,
through the JSim MML compiler (Butterworth et al., 2014).

In MPC, a module can be any set of variable declarations,
parameter declarations and mathematical equations that represent
a process. This broad definition of a module has a broad variety
of applications: from a simple first order enzyme reaction, to a

complete model of coronary blood flow through heart muscle,
which can then be incorporated into a yet larger systemic model.

MPC is based upon ModelBuilder, which used FORTRAN to
parse code and define directives (Raymond, 2008). MPC is now
Java based and simpler to use. Some MPC built models include
time-dependent two-dimensional spatial models in both Cartesian
and cylindrical coordinates (Raymond & Bassingthwaighte, 2011;
Raymond & Bassingthwaighte, 2012), and whole organ models
with heterogeneous flows, and substrate metabolism, including
reconstructing Bassingthwaighte et al., 1989 blood-tissue exchange
model.

Methods
MPC implementation
MPC is a pre-compiler written in Java. It reads a text input file,
parses the file for directives, and generates a text output file
based on those directives. MPC is built upon the Mathematical
Modeling Language (MML) of JSim (http://www.physiome.org/
jsim/) [Butterworth et al., 2014]. It has been designed to work with
JSim’s MML and currently requires JSim to run the model output
file that MPC produces. Through JSim, the final constructed model
can be exported into Systems Biology Markup Language (SBML,
http://sbml.org/Main_Page) or CellML (https://www.cellml.
org/), and imported to other SBML or CellML supported simula-
tion platforms (Smith et al., 2014). MPC currently is executed as
a command line utility and requires the Java runtime environment
(https://java.com/).

MPC has three components:

1. �MML, the mathematical modeling language of JSim, is a
declarative language which is used to specify all the model
equations, leaving the sequencing and solving of equa-
tions to the JSim compiler and simulator. MML declares
parameters and variables (with units), defines algebraic
equations, ordinary and partial differential equations with
their associated initial and boundary conditions.

2. �Modules are MML model code which are variable
declarations, parameter declarations, or mathemati-
cal equations for a particular process, for example, flow
along a capillary, diffusion within a region, a chemical
reaction, transport across a membrane, or even a whole
organ. These are archived, forming libraries of operational
module code that can be publicly distributed (some are
available at http://www.physiome.org/software/MPC/).
This allows the user to generate multi-scale models with
different sub-models to use in testing a hypothesis against
data, i.e. validity testing. For example, there have been a
variety of models developed to describe the transmem-
brane sodium pump, NaKATPase which uses ATP to pump
sodium out of, and potassium into, the cell (Chapman
et al., 1983; Demir et al., 1994; Goldman, 1943; Hille,
2001; Hodgkin & Huxley, 1952; Lauger, 1991; Winslow
et al., 1999). All of these models have the same essential
external influences: the Na and K ion concentrations and
the transmembrane electrical potential. Having a library of

            Amendments from Version 2

Made small grammatical changes throughout the paper based
on reviewer comments and authors’ review. Added references
for sodium pump models in the ‘MPC implementation’ section of
Methods. Edited extensively the Discussion paragraph on MPC
and VVUQ to make clearer and added a reference for VVUQ.
Added more information about example MPC models in the ‘Data
Availability’ section based on reviewer comments.

See referee reports

REVISED

Page 3 of 18

F1000Research 2016, 4:1461 Last updated: 01 AUG 2016

http://www.physiome.org/jsim/
http://www.physiome.org/jsim/
http://sbml.org/Main_Page
https://www.cellml.org/
https://www.cellml.org/
https://java.com/
http://www.physiome.org/software/MPC/

the MML code for the variant modules allows one to insert
one’s choice quickly into the template for the cell model.
Changing combinations rapidly to match solutions with
experimental results is invaluable for the early phases of
developing alternative hypotheses.

3. �Directives, the third component, comprises the set of
instructions used by the MPC model utility to select proc-
esses and gather the code from existing modules, renam-
ing parameters and variables to reflect the new purposes
for which they will function, and automatically combin-
ing the mathematical structures into new structures. The
directives control the identification, fetching and relabe-
ling of variables and parameters, and the assembly and
recombination of model code into new equations. All

CodeLibrary.mod:

//------------------------- ODE DOMAINS
//%START odeDomains
// START...END directives used to specify a module. realDomain t s; t.min=0; t.max=16;
t.delta = 0.1;
//%END odeDomains
//------------------------- flowCalc
//%START flowCalc
C:t = (F/V)*(Cin-C);
//%END flowCalc
//------------------------- EXCHANGE CACULATIONS
//%START exchangeCalc
C1:t = PS/V1*(C2-C1); // Exchange between two compartments
C2:t = PS/V2*(C1-C2);
//%END exchangeCalc
//------------------------- REACTION A->B
//%START reactionCalc
real G = 5 ml/(g*min); // Const reaction rate.
A:t = -G/V*A;
B:t = G/V*A;
//%END reactionCalc
//------------------------- MM REACTION A->B
//%START MMreactionCalc
real KmA =1.0 mM, VmaxA =2 umol/(g*min); // MM constant and max velocity of rxn
real G(t) ml/(g*min); // MM reaction rate
G = (VmaxA/(KmA+A));
A:t = -G*(A)/V;
B:t = G*(A)/V;
//%END MmreactionCalc

MPC directives start with ‘//%’ for identification by the
MPC parsing algorithm.

Selecting and arranging components using directives – A
simple example
The MPC input file guides the construction of a model made of
previously existing model modules. It combines MML with
“directives” embedded as comments and uses code from other
JSim model files that have been annotated so that they can be
read by MPC, yet without interfering with their operability. MPC
may also combine models with other models or with modules of
preconstructed code from model code libraries. These modules
are specified within a library with the START and END directive.
A “library” with a few elementary operators from which we will
build a model in our next step is illustrated below:

Page 4 of 18

F1000Research 2016, 4:1461 Last updated: 01 AUG 2016

Example.mpc:

//%REPLACE %CL% =("CodeLibrary.mod") // Library to get code from, replace all
 // occurrences of %CL% with CodeLibrary.mod
//%REPLACE (%N%=("1","2"), %vol%=("0.05","0.05")) // Two compartments with volumes, replace
 	 // all occurrences of %N% with 1,2 and %vol% with 0.05, 0.15
//%REPLACE (%AB%=("A","B","C") %PS3%=("6","5","4")) // 3 species, PS init values.
import nsrunit; unit conversion on; // Use cgs units for this model.
math example { // model declaration
// INDEPENDENT VARIABLES
//%GET %CL% odeDomains() // Get odeDomains section from CodeLibrary.mod
//%INSERTSTART a2bParmsVars // Specify params and vars section
// PARAMETERS
real Flow = 1 ml/(g*min); // Flow rate
real PS%AB%12 = %PS3% ml/(g*min); // Conductances: PSA12,PSB12,PSC12
real V%N% = %vol% ml/g;	 // Volume of V1, V2
extern real %AB%in(t) mM; // Inflowing concentrations
// DEPENDENT VARIABLES
real %AB%%N%(t) mM; // A1,A2,B1,B2,C1,C2
// INITIAL CONDITIONS (IC’s)
when(t=t.min) %AB%%N%=0; // Defines IC’s for the ODEs
//%INSERTEND a2bParmsVars // End params and var sec
//%INSERTSTART a2bCalc // Specify calc section
// ODE CALCULATIONS
//%GET %CL% reactionCalc ("A=A2","B=B2","V=V2","G=Ga2b") // A->B reaction
//%GET %CL% MMreactionCalc ("A=B2","B=C2","V=V2","G=Gb2c", // B ->C MM reaction
//% "KmA=KmB2","VmaxA = VmaxB2", "KmA = KmB2") // B ->C MM reaction continued
//%GET %CL% flowCalc ("Cin=%AB%in","C=%AB%1","V=V1","F=Flow","D=D%AB%1")
//%GET %CL% exchangeCalc ("C1=%AB%1","PS=PS%AB%12","C2=%AB%2")
//%COLLECT("%AB%%N%:t") //Group all ODE calculations for a species together
//%INSERTEND a2bCalc } // curly bracket ends model

In JSim’s MML, the colon signifies the derivative: C:t means
dC/dt. Comments are preceded by a double slash, ‘//’. Within MPC
we can write MML code directly or import code from operational
JSim models that have been annotated to identify components.
An example is a three species (A, B, C), two compartment model
with two reactions in compartment two (Figure 1) with species
concentrations described by ordinary differential equations (ODE).
Species A enters, with flow F, a compartment with volume V1 and
passive exchange between a second compartment with volume V2.
In the second compartment, A reacts at rate GA2B to form B and B
reacts to form C at rate GB2C, a Michaelis-Menten reaction.

The MPC file defines the domain, parameters, variables, and
initial conditions first. Using the directives listed in ‘Example.mpc’,
model code is extracted from the file ‘CodeLibrary.mod’ shown
above. Values and variable names needing replacement throughout
the final model are specified by the REPLACE directive along with
the ‘%symbol%’ placeholder. The use of the REPLACE, GET,
COLLECT, INSERTSTART and INSERTEND directives are used
in Example.mpc shown below:

Figure 1. Two compartment, three species model (A, B, C) with
volumes V1, V2, respectively. Ain is the concentration of A entering
compartment 1 through which the flow is F. There is no flow in V2,
but there are the reactions A-->B and B-->C. Passive exchange
between compartments occurs for all three species.

Page 5 of 18

F1000Research 2016, 4:1461 Last updated: 01 AUG 2016

The GET directive warrants further explanation: it identifies a
model code library file and module name within the library to insert
into the model, and changes old names (names of parameters and
variables in the module) to new model names. From the example
above, //%GET %CL% reactionCalc ("A=A2","B=B2",
"V=V2","G=Ga2b") will get the module named 'reactionCalc' in
file 'CodeLibrary.mod' and replace the variable names with the new
model names ("A=A2", etc).

The MPC directives control the identification, fetching, relabe-
ling of variables and parameters, and assembling and recombining

code into new equations. The directives extract equations from
files, changing the names of the module variables to application
specific names and assemble the code into combined equations.
The model code resulting from these instructions provides a
complete program (Example.mod); in the following MPC output
file (example.mod) some redundant comments have been removed,
other explanatory comments have been added. The MPC gener-
ated program is ready to use with no further intervention on the
part of the user except to adjust parameters or the solution time
step length, and to set up graphics in JSim to display solutions, as
shown in Figure 2.

Figure 2. Solutions for the two compartment model generated from MPC. Species concentrations plotted as a function of time. Species A
(red), B (green), C (blue). Compartment 1: solid line, Compartment 2: dashed line. Ain, the input function (black dot dashed line), is a lagged
normal density function for species A. Values for the input function are: Area under curve = 20 mM•sec, relative dispersion, RD = 0.25,
skewn: 1.3, mean time: 3 sec.. See ‘MPC Ouput-Example.mod’ for other parameter values and initial conditions.

Page 6 of 18

F1000Research 2016, 4:1461 Last updated: 01 AUG 2016

MPC Output - Example.mod:

import nsrunit; unit conversion on; // Use cgs units
math example { // model declaration
// INDEPENDENT VARIABLES
realDomain t s; t.min=0; t.max=16; t.delta = 0.1;
//%START a2bParmsVars // Specify parameters and variables sect.
// PARAMETERS
real Flow = 1 ml/(g*min); // Flow rate
real PSA12 = 6 ml/(g*min); // Conductance
real PSB12 = 5 ml/(g*min); // Conductance
real PSC12 = 4 ml/(g*min); // Conductance
real V1 = 0.05 ml/g; // Volume
real V2 = 0.05 ml/g; // Volume
extern real Ain(t) mM; // Inflow concentration of solute A
extern real Bin(t) mM; // Inflow concentration of B, set to zero
extern real Cin(t) mM; // Inflow concentration of C, set to zero
// DEPENDENT VARIABLES
real A1(t) mM; real B1(t) mM; real C1(t) mM; // concentrations in V1
real A2(t) mM; real B2(t) mM; real C2(t) mM; // concentrations in V2
// INITIAL CONDITIONS (IC’s)
when(t=t.min) A1=0;
when(t=t.min) A2=0;
when(t=t.min) B1=0;
when(t=t.min) B2=0;
when(t=t.min) C1=0;
when(t=t.min) C2=0;
//%END a2bParmsVars // End parameters and variables section
//%START a2bCalc // Specify calculations section
real Ga2b = 5 ml/(g*min); // A ->B First order reaction rate.
real KmB2 =1.0 mM, VmaxB2 =2 umol/(g*min);// Michaelis const; max velocity of rxn
real Gb2c(t) ml/(g*min); // B ->C Michaelis Menten reaction rate
Gb2c = (VmaxB2/(KmB2+B2));
// ODE CALCULATIONS
A2:t = -Ga2b/V2*A2 +PSA12/V2*(A1-A2);
B2:t = Ga2b/V2*A2 -Gb2c*(B2)/V2 +PSB12/V2*(B1-B2);
C2:t = Gb2c*(B2)/V2 +PSC12/V2*(C1-C2);
A1:t = (Flow/V1)*(Ain-A1) +PSA12/V1*(A2-A1);
B1:t = (Flow/V1)*(Bin-B1) +PSB12/V1*(B2-B1);
C1:t = (Flow/V1)*(Cin-C1) +PSC12/V1*(C2-C1);
// %END a2bCalc
} // curly bracket ends model

The process above is hardly worthwhile for small models but is
highly efficient for larger models where flexibility in structure
is desired. In the example above, converting the ODEs to PDEs
requires a three line change. Addition of a new PDE e.g. for red
blood cells in a capillary, takes four lines. For a five species, three
region model, a three line change generates a 15 PDE model.

The small set of directives builds complex models from simpler
model modules. MPC allows one to reliably reuse existing models
in larger, multi-scale models. MPC encodes and preserves informa-
tion about how a complex model is built from its modules allowing

quick substitution of modules. The amount of actual code a user
needs to write is reduced, especially for more complicated models.
In MPC we have generated a full organ model with heterogeneity of
flow, competitive transporters on the cell membranes, and reactions
for multiple species (Bassingthwaighte et al., 2012) e.g. for adeno-
sine processing in the heart. It is a 7-path, three region model that
involves five species (adenosine, inosine, hypoxanthine, xanthine,
and uric acid) in a sequential reaction chain. The model contains
over 100 PDEs for convection, diffusion, and reactions. Please see
more detailed examples in the ‘Data Availability’ and ‘Software
Availability’ sections below.

Page 7 of 18

F1000Research 2016, 4:1461 Last updated: 01 AUG 2016

Discussion
A prerequisite to using MPC is semantic consistency throughout
the libraries and modules. Automated systems using ontologies will
help craft models (Gennari et al., 2011), but the great efficiency of
MPC for model construction begins to show when there are many
model modules as in biochemical networks and circulatory or
airway models. The VVUQ process (Johnstone et al., 2016) pro-
vides key steps toward reproducibility (VVUQ = Verification,
Validation, Uncertainty Quantification, the latter defining predic-
tive accuracy). Though an MPC-generated model is checked for
syntax and unit balance through JSim, further verification is
required: analytical solutions can be written into the code to match
specific limiting cases, but otherwise one depends on testing
for mass, charge, or energy balances. Validation requires testing
against data, independent of the construction method; model solu-
tions should not be in contradiction to the data. Quantification of
the uncertainty is needed for making predictions from the model:
UQ includes uncertainty in parameters, handled by JSim’s Monte
Carlo analysis, and in inputs/environment and model structure.
Structural uncertainty, a major challenge, defines a major role for
MPC: inserting different choices from amongst similar but dif-
ferently functioning modules, into a large, multi-modular model,
and solving the system many times with the variant constituents
illustrating uncertainty in the projected outcomes.

Summary
A limited set of directives in MPC, our Modular Program Construc-
tor, allows us to build complex models from small models of simple
physiological processes. MPC encodes and preserves information
about how a complex model is built from its simpler model modules
allowing the researcher to quickly substitute or update modules
to validate a hypothesis. The amount of actual model code a user
needs to write is reduced, especially for more complicated models.

Future updates will improve collection and insertion of model
code, better identify external model module ‘connections’ for easier
incorporation into larger models, and more intelligent reconcilia-
tion of similar code between modules. The long-term strategy is
to integrate MPC within JSim allowing the user to take advantage
of JSim’s MML compiler and graphical user interface to quickly
merge code with less user intervention.

Software availability
Software access
The Java code for MPC, the examples presented here, some more
detailed examples, and instructions are available at http://www.
physiome.org/software/MPC/.

Source code as at the time of publication
https://github.com/F1000Research/MPC/releases/tag/v1.0

Archived source code as at the time of publication
http://dx.doi.org/10.5281/zenodo.34208

Software license
MPC is released under a 3-clause ‘revised’ BSD license:

Copyright (C) 1999–2015 University of Washington

Developed by the National Simulation Resource

Department of Bioengineering, Box 355061

University of Washington, Seattle, WA 98195-5061.

Dr. J. B. Bassingthwaighte, Director

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the University of Washington nor the names of
its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

Data availability
The two compartment MPC built model, demonstrated here, is
available at www.physiome.org (TwoCompExampMPC, Model
0345). As it is an ODE model it could be translated to SBML or
CellML, allowing researchers whose simulation systems support
one of these markup languages to run this model. However, for this
presentation we have provided only the MPC annotation in order
to retain its simplicity.

MPC generated models for review at www.physiome.org are:

• �Two compartment MPC built model demonstrated here
(http://physiome.org/jsim/models/webmodel/NSR/Two-
CompExampMPC/).

• �Concentration profiles in capillary and tissue when exchange
is diffusion-limited (http://www.physiome.org/jsim/mod-
els/webmodel/NSR/DiffusionLimitedProfiles/).

• �ODE model of actin polymerization and depolymerization
with tracking of bound nucleotide (http://www.physiome.
org/jsim/models/webmodel/NSR/ActinCycle1/).

• �Multiple tracer dilution estimates of D- and 2-deoxy-
D-glucose uptake by the heart (http://www.physiome.org/
jsim/models/webmodel/NSR/Kuikka1986BTEX30MP/).

Author contributions
All authors contributed to the design and organization of the paper
and its writing and editing. Gary Raymond developed MPC.
Bart Jardine currently maintains MPC source code and James
Bassingthwaighte provides guidance and requirements for MPC
development.

Competing interests
The authors declared no competing interests.

Grant information
Research has been supported by NIH grants HL088516
(J.B. Bassingthwaighte) and HL073598 (J.B. Bassingthwaighte),
BE08417 (J.B. Bassingthwaighte), the Virtual Physiological Rat
program GM094503 (PI: D.A. Beard), and the Cardiac Energy Grid

Page 8 of 18

F1000Research 2016, 4:1461 Last updated: 01 AUG 2016

http://www.physiome.org/software/MPC/
http://www.physiome.org/software/MPC/
https://github.com/F1000Research/MPC/releases/tag/v1.0
http://dx.doi.org/10.5281/zenodo.34208
http://www.physiome.org/
http://www.physiome.org/
http://physiome.org/jsim/models/webmodel/NSR/TwoCompExampMPC/
http://physiome.org/jsim/models/webmodel/NSR/TwoCompExampMPC/
http://www.physiome.org/jsim/models/webmodel/NSR/DiffusionLimitedProfiles/
http://www.physiome.org/jsim/models/webmodel/NSR/DiffusionLimitedProfiles/
http://www.physiome.org/jsim/models/webmodel/NSR/ActinCycle1/
http://www.physiome.org/jsim/models/webmodel/NSR/ActinCycle1/
http://www.physiome.org/jsim/models/webmodel/NSR/Kuikka1986BTEX30MP/
http://www.physiome.org/jsim/models/webmodel/NSR/Kuikka1986BTEX30MP/

References

	 Bassingthwaighte JB, Wang CY, Chan IS: Blood-tissue exchange via transport
and transformation by capillary endothelial cells. Circ Res. 1989; 65(4):
997–1020.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Bassingthwaighte JB, Raymond GM, Chan JI: Tracer washout from an organ is
predicted from the tracer center of mass. FASEB J. 2012; 26: 905.16.
Reference Source

	 Butterworth E, Jardine BE, Raymond GM, et al.: JSim, an open-source modeling
system for data analysis [v3; ref status: indexed, http://f1000r.es/3n0].
F1000Res. 2014; 2: 288.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Chapman JB, Johnson EA, Kootsey JM: Electrical and biochemical properties of
an enzyme model of the sodium pump. J Membr Biol. 1983; 74(2): 139–153.
PubMed Abstract | Publisher Full Text

	 Demir SS, Clark JW, Murphey CR, et al.: A mathematical model of a rabbit
sinoatrial node cell. Am J Physiol. 1994; 266(3 Pt 1): C832–C852.
PubMed Abstract

	 Erson EZ, Cavuşoğlu MC: Design of a framework for modeling, integration and
simulation of physiological models. Comput Methods Programs Biomed. 2012;
107(3): 524–37.
PubMed Abstract | Publisher Full Text

	 Gennari JH, Neal ML, Galdzicki M, et al.: Multiple ontologies in action:
Composite annotations for biosimulation models. J Biomed Inform. 2011; 44(1):
146–154.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Goldman DE: Potential, impedance, and rectification in membranes. J Gen
Physiol. 1943; 27(1): 37–60.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Hille B: Ionic Channels of Excitable Membranes. 3rd Ed, Sunderland, MA,
Sinauer, 2001.
Reference Source

	 Hodgkin AL, Huxley AF: A quantitative description of membrane current and
its application to conduction and excitation in nerve. J Physiol. 1952; 117(4):
500–544.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Johnstone RH, Chang ET, Bardenet R, et al.: Uncertainty and variability in
models of the cardiac action potential: Can we build trustworthy models?
J Mol Cell Cardiol. 2016; 96: 49–62.
PubMed Abstract | Publisher Full Text

	 Krause F, Uhlendorf J, Lubitz T, et al.: Annotation and merging of SBML models
with semanticSBML. Bioinformatics. 2010; 26(3): 421–422.
PubMed Abstract | Publisher Full Text

	 Lauger P: Electrogenic Ion Pumps. 2nd Ed, Sinauer, Sunderland MA, 1991.

	 Mirschel S, Steinmetz K, Rempel M, et al.: PROMOT: modular modeling for
systems biology. Bioinformatics. 2009; 25(5): 687–689.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Neal ML, Carlson BE, Thompson CT, et al.: Semantics-Based Composition of
Integrated Cardiomyocyte Models Motivated by Real-World Use Cases. PLoS
One. 2015; 10(12): e0145621.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Raymond GM: Reusable modular code for multi-scale physiological systems
modeling. Oral presentation 3rd MEI International symposium. 2008.
Reference Source

	 Raymond GM, Bassingthwaighte JB: Automating modular model construction
using JSim. FASEB J. 2011; 25: 863.9.
Reference Source

	 Raymond GM, Bassingthwaighte JB: JSim models of two-dimensional
concentrations in capillary-tissue systems relating center-of-mass of retained
tracer to washout kinetics. FASEB J. 2012; 26: 905.17.
Reference Source

	 Smith LP, Bergmann FT, Chandran D, et al.: Antimony: a modular model
definition language. Bioinformatics. 2009; 25(18): 2452–2454.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Smith LP, Butterworth E, Bassingthwaighte JB, et al.: SBML and CellML
translation in antimony and JSim. Bioinformatics. 2014; 30(7): 903–907.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Winslow RL, Rice J, Jafri S, et al.: Mechanisms of altered excitation-contraction
coupling in canine tachycardia-induced heart failure, II: model studies. Circ
Res. 1999; 84(5): 571–86.
PubMed Abstract | Publisher Full Text

HL199122 (PI: J.B. Bassingthwaighte). The grants supported the
whole group.

The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Page 9 of 18

F1000Research 2016, 4:1461 Last updated: 01 AUG 2016

http://www.ncbi.nlm.nih.gov/pubmed/2791233
http://dx.doi.org/10.1161/01.RES.65.4.997
http://www.ncbi.nlm.nih.gov/pmc/articles/3454538
http://f1000research.com/posters/4-1218
http://f1000r.es/3n0
http://www.ncbi.nlm.nih.gov/pubmed/24555116
http://dx.doi.org/10.12688/f1000research.2-288.v3
http://www.ncbi.nlm.nih.gov/pmc/articles/3901508
http://www.ncbi.nlm.nih.gov/pubmed/6308260
http://dx.doi.org/10.1007/BF01870503
http://www.ncbi.nlm.nih.gov/pubmed/8166247
http://www.ncbi.nlm.nih.gov/pubmed/22309809
http://dx.doi.org/10.1016/j.cmpb.2011.11.010
http://www.ncbi.nlm.nih.gov/pubmed/20601121
http://dx.doi.org/10.1016/j.jbi.2010.06.007
http://www.ncbi.nlm.nih.gov/pmc/articles/2989341
http://www.ncbi.nlm.nih.gov/pubmed/19873371
http://dx.doi.org/10.1085/jgp.27.1.37
http://www.ncbi.nlm.nih.gov/pmc/articles/2142582
https://he.palgrave.com/page/detail/ionic-channels-of-excitable-membranes-bertil-hille/?sf1=barcode&st1=9780878933211
http://www.ncbi.nlm.nih.gov/pubmed/12991237
http://dx.doi.org/10.1113/jphysiol.1952.sp004764
http://www.ncbi.nlm.nih.gov/pmc/articles/1392413
http://www.ncbi.nlm.nih.gov/pubmed/26611884
http://dx.doi.org/10.1016/j.yjmcc.2015.11.018
http://www.ncbi.nlm.nih.gov/pubmed/19933161
http://dx.doi.org/10.1093/bioinformatics/btp642
http://www.ncbi.nlm.nih.gov/pubmed/19147665
http://dx.doi.org/10.1093/bioinformatics/btp029
http://www.ncbi.nlm.nih.gov/pmc/articles/2647835
http://www.ncbi.nlm.nih.gov/pubmed/26716837
http://dx.doi.org/10.1371/journal.pone.0145621
http://www.ncbi.nlm.nih.gov/pmc/articles/4696653
http://physiome.org/jsim/models/webmodel/NSR/MPC/ModelBuilder.pdf?>rev=HEAD;content=type=application/octet-stream
http://f1000research.com/posters/4-1194
http://f1000research.com/posters/4-1216
http://www.ncbi.nlm.nih.gov/pubmed/19578039
http://dx.doi.org/10.1093/bioinformatics/btp401
http://www.ncbi.nlm.nih.gov/pmc/articles/2735663
http://www.ncbi.nlm.nih.gov/pubmed/24215024
http://dx.doi.org/10.1093/bioinformatics/btt641
http://www.ncbi.nlm.nih.gov/pmc/articles/3967103
http://www.ncbi.nlm.nih.gov/pubmed/10082479
http://dx.doi.org/10.1161/01.RES.84.5.571

F1000Research

Open Peer Review

 Current Referee Status:

Version 3

 01 August 2016Referee Report

doi:10.5256/f1000research.9641.r14422

 Dagmar Waltemath
Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany

Thank you for the latest revision. Please consider changing the last sentence of the first paragraph in the
introduction to: "and then use" --> "and then uses".

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Version 2

 19 May 2016Referee Report

doi:10.5256/f1000research.9029.r13212

 Vanessa Díaz-Zuccarini
UCL Mechanical Engineering , Multiscale Cardiovascular Engineering Group, University College London,
London, UK

I think after the previous corrections the article is much more readable. It would be extremely helpful if the
authors could update the manuscript with hyperlinks to concrete databases/examples and to provide a
concrete example to illustrate their point about 'The amount of actual code a user needs to write is
reduced, especially for more complicated models'.

I strongly believe one of the roadblocks to a more widespread use of markup languages and the
reusability of code is the perceived challenge by modellers/users of the task(s) involved into make their
models 'shareable' and 'reusable'. A contrast between 2 examples or simply a better description of the
effort it would concretely entail, would make their case much clearer.

This isn't absolutely necessary for the article but since the authors are trying to make a point and for other
researchers to use the tools they have developed and use for their own research, I believe this would be
useful.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that

Page 10 of 18

F1000Research 2016, 4:1461 Last updated: 01 AUG 2016

http://dx.doi.org/10.5256/f1000research.9641.r14422
http://dx.doi.org/10.5256/f1000research.9029.r13212

F1000Research

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Author Response 16 Jun 2016
, University of Washigton, USABartholomew Jardine

I think, after the previous corrections, the article is much more readable. It would be extremely
helpful if the authors could update the manuscript with hyperlinks to concrete databases/examples
and to provide a concrete example to illustrate their point about 'The amount of actual code a user
needs to write is reduced, especially for more complicated models'.

Author: On page 7 in final paragraph before the “Discussion” section added the following sentence,
with links:

"Please see more detailed examples in the Data Availability and Software Availability sections
below.”

Listed in these sections are specific examples of models available on our website (physiome.org)
created using MPC.

I strongly believe one of the roadblocks to a more widespread use of markup languages and the
reusability of code is the perceived challenge by modellers/users of the task(s) involved into make
their models 'shareable' and 'reusable'. A contrast between 2 examples or simply a better
description of the effort it would concretely entail, would make their case much clearer.

This isn't absolutely necessary for the article but since the authors are trying to make a point and
for other researchers to use the tools they have developed and use for their own research, I believe
this would be useful.

 Author: We added this paragraph in the Data availability section (page 8) to address this important
point:

“The two compartment MPC built model, demonstrated here, is available at www.physiome.org
(TwoCompExampMPC, Model # 0345). As it is an ODE model it could be translated to SBML or
CellML, allowing researchers whose simulation systems support one of these markup languages to
run this model. However, for this presentation we have provided only the MPC annotation in order
to retain its simplicity.”

 NoneCompeting Interests:

 18 April 2016Referee Report

doi:10.5256/f1000research.9029.r13211

 Dagmar Waltemath

Page 11 of 18

F1000Research 2016, 4:1461 Last updated: 01 AUG 2016

http://dx.doi.org/10.5256/f1000research.9029.r13211

F1000Research

1.

2.

3.

4.

5.

6.

7.

8.

9.

1.

 Dagmar Waltemath
Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany

Thank you for revising the manuscript. It was nice reading it. I only have a few minor things to note
Last sentence of first paragraph in the introduction: I suggest to generalise the sentence and cut
"for multi-scale modeling". Also, I think it should be "uses" instead of "use".

Last sentence of first paragraph in Methods: "MPC currently is executed as command line utility" - I
would write "as a command line utility".

in Methods, in the listing of the three components, I suggest to remove "not procedural like Fortran
or Matlab", as it is hard to follow the sentence structure and the information not essential. Also, is
MML really designed to solve equations? Or rather to provide the information to solve them?

in Methods, second point in the above listing: You mention several models ("For example, there
have been a variety of models...") - would it be possible to link to these specific works, e.g., using
citations?

Last sentence on page 3: "A "library" with a few..." - I think it should read "in our next step" (instead
of "in out next step")

End of first paragraph on page 4: "Species A enters, with flow F, a compartment... I had problems
following the sentence, specifically because of "passive exchange between"... Can simplify the
sentence structure or use two sentences instead?

First sentence in Discussion: Should it be "Though an MPC-generated..." (instead of "a")?

same paragraph: "These are key steps towards reproducibility and the VVUQ process." I would
have found it helpful to get a reference to the VVUQ process. Can you add one?

Grant information, last sentence: Please use a capital letter to start the sentence, and add two "the"
- "The grants supported the whole group."

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Author Response 16 Jun 2016
, University of Washigton, USABartholomew Jardine

Responses reflected in version 3 of manuscript.
Last sentence of first paragraph in the introduction: I suggest to generalise the sentence and
cut "for multi-scale modeling". Also, I think it should be "uses" instead of "use".

Author: Changed last two sentences of first paragraph (page 3) to generalize: “For
developing a series of models of increasing complexity, Modular Program Constructor
(MPC) can serve well as the primary basis for coding new model components and for
incorporating modules of previously developed modeling code. The perspective is to take a
modular approach; this means that one builds from simple modeling elements initially and

Page 12 of 18

F1000Research 2016, 4:1461 Last updated: 01 AUG 2016

F1000Research

1.

2.

3.

4.

5.

6.

modular approach; this means that one builds from simple modeling elements initially and
then use multi-modular constructs as modules in higher level models."

Last sentence of first paragraph in Methods: "MPC currently is executed as command line
utility" - I would write "as a command line utility".

 Author: Made change as suggested.

in Methods, in the listing of the three components, I suggest to remove "not procedural like
Fortran or Matlab", as it is hard to follow the sentence structure and the information not
essential. Also, is MML really designed to solve equations? Or rather to provide the
information to solve them?

Author: Updated and clarified sentence (page 3, Methods , paragraph): “MML, the1. MML
mathematical modeling language of JSim, is a declarative language specifying all the model
equations, leaving the sequencing and solving of equations to the JSim compiler and
simulator.”

in Methods, second point in the above listing: You mention several models ("For example,
there have been a variety of models...") - would it be possible to link to these specific works,
e.g., using citations?

Author: added the following references (page 3, Methods , paragraph):2. Modules

- Chapman JB, Johnson EA, and Kootsey JM, Electrical and Biochemical Properties of an
Enzyme Model of the Sodium Pump, Journal of Membrane Biology 74., 139-153, 1983
- Demir S, Clark J, Murphey C, and Giles W, A mathematical model of a rabbit sinoatrial
node cell. Am. J. Physiol. Cell Physiol. 266: C832-C852, 1994
- Goldman David E. Potential, impedance, and rectification in membranes, J Gen Physiol
27: 37-60, 1943.
- Hille B. Ionic Channels of Excitable Membranes. 3rd Ed, Sunderland, MA, Sinauer, 2001.
- Hodgkin AL and Huxley AF. A quantitative description of membrane current and its
application to conduction and excitation in nerve. J Physiol. 500-544, 1952d.
- Lauger P, Electrogenic Ion Pumps, 2nd Ed, Sinauer, Sunderland MA 1991
- Winslow RL, Rice J, Jafri S, Marban E, and O'Rourke B, Mechanisms of altered
excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies.
Circ Res. 1999 Mar 19;84(5):571-86.

Last sentence on page 3: "A "library" with a few..." - I think it should read "in our next step"
(instead of "in out next step")

Author: Fixed typo (page 4, "Selecting and arranging..." paragraph): “A `library` with a few
elementary operators from which we will build a model in our next step is illustrated below:”

End of first paragraph on page 4: "Species A enters, with flow F, a compartment... I had
problems following the sentence, specifically because of "passive exchange between"...
Can simplify the sentence structure or use two sentences instead?

Author: Made into two sentences to make more readable (page 5, first paragraph):

Page 13 of 18

F1000Research 2016, 4:1461 Last updated: 01 AUG 2016

F1000Research

6.

7.

8.

“Species A enters, with flow F, a compartment with volume V1 and passive exchange
between a second compartment with volume V2. In the second compartment, A reacts at
rate GA2B to form B and B reacts to form C at rate GB2C, a Michaelis-Menten reaction.”

First sentence in Discussion: Should it be "Though an MPC-generated..." (instead of "a")?

Author: Agree. Corrected (page 8, first paragraph); an M is an aspirate.

same paragraph: "These are key steps towards reproducibility and the VVUQ process." I
would have found it helpful to get a reference to the VVUQ process. Can you add one?

Author: Rewrote the first paragraph (page 8) of the “Discussion” section and added the
following reference:

- R.H. Johnstone, et al., Uncertainty and variability in models of the cardiac action potential:
Can we build trustworthy models?, J Mol Cell Cardiol (2015),
http://dx.doi.org/10.1016/j.yjmcc.2015.11.018

Updated paragraph:

A prerequisite to using MPC is semantic consistency throughout the libraries and modules.
Automated systems using ontologies will help craft models (Gennari et al., 2011), but the
great efficiency of MPC for model construction begins to show when there are many model
modules as in biochemical networks and circulatory or airway models. The VVUQ process
(Johnstone et al. 2015) provides key steps toward reproducibility (VVUQ = Verification,
Validation, Uncertainty Quantification, the latter defining predictive accuracy). Though an
MPC-generated model is checked for syntax and unit balance through JSim, further
verification is required: analytical solutions can be written into the code to match specific
limiting cases, but otherwise one depends on testing for mass, charge, or energy balances.
Validation requires testing against data, independent of the construction method; model
solutions should not be in contradiction to the data. Quantification of the uncertainty is
needed for making predictions from the model: UQ includes uncertainty in parameters,
handled by JSim's Monte Carlo analysis, and in inputs/environment and model structure.
Structural uncertainty, a major challenge, defines a major role for MPC: inserting different
choices from amongst similar but differently functioning modules, into a large, multi-modular
model, and solving the system many times with the variant constituents illustrating
uncertainty in the projected outcomes.

I. Grant information, last sentence: Please use a capital letter to start the sentence, and add
two "the" - "The grants supported the whole group."

Author: updated sentence as suggested.

 None.Competing Interests:

Version 1

Page 14 of 18

F1000Research 2016, 4:1461 Last updated: 01 AUG 2016

F1000Research

1.

2.

1.

2.

3.

4.

5.

Version 1

 05 January 2016Referee Report

doi:10.5256/f1000research.8055.r11594

 Dagmar Waltemath
Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany

The manuscript at hand describes MPC, a tool that supports modelers in constructing complex models
from smaller ones. MPC also keeps information about the single modules, making their exchange and
further coupling even easier.

The manuscript provides several examples (on code and abstract level) of how to use MPC, but it does
not give details on how the algorithm itself works.

My suggestions for improvements are mainly on the terminology used throughout the manuscript, and on
the discussion of related work.

Unifying terms: In the abstract alone you speak about programs, utilities, code; about models,
processes, model code and modules. Maybe you could - not only in the abstract but throughout the
manuscript - unify your wording a little bit more to make the text more comprehensive.

Related work: I missed a discussion of related systems, e.g. the model merge tool for SBML,
semanticSBML, or the semantic-based system (there was a new publication just recently). While
you mention them in the beginning of your introduction, I did not see a discussion of these
systems, and how they differ from your approach. I, as a reader, would be interested to know which
system is best to use when.

Furthermore, I have the following smaller comments:
 Page 2, Introduction: "The models include time-dependent..." -- Here it was not clear to me what
you mean by "models".

Page 2, MPC implementation: "Through JSim, the final constructed model...." -- I understand here,
that you can upload your constructed models from JSim into an open model repository, and then
directly download them into other simulation platforms. I am not sure that it is as easy as this,
particularly for BioModels there will be a curation process in between, and there is thus no
immediate reuse. The way the sentence is written now, a reader may assume that models can
directly and immediately be exchanged through these resources, which is in my opinion
misleading.

Page 2, MPC implementation: "These are archived, forming libraries of operational code" -- I would
be interested to know how you archive the modules, where, and how/if/to what degree they are
accessible/reusable?

Figure 1: I would like to suggest using an SBGN-compliant notation for the toy model.

Summary: "MPC encodes and preserves..." -- This is an important information for the users, and I
would like to suggest to add this information to the abstract.

References

1

Page 15 of 18

F1000Research 2016, 4:1461 Last updated: 01 AUG 2016

http://dx.doi.org/10.5256/f1000research.8055.r11594

F1000Research

1.

2.

References
1. Neal ML, Carlson BE, Thompson CT, James RC, Kim KG, Tran K, Crampin EJ, Cook DL, Gennari JH:
Semantics-Based Composition of Integrated Cardiomyocyte Models Motivated by Real-World Use
Cases. . 2015; (12): e0145621 | PLoS One 10 PubMed Abstract Publisher Full Text

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 06 Apr 2016
, University of Washigton, USABartholomew Jardine

Our responses to Referee Dagmar Waltemath's review:
My suggestions for improvements are mainly on the terminology used throughout the
manuscript, and on the discussion of related work. Unifying terms: In the abstract alone you
speak about programs, utilities, code; about models, processes, model code and modules.
Maybe you could - not only in the abstract but throughout the manuscript - unify your
wording a little bit more to make the text more comprehensive.

Author Response: Yes, we updated the abstract and paper as a whole to try to use
consistent and unifying wording when discussing model code, processes, modules, etc.
These changes are most notable in the abstract and introduction.

Related work: I missed a discussion of related systems, e.g. the model merge tool for
SBML, semanticSBML, or the semantic-based system (there was a new publication just
recently1). While you mention them in the beginning of your introduction, I did not see a
discussion of these systems, and how they differ from your approach. I, as a reader, would
be interested to know which system is best to use when.

Author Response: Added a paragraph in the Introduction that briefly discusses other tools
in relation to MPC:

"Modular model creation and construction rely, to varying degrees, on meta-data to assist in
reusing and merging previous models into a new one. Antimony (Smith 2009) is the simplest
approach. It requires the user to be familiar with the model and just specify that you want to
import it into the new model. It relies on the user to resolve discrepancies between models.
SemanticSBML(Krause 2010), SemGen (Genari 2011, Neal 2015), and Phy-Sim (Erson
2012) make use of standard semantic and ontological descriptions of a biological model to
allow large models to be broken down easily, without much user guidance, into biologically
meaningful components linked to their mathematical description. Semantic and ontological
metadata assists the construction of new models by providing suggested connections or
relationships between models. This approach requires the user to invest time in complete
annotation of models with standardized meta-data. The payoff is models that can be
constructed and merged together using biological rather than mathematical terms. ProMot
(Mirschel 2009) enforces an object-oriented approach to modeling (defining external
interfaces for each object) and attempts to use network theory to describe biological
systems through specifying elements and coupling elements (Mirschel 2009). MPC relies
on the user to modularize a model using directives to specify them. MPC then requires the

Page 16 of 18

F1000Research 2016, 4:1461 Last updated: 01 AUG 2016

http://www.ncbi.nlm.nih.gov/pubmed/26716837
http://dx.doi.org/10.1371/journal.pone.0145621

F1000Research

2.

1.

2.

3.

4.

on the user to modularize a model using directives to specify them. MPC then requires the
user to specify how the new model makes use of the modules. MPC only imposes unit
balance constraints, indirectly, through the JSim MML compiler (Butterworth 2014)."

Furthermore, I have the following smaller comments:
Page 2, Introduction: "The models include time-dependent..." -- Here it was not clear to me
what you mean by "models".

Author Response: Clarified sentence to make it clearer (Page 2, Introduction, 4th
paragraph):

Some MPC built models include time-dependent two-dimensional spatial models in both
Cartesian and cylindrical coordinates (Raymond et al., 2011; 2012), requiring PDEs, and
whole organ models with heterogeneous flows, and substrate metabolism, including
reconstructing Bassingthwaighte et al., 1989 blood-tissue exchange model.

Page 2, MPC implementation: "Through JSim, the final constructed model...." -- I
understand here, that you can upload your constructed models from JSim into an open
model repository, and then directly download them into other simulation platforms. I am not
sure that it is as easy as this, particularly for BioModels there will be a curation process in
between, and there is thus no immediate reuse. The way the sentence is written now, a
reader may assume that models can directly and immediately be exchanged through these
resources, which is in my opinion misleading.

Author Response: That sentence is confusing and not what we wanted to say. Changed
to:

Through JSim, the final constructed model can be exported into Systems Biology Markup
Language (SBML, http://sbml.org/Main_Page) or CellML (https://www.cellml.org/), and
imported to other SBML or CellML supported simulation platforms [Smith et al., 2014].

Page 2, MPC implementation: "These are archived, forming libraries of operational code" -- I
would be interested to know how you archive the modules, where, and how/if/to what
degree they are accessible/reusable?

Author Response: Modules created and used by our team are currently available for
download at physiome.org (http://physiome.org/software/MPC/) or search on term "mpc"
(http://physiome.org/Models/modelDB/). At this time there are a very limited set of MPC
modules available. Soon (May/June 2016) we will have individual MPC annotated modules
accessible directly from our search page with all file dependencies listed and available for
download as well as links to full JSim models that may use them. Contributions to our model
repository are encouraged (Any modeling language accepted).

Sentence inserted on page 2, in MPC implementation, paragraph 2, Modules: "These are
archived, forming libraries of operational module code that can be publicly distributed (some
are available at http://www.physiome.org/software/MPC/)."

Figure 1: I would like to suggest using an SBGN-compliant notation for the toy model.

Author Response: Thank you for the suggestion, for this particular figure we would like to

keep it as is, but since we are currently modeling cardiac metabolism at the sub-cellular

Page 17 of 18

F1000Research 2016, 4:1461 Last updated: 01 AUG 2016

F1000Research

4.

5.

keep it as is, but since we are currently modeling cardiac metabolism at the sub-cellular
level we will be adopting SBGN notation where possible. Arrowheads in figure are made
smaller.

Summary: "MPC encodes and preserves..." -- This is an important information for the users,
and I would like to suggest to add this information to the abstract.

Author Response: Added this sentence to the abstract.

 None.Competing Interests:

Page 18 of 18

F1000Research 2016, 4:1461 Last updated: 01 AUG 2016

