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1. Introduction

I consider a closed quantum system described by means of a homogeneous quadratic
Hamiltonian

H =
1
2

2N

∑
j,k=1

Bjk(t)qjqk =
1
2

qB(t)q. (1)

Here, q is the 2N-dimensional vector, whereas B is a 2N × 2N matrix. This vector and
matrix are divided into the N-dimensional blocks as follows,

q =

[
p
x

]
, B =

∥∥∥∥ b1 b2
b3 b4

∥∥∥∥. (2)

It is assumed that x and p are the N-dimensional vectors of the Cartesian coordinates and
conjugated momenta, with N being the number of degrees of freedom of the system. The
N × N matrices bj may be arbitrary functions of time (j = 1, 2, 3, 4). Evidently, matrix B
can always be symmetrized; thus, I assume that b1 = b̃1, b4 = b̃4, b2 = b̃3; the tilde means
the matrix transposition. If the Hamiltonian is Hermitian, then matrix B is real.

Many statistical properties of the quantum system are contained in the 2N × 2N
symmetric covariance matrix

M =
∥∥qjqk

∥∥ =

∥∥∥∥ Mpp Mpx
Mxp Mxx

∥∥∥∥, Mpx =M̃xp, (3)

where the (co)variances are defined as

qjqk =
1
2
〈q̂j q̂k + q̂k q̂j〉 − 〈q̂j〉〈q̂k〉, (4)

and the splitting of matrixM in N×N blocks is performed in accordance with the structure
of the 2N-dimensional vector q = (p, x). Formula (4) can be re-written as

1
2
〈q̂j q̂k + q̂k q̂j〉 = Cjk + Qjk, Cjk = 〈q̂j〉〈q̂k〉, Qjk = qjqk. (5)

The remarkable property of quadratic Hamiltonians is the total independence of the
first-order mean values 〈q̂j〉 and the covariances qjqk. Moreover, the evolution of the
mean values 〈q̂j〉 is governed by the classical equations of motion. Therefore, Formula (5)
demonstrates that the average value of any symmetric bilinear combination of canonical
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coordinate and momentum operators is the sum of two independent parts: the classical
part Cjk and the quantum part Qjk, which is determined by quantum fluctuations only.

If one is concerned with the quantum properties of the system under study, then, the
main object is the covariance matrixM. Its evolution is governed by the equation

dM/dt =MB(t)Σ− ΣB(t)M, Σ =

∥∥∥∥ 0 EN
−EN 0

∥∥∥∥, (6)

where EN is the N × N unity matrix. Therefore, matrixM depends on time in the most
general case.

Recently, the authors of [1] introduced the concept of invariant states, i.e., quantum
states with time-independent covariance matrices. They demonstrated the existence of such
states in the case of N = 2, considering an example of a frequency converter. The invariant
covariance matrix must satisfy the special case of Equation (6):

MB(t)Σ = ΣB(t)M. (7)

To solve Equation (7) for the 4× 4 matrixM, the authors of [1] transformed the matrix
equation into an equivalent set of 10 equations for the components of a vector constructed
from 10 independent elements of this symmetric matrix.

The aim of the present study is to solve Equation (7) directly in the matrix form and
analyze possible forms of the invariant covariance matrices, both for the constant matrices
B and for some specific time-dependent matrices B(t).

2. Simple Solutions for Time-Independent Hamiltonians

If matrix B does not depend on time, any time-independent solution to Equation (7) is
the solution to Equation (6) as well. The simplest solution isM∗ = ηB−1 with η > 0. If
matrix B is positively definite (as happens for physical Hamiltonians), then matrixM∗ is
positively definite automatically. However, physical covariance matrices must be not only
positively definite, but they must satisfy a more strong restriction of positive definiteness
of matrix Y =M+ ih̄Σ/2 [2,3]. In particular, the following inequality must be satisfied:

detM≥ (h̄/2)2N . (8)

Therefore, the coefficient η must satisfy the inequalty η ≥ (det B)1/2N h̄/2. For example,
considering the one-dimensional harmonic oscillator with the diagonal matrix
B = diag(m−1, mω2), we have det B = ω2, so that the minimal choice ηmin = h̄ω/2
yields the covariance matrix of the vacuum state. The value ηn = (2n + 1)ηmin corresponds
to the covariance matrix of the n-th energy eigenstate.

One can easily check that any matrix (ΣB)kΣ (with integer k) also satisfies Equation (7).
Due to the linearity of this equation, one can write a more general solution as

M = ∑
k=±1,±3,...

ck(ΣB)kΣ, (9)

where the coefficients ck must be chosen in such a way that matrix Y is positively definite.
The absence of even powers of matrix ΣB in the sum (series) (9) is explained by the fact
that all matrices (ΣB)2kΣ are antisymmetric.

It is known that the covariance matrix does not depend on time for any quantum
mixture of energy eigenstates, in particular, for the equilibrium states. For such states, we
have [3,4]

Meq = (h̄/2) cot(h̄βΣB/2)Σ, (10)

where β is the inverse temperature parameter. Formula (10) is the consequence of the gen-
eral formula for the Gaussian Wigner function of homogeneous quadratic systems [3,5–7]
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WGauss(q) ∼ exp
(
−1

2
qM−1q

)
(11)

and the explicit expression for the equilibrium Wigner function of the most general homo-
geneous quadratic Hamiltonians [8,9]

Weq(q) ∼ exp
[

h̄−1qΣ tan(h̄βΣB/2)q
]
. (12)

Formula (10) has the form of (9) with k ≥ −1.
Matrix (ΣB)2 has the following block form:

(ΣB)2 =

∥∥∥∥ b̃2
2 − b4b1 b̃2b4 − b4b2

b2b1 − b1b̃2 b2
2 − b1b4

∥∥∥∥.

This matrix is proportional to the unit matrix if N = 1, when all blocks are usual numbers.
Consequently, the sum (series) (9) is proportional to B−1 for all one-dimensional quadratic
systems with non-degenerate matrix B. This means that one-dimensional systems possess
a unique set of invariant covariance matrices, with the form ηB−1 (or an equivalent form
ξΣBΣ with ξ < 0 in order to maintain the positive definiteness). This result can be easily
checked by directly solving Equation (7) when all matrices have the dimension 2× 2. In
particular, any Gaussian invariant state can be considered as a thermal state with some
effective temperature in the case of N = 1.

Two-Dimensional Examples: A Charged Oscillator and a Charge in a Homogeneous Magnetic Field

However, the situation can be different for multidimensional systems. As an example
of a two-dimensional system, let us consider an isotropic charged two-dimensional oscilla-
tor in the plane xy, placed in a homogeneous magnetic fieldH perpendicular to this plane.
For the circular gauge of the vector potential, A = H(−y, x, 0)/2, the Hamiltonian has the
form (using dimensionless variables)

Ĥ =
1
2
( p̂x + ωŷ)2 +

1
2
(

p̂y −ωx̂
)2

+
1
2

g
(

x̂2 + ŷ2
)

, (13)

so that the 2× 2 blocks of 4× 4 matrix B can be written in the form

b1 = E2, b2 = −b̃2 = ωΣ2, b4 = −b2
2 + g2E2 =

(
ω2 + g2

)
E2,

where ω is the Larmor frequency and g is the oscillator frequency. Using the Frobenius
formula for the inversion of block matrices [10],∥∥∥∥ a b

c d

∥∥∥∥−1

=

∥∥∥∥ a−1 + a−1bh−1ca−1 −a−1bh−1

−h−1ca−1 h−1

∥∥∥∥, h = d− ca−1b,

one can obtain the following independent solutions to Equation (7) (containing the matrix b2
with different signs):

M1 = g2B−1 =

∥∥∥∥ (ω2 + g2)E2 −ωΣ2
ωΣ2 E2

∥∥∥∥, M2 = −ΣBΣ =

∥∥∥∥ (ω2 + g2)E2 ωΣ2
−ωΣ2 E2

∥∥∥∥. (14)

These matrices should be multiplied by some factors in order to obtain positively
definite matrices satisfying the condition detM ≥ 1/16, according to Equation (8). The
determinants of the matricesM1,2 can be calculated with the aid of the Frobenius determi-
nant formulas

det
∥∥∥∥ a b

c d

∥∥∥∥ = det(a)det
(

d− ca−1b
)
= det(d)det

(
a− bd−1c

)
.
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Therefore, det(M1) = det(M2) = det(B) = g4. Consequently, matrices (14) cannot be
used directly in the limit case of g = 0 (a free charged particle in a homogeneous magnetic
field). However, in this case, one can use linear combinations ofM1 andM2 in the form
(assuming ω > 0)

Mγ =
N

2
√

1− γ2

∥∥∥∥ ωE2 γΣ2
−γΣ2 ω−1E2

∥∥∥∥, |γ| < 1, det(Mγ) = N4/16. (15)

The condition det(Mγ) ≥ 1/16 is satisfied if N ≥ 1. However, this is only a necessary
condition of positivity of matrix Y =M+ ih̄Σ/2. One has to also check the positivity of
all principal minors of matrix Y . However, in the case under study, one can use another
way that sheds more light on the physical aspects of the problem.

It is known (at least since the paper [11]) that the following set of linear combinations
of the canonical coordinates and momenta is very useful for the description of the motion
of a free charged particle (of unit mass and charge) in the homogeneous magnetic field:

x̂c =
1
2
(
x̂ + p̂y/ω

)
, ŷc =

1
2
(ŷ− p̂x/ω), (16)

x̂r = x̂− x̂c =
1
2
(
x̂− p̂y/ω

)
, ŷr = ŷ− ŷc =

1
2
(ŷ + p̂x/ω). (17)

The first pair describes coordinates of the center of a circle where the particle rotates around,
whereas the second pair of observables consists of two relative coordinates with respect
to this center. The vectors q and z = (xr, yr, xc, yc) are related by means of the linear
transformation z = Uq with

U =
1
2

∥∥∥∥ −ω−1Σ2 E2
ω−1Σ2 E2

∥∥∥∥, U−1 =

∥∥∥∥ ωΣ2 −ωΣ2
E2 E2

∥∥∥∥.

Hence, the covariance matrix Z with respect to the components of vector z has the form

Zγ = UMγŨ =
N

4ω

∥∥∥∥∥∥ E2

√
1+γ
1−γ 0

0 E2

√
1−γ
1+γ

∥∥∥∥∥∥. (18)

Due to the commutation relations

[x̂r, ŷr] = [ŷc, x̂c] = i/(2ω), (19)

we have the uncertainty inequalities

σxr σyr ≥ (4ω)−2, σxc σyc ≥ (4ω)−2. (20)

Consequently, comparing Equations (18) and (20), one arrives at a more strong restriction

N2 ≥ (1 + |γ|)/(1− |γ|).

It is known that the covariance matrix determines the quantum state uniquely (up
to an insignificant phase) if the state is Gaussian. In this case, the state is pure provided
detM = 1. Therefore, the only pure invariant Gaussian state of a charged particle in a
homogeneous magnetic field has the covariance matrix (15) or (18) with γ = 0. This is
nothing but the coherent state introduced by Malkin and Man’ko in 1968 [12].

Now, let us note that the Hamiltonian (13) with g = 0 can be rewritten in therms of
the relative coordinates only:

Ĥ = 2ω2
(

x̂2
r + ŷ2

r

)
. (21)
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Since the pairs (x̂r, ŷr) and (x̂c, ŷc) are totally independent, the most general invariant 4× 4
covariance matrix for the Hamiltonian (21) has the form

Zgen =

∥∥∥∥ ηE2 0
0 C

∥∥∥∥, η ≥ (4ω)−1, C =
∥∥∥∥ c1 c12

c12 c2

∥∥∥∥, c1,2 > 0, c1c2 − c2
12 ≥ (4ω)−2. (22)

Returning to the q-variables, one can obtain the following most general invariant
matrix:

Mgen = U−1ZgenŨ−1 =

∥∥∥∥ ω2G ωK
ωK̃ F

∥∥∥∥, (23)

G =

∥∥∥∥ η + c2 −c12
−c12 η + c1

∥∥∥∥, F =

∥∥∥∥ η + c1 c12
c12 η + c2

∥∥∥∥, K =

∥∥∥∥ −c12 η − c2
c1 − η −c12

∥∥∥∥.

Therefore, the most general invariant matrix is determined by three positive parameters
(η, c1, c2) and one parameter (c12) of an arbitrary sign. However, all these parameters must
obey certain restrictions, given in Equation (22).

3. General Solutions for Positive Time-Independent Hamiltonians

The results of the preceding subsection show the general way to solve the problem
in the case of an arbitrary positively definite time-independent matrix B. It is well known
(since the paper [13], whose results can be found also in book [14]; see also [15–19]) that
such matrices can be diagonalized by means of symplectic (canonical) transformations of
the form

TBT̃ = B∗ = diag(B1, B2, . . . , BN), TΣT̃ = Σ, Bj = diag(µj, νj), µj > 0, νj > 0. (24)

Putting B = T−1B∗T̃−1 in Equation (7), one obtains an equivalent equation

M∗B∗Σ = ΣB∗M∗, M∗ = T̃−1MT−1.

Using the results of the preceding section related to the case of N = 1, one can write the
general solution:

M = T̃diag
(

η1B−1
1 , η2B−1

2 , . . . , ηN B−1
N

)
T, ηj ≥ h̄

√
µjνj/2. (25)

This depends on N positive parameters ηj. However, the block matrices Bj are not deter-
mined uniquely: only the products µjνj are fixed by the eigenvalues of matrix B, while the
ratio µj/νj can be considered as an additional parameter. Therefore, the total number of
parameters is 2N for N ≥ 2.

4. Specific Time-Dependent Hamiltonians Admitting Invariant Covariance Matrices

Equation (7) has an obvious solutionM = ηE2N for any matrix B0(t) satisfying the
condition B0Σ = ΣB0. This results in the following relations between the N × N blocks:

b1 = b4, b̃2 = −b2. (26)

Multiplying both sides of the equality B0Σ = ΣB0 by some symplectic time-independent
matrix Λ from the left and matrix Λ̃ from the right, we find the following general set of
solutions to Equation (7):

M = ηΛΛ̃, B(t) = Λ̃−1B0(t)Λ−1. (27)

Remember that symplectic matrices obey the relation

ΛΣΛ̃ = Σ. (28)
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The consequence is |det Λ| = 1. Hence, η ≥ h̄/2. Clearly, matrix ΛΛ̃ is positively definite.
Another consequence of the identity (28) is the formula Λ−1 = −ΣΛ̃Σ. Therefore,

B(t) = ΣΛΣB0(t)ΣΛ̃Σ. (29)

Finally, we obtain the following expressions for 2N× 2N matrices in terms of N×N blocks:

ΛΛ̃ =

∥∥∥∥ λ1 λ2
λ3 λ4

∥∥∥∥ · ∥∥∥∥ λ̃1 λ̃3
λ̃2 λ̃4

∥∥∥∥ =

∥∥∥∥ λ1λ̃1 + λ2λ̃2 λ1λ̃3 + λ2λ̃4
λ3λ̃1 + λ4λ̃2 λ3λ̃3 + λ4λ̃4

∥∥∥∥, (30)

B(t) =
∥∥∥∥ λ4αλ̃4 + λ3αλ̃3 + λ3βλ̃4 − λ4βλ̃3 −λ4αλ̃2 − λ3αλ̃1 + λ4βλ̃1 − λ3βλ̃2
−λ2αλ̃4 − λ1αλ̃3 + λ2βλ̃3 − λ1βλ̃4 λ2αλ̃2 + λ1αλ̃1 + λ1βλ̃2 − λ2βλ̃1

∥∥∥∥, (31)

where α(t) = α̃(t) and β(t) = −β̃(t) can be arbitrary symmetric and antisymmetric N × N
matrices. Blocks λj of a symplectic matrix Λ satisfy many identities [6]:

λ1λ̃2 = λ2λ̃1, λ3λ̃4 = λ4λ̃3, λ̃1λ3 = λ̃3λ1, λ̃4λ2 = λ̃2λ4, (32)

λ4λ̃1 − λ3λ̃2 = λ1λ̃4 − λ2λ̃3 = EN , λ̃4λ1 − λ̃2λ3 = λ̃1λ4 − λ̃3λ2 = EN . (33)

The case of N = 1 is trivial and non-interesting because β(t) = 0 and B0 ∼ E2.
However, the situation can be non-trivial for N ≥ 2. For example, we have the following
set of possible matrices α(t) and β(t) for N = 2:

α(t) =
∥∥∥∥ r(t) g(t)

g(t) s(t)

∥∥∥∥, β(t) =
∥∥∥∥ 0 f (t)
− f (t) 0

∥∥∥∥. (34)

Consequently, the invariant matrixM = ηE2N exists for any time-dependent Hamiltonian
of the form

Ĥ =
1
2

[
r(t)

(
p̂2

x + x̂2
)
+ s(t)

(
p̂2

y + ŷ2
)
+ 2g(t)

(
p̂x p̂y + x̂ŷ

)
+ 2 f (t)

(
p̂x ŷ− x̂ p̂y

)]
. (35)

Introducing the standard bosonic annihilation and creation operators,

â =
x̂ + i p̂x√

2
, â† =

x̂− i p̂x√
2

, b̂ =
ŷ + i p̂y√

2
, b̂† =

ŷ− i p̂y√
2

,

one can re-write Hamiltonian (35) as

Ĥ = r(t)
(

â† â + 1/2
)
+ s(t)

(
b̂† b̂ + 1/2

)
+ ξ(t)âb̂† + ξ∗(t)b̂â†, ξ(t) = g(t) + i f (t). (36)

This is a generalization of the frequency converter Hamiltonian considered in paper [1]
with r, s = const and ξ(t) = κeiωt. Further generalizations can be obtained by means of
transformation (29). For example, using the simplest symplectic transformation with
diagonal matrices λ1 = λ−1

4 and λ2 = λ3 = 0, one can introduce different masses and
frequencies in the basic Hamiltonian (35). Then, the invariant matrix M will remain
diagonal, but with different elements.

5. Discussion

The main result of this paper is the description of a general structure of the covariance
matrices that do not depend on time for quadratic N-dimensional Hamiltonians. If the
time independent Hamiltonian matrix B (of dimension 2N × 2N) is positively definite, such
invariant matrices depend on 2N parameters for N ≥ 2 (and a single parameter if N = 1).
If the symmetric matrix B is only non-negatively definite, the situation depends on the
degeneracy of zero eigenvalues of this matrix: the invariant matrices exist if the number of
such eigenvalues is even (an example is a free charge moving in a homogeneous magnetic
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field as considered in Section 2); however, these do not exist if this number is odd (an
example is the free particle Hamiltonian Ĥ = p̂2/(2m)).

A general structure of time-dependent quadratic Hamiltonians admitting invariant
covariance matrices has been established. Such Hamiltonians are generalizations of the
frequency converter Hamiltonians of quantum optics, considered in paper [1].

A few words regarding the place of the invariant states considered in this paper in the
world of other quantum invariants appears relevant. If the quadratic Hamiltonian does not
depend on time then there exist some specific linear combinations of a few second-order
moments that do not depend on time: well known examples are the mean value of the
energy (and angular momentum in the case of additional symmetries). Moreover, such
kinds of specific linear combinations can be constructed for arbitrary time-dependent
quadratic Hamiltonians, as was shown by Lewis and Riesenfeld [20]. Their method of
time-dependent quantum operators and integrals of motion was generalized and further
developed by Malkin and Man’ko with collaborators [6,21–31] and other authors [32–56].

The important applications of the Lewis–Riesenfeld and Malkin–Man’ko invariants
include, e.g., the “inverse engineering” of quadratic Hamiltonians: a search of “shortcuts to
adiabaticity” in different kinds of traps [57–60]. Other applications are related to the theory
of the geometric (Berry) phase [61–67], invariants of non-Hermitian Hamiltonians [68–70],
and open quantum systems [71–74].

Basic elements of the Malkin–Man’ko construction for Hamiltonian (1) are 2N linear
operator integrals of motion, combined in the vector Q̂(t) = Λ(t)q̂, where the 2N × 2N
symplectic matrix Λ(t) satisfies the equation dΛ/dt = ΛΣB(t). Then, the mean value
of any quadratic form Q̂(t)GQ̂(t) = q̂Λ̃(t)GΛ(t)q̂ with symmetric matrix G does not
depend on time. All such quadratic invariants are linear combinations of the second-order
moments with time-dependent coefficients determined by the Hamiltonian matrix B.

In addition to these invariants (whose values depend on matrix B and the initial
quantum state), there exist other combinations of the second-order moments (not lin-
ear, but bilinear or multilinear) that depend on the initial state and the antisymmet-
ric commutator matrix (Σ in the case of standard coordinates and momenta operators)
but do not depend on the concrete matrix B. Such combinations were named univer-
sal quantum invariants in [3,6,75,76]. The simplest examples are “trace universal invari-
ants” L2m = Tr

[(
MΣ−1)2m

]
with m = 1, 2, . . . , N. They obey the generalized uncer-

tainty relations [77] (−1)mL2m ≥ N/22m−1. Similar invariants and their special cases
in the physics of particle and optical beams were considered, e.g., in the papers [78–92].
Such constructions are frequently used in quantum information theory under the name
“symplectic invariants” [9,93,94].

The invariants mentioned above contain only some elements of the covariance matrix
M. Moreover, each of these elements can depend on time, and only their specific combina-
tions are time-independent. On the contrary, all elements of the invariant matrices studied
in this paper do not depend on time. This is a novelty suggested in [1]. What are invariant
quantum states? For the Gaussian states, there exists the direct and unique relation between
the covariance matrix and the state, given by Formula (11). In this case, the majority of
invariant states is represented by quantum mixtures.

Pure invariant states are the vacuum (minimum energy) states (or coherent states, as
soon as the displacement operator does not change the covariance matrix), although the
situation may be more complicated for certain Hamiltonians (such as those including the
magnetic field). A description of invariant non-Gaussian pure states could be an interesting
avenue of future research. Another potentially interesting problem could be the search
of invariant states for open quantum systems, when Equation (6) is replaced with a more
general equation dM/dt =MA + ÃM+ D, where D is a symmetric diffusion matrix and
A is a “drift” matrix containing the terms responsible for dissipation [3,95]. These subjects,
however, require separate studies.
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