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Background
Fractional calculus is the important branch of mathematical analysis field, it covenants 
with the requests and exploration of derivatives and integrals of random order. The frac-
tional calculus is deliberated an old and yet original study. It has been planned a long 
time ago, beginning from some conjectures of Leibniz (1695, 1697) and Euler (1730), 
selected investigators have been established it up to nowadays. In latest years, fractional 
calculus has been encouraged through the presentations that discovers in numerical 
analysis and diverse grounds of engineering and physics, possibly including fractal phe-
nomena (Gorenflo and Mainardi 2008).

Fractional calculus has been developed significantly within the historical three decades for 
the reason that its applicability in various branches of science, engineering and social. The phi-
losophies of fractional calculus may be sketched back to the Euler’s works of, but the indication 
of fractional difference is very currently (Yang 2012). At the present time, a mounting number 
of effort by many investigators from various fields of engineering and science deal with dynam-
ical systems designated by fractional partial differential equations. Outstanding to the extensive 
applications of Fractional differential equations (FDEs) in engineering and science, this capacity 
of investigation has developed meaningfully all around the world (Yang 2015).

Fractional differential equations (FDEs) are generalizations of the class of ordinary dif-
ferential equations (ODEs) for a random (non-integer) order. FDEs have expanded desir-
ability and substantial interests due to their ability to simulate a complex phenomena. 
These equations capture nonlocal relations in space and time with power-law memory 
kernels (Liu 2010). In this effort, we shall deal with (generalize and extend) special class 
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of differential equations of arbitrary order. The British mathematical physicist Lord Ray-
leigh introduced an equation of the form (Strutt 1877)

to model a clarinet reed oscillation; which is showed by Wang and Zhang (2009). This 
equation was named after Lord Rayleigh, who studied equations of this type in relation 
to problems in acoustics. In the years of 1977 and 1985 respectively, Gaines and Mawhin 
(1977) have been imposed some continuation theorems and employed them to demon-
strate the existence of periodic solutions to ordinary differential equations (ODEs). A spe-
cific example was given in Yang (2015, p. 99) to introduce, how T-periodic solutions can 
be obtained by using the established theorems for the differential equation of the form

Newly, investigators discussed the existence of periodic solutions to Rayleigh equations 
and extended Rayleigh equations by considering or ignoring the concept of delay. Vari-
ous new results concerning the existence of periodic solutions to the mentioned equa-
tions have been presented.

Wang and Yan (2000) established the existence of periodic solutions of the non-auton-
omous Rayleigh equation of the type:

Zhou and Tang (2007) have studied the existence of periodic solutions for a kind of non-
autonomous Rayleigh equations of retarded type:

Wang and Zhang (2009) investigated the following Rayleigh type equation:

In this study, we consider a Rayleigh-type equation with state-dependent delay of the 
form

and its conducive formal

where

ϕ and ϑ are 2π-periodic in t,ϕ(t, 0) = ϑ(t, 0) = 0 for t ∈ R,� , p ∈ C(R,R), ε, p are 2π
-periodic in t, such that p has the property:

and Dµ is the Riemann–Liouville fractional differential operator.

x′′(t)+ f (x′(t))+ ax(t) = 0

x′′(t)+ f (x′(t))+ g(t, x(t)) = 0.

x′′(t)+ f (t, x′(t − τ))+ g(t, x(t − σ)) = p(t).

x′′(t)+ f (t, x′(t − σ))+ g(t − τ (t)) = p(t).

x′′(t)+ f (x′(t))+ g(t, x(t)) = e(t).

(1)D2µu(t)+�(u(t))Dµu(t)+ ϕ(t,Dµu(t −̟))+ ϑ(t,u(t − ε(t,u(t)))) = p(t)

(2)

D2µu(t)+ ω�(u(t))Dµu(t)+ ωϕ(t,Dµu(t −̟))+ ωϑ(t,u(t − ε(t,u(t)))) = ωp(t),

(

ω ∈ (0, 1),̟ ≥ 0,ϕ,ϑ ∈ C(R2,R), ε ∈ C(R2,R+),R+ = [0,∞)
)

,

∫ 2π

0
p(t) = 0
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We have imposed two contributed theorems on the existence of periodic solutions of 
Eq. (1). Our main aim is to generalize, modify and extend the outcomes of the works 
given in Wang and Yan (2000), Zhou and Tang (2007), Tunç (2014). In addition, this 
effort is a contribution to the subject in the literature and it may be useful for researchers 
who work on the qualitative behaviors of solutions. Positivity of solutions is investigated 
under some requests. Our method is based on the idea of the continuation partition the-
orem of degree theory. Applications are illustrated in the sequel.

Setting
In this paper, we need the following setting. For the sake of convenience, let

that is, the Sobolev space Wk ,p(J ) is defined as

with the order of the Sobolev space (Wk ,p(J ))k ∈ N.

In the sequel, we assume that k = 1. Hence, we deal with the fractional periodic Sobolev 
space of a continuous integrable function u(t), t ∈ [0, 2π ]

Note that the above space is formulated as a Banach space.

Definition 1 Let X , ‖.‖ be a Banach space. Then φ : R → X  is called periodic if φ is 
continuous, and for each ε>0 such that for a number t with the property that

for each t ∈ R.

Fractional order integral and differentiation were obtained by Leibniz. To analyze phe-
nomena having singularities of type tµ, the concept of fractional calculus is utilized. The 
fractional order operator is a nonlocal operator. Due to this property, fractional calculus 
is employed to study memories of Brownian motion, which is thought to be beneficial in 
mathematical sciences.

Definition 2 The Riemann–Liouville fractional integral defined as follows:

where Ŵ denotes the Gamma function (see Podlubny 1999; Kilbas et  al. 2006; Tarasov 
2010).

C2π = {u : u ∈ C(J ,R),u(t + 2π) = u(t), t ∈ J := [0, 2π ]},

Wk ,p(J ) =
{

u ∈ Lp(J ) : Dµu ∈ Lp(J ) ∀|µ| � k
}

,

�u�0 = max
t∈[0,2π ]

|u(t)| < ∞,

�Dµu�0 = max
t∈[0,2π ]

|Dµu(t)| < ∞.

W 1,p([0, 2π ]) =
{

u ∈ Lp([0, 2π ]) ∩ C2π : Dµu ∈ Lp([0, 2π ]) ∀µ � 1
}

.

�φ(t + τ )− φ(t)� < ε,

Iµu(t) =
1

Ŵ(µ)

∫ t

0
(t − δ)µ−1u(δ)dδ,
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Definition 3 The Riemann–Liouville fractional derivative defined as follows:

The periodicity of the class of fractional differential equations is studied in various 
spaces, Agarwal et al. studied the periodicity of various classes of fractional differential 
equations by assuming the mild solution (Agarwal et  al. 2010), Ibrahim and Jahangiri 
(2015) imposed a periodicity method by applying some special transforms for fractional 
differential equations, and recently, Rakkiyappan et al. (2016) introduced the periodicity 
by utilizing fractional neural network model. Extra studies in fractional calculus can be 
located in Khorshidi et al. (2015).

Results
The subsequent Lemma plays a key function for showing the periodicity of Eq. (1). In the 
sequel, we assume that u ∈ W := W 1,p([0, 2π ]).

Lemma 1 Suppose that u(t) is a continuous and differentiable T-periodic function with 
T < ∞. Then there exists t• ∈ [0,T ] such that

Proof Let t ∈ [t•, t• + T ] such that u(t) = maxt∈[t•,t•+T ]|u(t)|. Then

together with the estimate

From the above two inequalities and the Definition 3., we obtain that

Hence, we complete the proof.
Lemma 1 shows the boundedness of the fractional differential operator by the norm of 

fractional space. This result allows us to investigate the periodicity of the solutions. If the 
differential equation satisfies the initial condition u(t•) = 0, then, we can attain

Dµu(t) =
1

Ŵ(1− µ)

d

dt

∫ t

0
(t − δ)−µu(δ)dδ, 0 < t < ∞.

(3)max
t∈[t•,t•+T ]

|u(t)| ≤ |u(t•)| +
1

2

∫ T

0
|Dµu(δ)|dδ.

|u(t)| = |u(t•)+

∫ t

t•

Dµu(δ)dδ| ≤ |u(t•)| +

∫ t

t•

|Dµu(δ)|dδ

|u(t)| = |u(t − T )| = |u(t•)−

∫ t•

t−T
Dµu(δ)dδ| ≤ |u(t•)| +

∫ t•

t−T
|Dµu(δ)|dδ.

|u(t)| ≤ |u(t•)+
1

2

∫ t

t−T
|Dµu(δ)|dδ = |u(t•)| +

1

2

∫ T

0
|Dµu(δ)|dδ.

∫ T

0
|Dµu(δ)|dδ ≤ �u�.
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We have the following main results:

Theorem 1 Suppose that there exist constants, with the validity

such that the following conditions hold:

(H1) |�(u)| ≤ ϒ1 for all u ∈ R;

(H2)   |ϕ(t,u)| ≤ ϒ1|u| + κ for all (t,u) ∈ J × R;

•  (H3) uϑ(t,u(t − ε(t,u)))>0;

•   |ϑ(t,u(t − ε(t,u)))|>η1|u| + κ for all t ∈ J , |u|>d;

(H4)   ϑ(t,u(t − ε(t,u)))>η2u−m for all t ∈ J ,u ≤ −d.

If

then Eq. (1) has at least one 2π-periodic solution.

Proof We reconsider the auxiliary equation, Eq. (2). Let u(t) ∈ W be any 2π−periodic 
solution of Eq. (2). Then, integrating both sides of Eq. (2) from 0 to 2π, we get

Thus, it yields that there exists a value t1 ∈ [0, 2π ] such that

We admit that there exists a t ∈ [0, 2π ] such that

Case 1. Let η1 = 0. Then

From the last conclusion and (5), we obtain

The last assertion alongside with the hypotheses

leads to the inequality

(

ϒ1>0, η1, η2 ≥ 0, d>0, κ>0 and m>0
)

2π{(ϒ1 + η1)+ (π + 1)η2} < 1,

(4)

∫ 2π

0
�(u(δ))Dµu(δ)dδ +

∫ 2π

0
ϕ(δ,Dµu(δ −̟))+ ϑ(δ,u(δ − ε(δ,u(δ))))dδ = 0

=⇒

∫ u(2π)

0
�(v)dv +

∫ 2π

0
ϕ(δ,Dµu(δ −̟))+ ϑ(δ,u(δ − ε(δ,u(δ))))dδ = 0

=⇒

∫ 2π

0
ϕ(δ,Dµu(δ −̟))+ ϑ(δ,u(δ − ε(δ,u(δ))))dδ = 0.

(5)ϕ(t1,D
µu(t1 −̟))+ ϑ(t1,u(t1 − ε(t1,u(t1)))) = 0.

|u(t)| ≤ �Dµu�0 + d.

|ϕ(t,u)| ≤ η1|u| + κ ⇒ |ϕ(t,u)| ≤ κ .

|ϑ(t1,u(t1 − ε(t1,u(t1)))| ≤ κ .

|ϑ(t1,u(t1 − ε(t1,u(t1)))|>η1|u| + κ , |u|>d,

|u(t1 − ε(t1,u(t1)))| ≤ d.



Page 6 of 10Ibrahim et al. SpringerPlus  (2016) 5:824 

Case 2. Let η1>0. If |u(t1 − ε(t1,u(t1)))|>d, then it arrives at the conclusion of (5) and 
the hypotheses (H2) and (H3),

From the above inequality, we conclude that

We note that u(t) is periodic and there exists a t ∈ [0, 2π ] such that

holds. Using Lemma 1, for all t ∈ (0,∞), we have

Hence, for all t• ∈ [0,∞), we obtain

Because of u(0) = u(2π), then it follows from the mean-value theorem for the Rie-
mann–Liouville fractional derivative (see Abramovich et  al. 2010) that there exists 
t• := ̺ ∈ [0, 2π) such that Dµu(̺) = 0. Thus, we have

Let

and

In virtue of the Eq. (4), we conclude that

Consequently, we attain

η1|u(t1 − ε(t1,u(t1)))| + κ < |ϑ(t1,u(t1 − ε1(t1,u)))|

≤ η1|D
µu(t1 −̟)| + κ .

|u(t1 − ε(t1,u(t1)))| ≤ |Dµu(t1 −̟)| ≤ �Dµu�0

≤ �Dµu�0 + d.

|u(t)| ≤ �Dµu�0 + d

�u�0 ≤ |u(t)| +
1

2

∫ 2π

0
|Dµu(δ)|dδ

≤ (π + 1)�Dµu�0 + d

⇒ �Dµu�0 ≤ (π + 1)�Dµu�0 + d.

�Dµu�0 ≤ |Dµu(t•)| +
1

2

∫ 2π

0
|D2µu(δ)|dδ.

�Dµu�0 ≤
1

2

∫ 2π

0
|D2µu(δ)|dδ.

�1 = {t : t ∈ [0, 2π ],u(t − ε(t,u(t)))>d},

�2 = {t : t ∈ [0, 2π ],u(t − ε(t,u(t)))<− d},

�3 = {t : t ∈ [0, 2π ],u(t − ε(t,u(t))) ≤ d}.

∫

�1

|ϑ(δ,u(δ − ε(δ,u(u))))|dδ ≤

∫ 2π

0
|ϕ(δ,Dµu(δ −̟))|dδ

+

(
∫

�2

+

∫

�3

)

|ϑ(δ,u(δ − ε(δ,u(δ))))|dδ.
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where

By the inequality

one can calculate that

This completes the proof of Theorem 1.
Theorem  1 shows that the solution is bounded by its fractional derivative in a frac-

tional space. Therefore, Lemma 1 and Theorem 1 imply the periodicity of the solution in 
a bounded domain. Our next result illustrates different types of assumptions to get the 
periodicity and positivity of Eq. (2) and hence Eq. (1).

Theorem 2 Assume that there exist constants

such that the following conditions hold:

(H1)   |�(u)| ≤ ϒ2 for all u ∈ R,

(H2)   |ϕ(t,u)| ≤ ϒ2u+ κ for all (t,u) ∈ J × R,

(H3)  
•   uϑ(t,u(t − ε(t,u)))>0; this implies that ϑ>0

•   ϑ(t,u(t − ε(t,u)))>η1u+ κ for all t ∈ J ,u>d,

(H4)   ϑ(t,u(t − ε(t,u)))>η2u−m for all t ∈ J ,u ≥ d.

�Dµu�0 ≤
1

2

∫ 2π

0

|D2µu(δ)|dδ ≤
1

2

∫ 2π

0

|ϕ(δ,Dµu(δ −̟))|dδ +
1

2

∫ 2π

0

|�(u(δ))Dµu(δ)|dδ

+
1

2

∫ 2π

0

|ϑ(δ,u(δ − ε(δ,u(δ))))|dδ +
1

2

∫ 2π

0

|p(δ)|dδ ≤
1

2

∫ 2π

0

|ϕ(δ,Dµu(δ −̟))|dδ

+
1

2

∫ 2π

0

|�(u(δ))Dµu(δ)|dδ +
1

2

(
∫

�1

+

∫

�2

+

∫

�3

)

|ϑ(δ,u(δ − ε(δ,u(δ)))|dδ + π�p�0

≤

∫ 2π

0

|ϕ(δ,Dµu(δ −̟))|dδ +ϒ1π�D
µu�0

+

(
∫

�2

+

∫

�3

)

|ϑ(δ,u(δ − ε(δ,u(δ)))|dδ + π�p�0

≤ 2π{(ϒ1 + η1)�D
µu�0 + η2�u�0} + 2π(κ +m+ ϑd)+ π�p�0

≤ 2π{(ϒ1 + η1)+ (π + 1)η2�D
µu�0}

+ 2π(κ +m+ ϑd + η2d)+ π�p�0

⇒ �Dµu�0 ≤ 2π{(ϒ1 + η1)+ (π + 1)η2�}D
µu�0 + 2π(κ +m+ ϑd + η2d)+ π�p�0

⇒ �Dµu�0 ≤
2π(κ +m+ ϑd + η2d)+ π�p�0

1− 2π{(ϒ1 + η1)+ (π + 1)η2}
= m1,

ϑd = maxt∈[0,2π ],|u|≤d |ϑ(t,u)|.

�u�0 ≤ (π + 1)�Dµu�0 + d,

�u�0 ≤ (π + 1)m1 + d.

(

ϒ2>0, η1, η2 ≥ 0, 0 < d < ∞, κ>0 and m>0
)
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If

then Eq. (1) has at least one 2π-periodic solution.

Proof We again consider the auxiliary equation, Eq. (2). Let u(t) be any 2π−periodic 
solution of Eq. (2). By the hypothesis (H3) and (H4), we conclude that there exists t• ∈ J  
and a positive constant d•, such that

In this case, we define the following sets:

and

A calculation implies that

Moreover, we have

By the inequality

2π{(ϒ2 + η1)+ (π + 1)η2} < 1,

d• = u(t•)>d.

$1 = {t : t ∈ [0, 2π ],u(t − ε(t,u(t)))≥d},

$2 = {t : t ∈ [0, 2π ],u(t − ε(t,u(t)))≤d, d≥max d, }.

$3 = {t : t ∈ [0, 2π ],u(t − ε(t,u(t))) = d•}.

∫

$1

ϑ(δ,u(δ − ε(δ,u(u)))) dδ ≤

∫ 2π

0

|ϕ(δ,Dµ
u(δ −̟))|dδ

+

(
∫

$2

+

∫

$3

)

ϑ(δ,u(δ − ε(δ,u(δ)))) dδ.

�Dµu�0 ≤
1

2

∫ 2π

0

|D2µu(δ)|dδ ≤
1

2

∫ 2π

0

|ϕ(δ,Dµu(δ −̟))|dδ +
1

2

∫ 2π

0

|�(u(δ))Dµu(δ)|dδ

+
1

2

∫ 2π

0

ϑ(δ,u(δ − ε(δ,u(δ)))) dδ +
1

2

∫ 2π

0

|p(δ)|dδ ≤
1

2

∫ 2π

0

|ϕ(δ,Dµu(δ −̟))|dδ

+
1

2

∫ 2π

0

|�(u(δ))Dµu(δ)|dδ +
1

2

(
∫

$1

+

∫

$2

+

∫

$3

)

ϑ(δ,u(δ − ε(δ,u(δ))) dδ + π�p�0

≤

∫ 2π

0

|ϕ(δ,Dµu(δ −̟))|dδ +ϒ1π�D
µu�0

+

(
∫

$2

+

∫

$3

)

ϑ(δ,u(δ − ε(δ,u(δ))) dδ + π�p�0

≤ 2π{(ϒ2 + η1)�D
µu�0 + η2�u�0} + 2π(κ +m+ ϑd)+ π�p�0

≤ 2π{(ϒ2 + η1)+ (π + 1)η2�D
µu�0}

+ 2π(κ +m+ ϑd + η2d)+ π�p�0

⇒ �Dµu�0 ≤ 2π{(ϒ2 + η1)+ (π + 1)η2�}D
µu�0 + 2π(κ +m+ ϑd + η2d)+ π�p�0

⇒ �Dµu�0 ≤
2π(κ +m+ ϑd + η2d)+ π�p�0

1− 2π{(ϒ2 + η1)+ (π + 1)η2}
= m2.

�u�0 ≤ (π + 1)�Dµu�0 + d
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one can have

This completes the proof of Theorem 2.
It is clear that the solution in Theorem 2 is positive as well as periodic.

Remark 1 When µ = 1, �(u) ≡ 0 and ε(t,u(t)) ≡ ε(t), (constant) and η1 = η2 = 0, 
then the conditions of Theorems 1 and Theorem 2 reduce to the outcomes in Zhou and 
Tang (2007), (see Theorems 2.1, 2.2), respectively. Therefore, our results generalize and 
improve the corresponding results in Zhou and Tang (2007).

Remark 2 When    µ = 1, �(u) ≡ 0 and ε(t,u(t)) ≡ ε(t), then the conditions of 
Theorem 1 and Theorem 2 yield the outcomes in Wang and Yan (2000)   (see Theorems 
2.1, 2.2), respectively. Therefore, our results generalize and improve the results in Wang 
and Yan (2000).

Remark 3 When  µ = 1, we obtain the result that given in Tunç (2014).

Example 1 Suppose the equation

where

such that

Subjected to the initial condition

Thus, we have |�| = 1
ℓ
:= ϒ1, |ϕ| ≤ ϒ1|u|, ϑ(t,u) ∈ [0, 4π ] for t ∈ [0, 2π ] with 

η1 = 1, η2 = 0 and m = 0. Consequently the condition of Theorem  1 is satisfied i.e 
1
ℓ
2π − 1. Hence, Eq. (6) has a periodic solution. Note that for µ = 1, the equation has the 

exact solution takes the form

Moreover, when ℓ = 5 and ε(t,u) = t, we have a result given in Nemati et al. (2014).

�u�0 ≤ (π + 1)m2 + d

(6)D2µu(t) = −
1

ℓ
Dµu(t)− u(t)−

1

ℓ
exp(−ε(t,u)) cos(t),

(

� =
1

ℓ
, ϕ(t) = u(t), ϑ(t,u) =

1

ℓ
exp(−ε(t,u)) cos(t), p(t) = 0,

)

(

ε(t,u) =
t

ℓ
, t ∈ [0, 1] and ℓ>

1

2π − 1

)

.

(

u(0) = 0, u′(0) = 1
)

.

u(t) = exp

(

−
t

ℓ

)

sin(t), t ≥ 0.
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Conclusions
In general, we know that the Riemann–Liouville fractional operator is not periodic. In 
this effort, we introduced a construction to get the periodicity of some classes of frac-
tional differential equations. A Rayleigh-type equation with state-dependent delay was 
considered in this occasion. The existence of periodic solutions to this equation was 
investigated. We utilized Riemann–Liouville fractional derivatives during the generaliza-
tion, we obtained sufficient conditions for the existence of periodic solutions. Moreover, 
we have extended and improved some results from the recent literatures.
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