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Abstract: Isosymmetric structural phase transition (IPT, type 0), in which there are no changes in
the occupation of Wyckoff positions, the number of atoms in the unit cell, and the space group
symmetry, is relatively uncommon. Chlorothiazide, a diuretic agent with a secondary function as an
antihypertensive, has been proven to undergo pressure-induced IPT of Form I to Form II at 4.2 GPa.
For that reason, it has been chosen as a model compound in this study to determine if IPT can
be predicted in silico using periodic DFT calculations. The transformation of Form II into Form I,
occurring under decompression, was observed in geometry optimization calculations. However,
the reverse transition was not detected, although the calculated differences in the DFT energies
and thermodynamic parameters indicated that Form II should be more stable at increased pressure.
Finally, the IPT was successfully simulated using ab initio molecular dynamics calculations.

Keywords: DFT; CASTEP; aiMD; ab initio molecular dynamics; phase transition; polymorphism

1. Introduction

Polymorphism, commonly defined as the ability of a substance to exist as two or more
crystalline phases that have different arrangements or conformations of the molecules in
the crystal lattice [1] is a phenomenon with particular importance in the pharmaceutical
sciences and industry. The differences between polymorphs at the molecular level can
manifest themselves in different properties, important in this field, such as hygroscopicity,
solubility, thermal stability, rate of dissolution, hardness, chemical reactivity, and many
others [2,3]. For the correct design of a pharmaceutical compound, it is, therefore, crucial
to control its solid-state form to guarantee its properties.

The application of high pressure has been shown as a route to access new phases
of solid-state materials—possibly the most famous example being the transformation of
graphite into diamond [4]. Under increased pressure, the geometry of both inter and
intramolecular bonds can often be altered, new hydrogen bonds can be formed, and
existing ones broken or symmetrized. In most cases, pressure-induced phase transition
can occur in a single step between higher- and lower-symmetry space groups (type I),
through a low-symmetry transition state between relatively higher- symmetry initial and
final structures (type II), or via the transformation in which the mechanism is more complex
(type III). Isosymmetric structural phase transition (IPT, type 0), in which there are no
changes in the occupation of Wyckoff positions, the number of atoms in the unit cell,
and the space group symmetry are relatively uncommon [5]. However, there are some
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well-known and recently discovered examples of such transitions: sodium oxalate [6],
1,3-cyclohexandione [7] L-serine [8], sulfamic acid [9], biurea [10], and α-glycylglycine [11].

The density functional theory (DFT) methods are commonly used to model the struc-
ture and properties of organic molecules. However, the uniqueness of each polymorphic
form property arises mostly from short- and long-distance intermolecular interactions.
Therefore, DFT-based methods in which a single molecule in vacuum or in solution is being
modeled were found to be inappropriate and inaccurate to study the polymorphism-related
phenomena. While those “single molecules” methods are generally successfully applied
in other aspects of pharmaceutical sciences, i.e., to study drug–biomolecule interactions
or to predict the formation of complexes, in order to study the solid-state pharmaceu-
tics, other types of calculations, sometimes called “periodic DFT calculations”, should be
used [12–14]. In this case, the adjective “periodic” is an abbreviation of “performed under
periodic boundary conditions” which is a crucial requirement for accurate modeling of
crystals. Further, in such calculations, the pseudopotentials are frequently used to repre-
sent an effective interaction that approximates the potential experienced by the valence
electrons. Additionally, the plane-wave basis sets are employed instead of the localized
ones [15,16].

Noncovalent forces, such as hydrogen bonding and van der Waals interactions, are
crucial for the formation, stability, and function of molecules and materials [17,18]. There
exists a variety of hybrid semiempirical solutions that introduce dispersion corrections in
the DFT formalism [19]. These semiempirical approaches provide the best compromise
between the cost of the first principals evaluation of the dispersion terms and the need to im-
prove non-bonding interactions in the standard DFT description. The Tkatchenko–Scheffler
(TS) correction [20], used in this study, exploits the relationship between polarizability
and volume, and thus accounts to some degree for the relative variation in dispersion
coefficients of differently bonded atoms. This is achieved by weighting values taken from
the high-quality first-principals database with atomic volumes derived from Hirshfeld
partitioning of the self-consistent electronic density. It should be noted, however, that
the TS scheme is an atom-pairwise dispersion model. As dispersion interactions are not
strictly pairwise additive, many-body dispersion interactions can become important for
some systems, especially when large and flexible molecules are involved [21]. Such in-
teractions can be captured by the many-body dispersion (MBD) model [22]. However,
the object of this study, chlorothiazide, is a rather small and rigid molecule, therefore,
only small differences between the TS and MBD dispersion models would have been
expected. The increasing number of studies presenting results of periodic DFT calculations
on pharmaceutical solids confirms that those kinds of computations can be successfully
used to answer the fundamental questions as well as to provide specific solutions for
experimental challenges. Many successful applications of such calculations have been
recently reviewed by us [23]. However, among those works, there was no application of
periodic DFT calculations to study the phenomenon of isosymmetric phase transition in
the manner presented in this study.

To be precise, it must be stated that some of the crystals that have been proven
experimentally to undergo IPT were also modeled using the DFT methods. However, in
those cases, the computational part was limited to the geometry optimization at the pressure
at which the particular structure was obtained, followed sometimes by the thermodynamic
parameters calculations [10,11].

However, presently, we have decided to expand the spectrum of the applied compu-
tational methods by using the various DFT functionals, empirical dispersion corrections,
phonon density of states calculations, and computationally demanding ab initio molecular
dynamics calculations (aiMD). This effort has been made to answer the question if such IPT
can be predicted and, if yes, how it should be carried out. To the best of our knowledge,
there are no published works presenting an application of such combined calculations to
study the phenomenon of IPT.
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To achieve this aim, chlorothiazide (6-chloro-4H-1,2,4-benzothiadiazine-7-sulfonamide
1,1-dioxide, CT, Figure 1) has been chosen as a model compound. This active pharma-
ceutical ingredient (API) is used as a diuretic agent with a secondary function as an
antihypertensive [24]. It exists in various complex solid-state forms, including solvates
and co-crystals. However, at ambient conditions, only one polymorphic form of CT has
so far been reported (Form I). More importantly, this API has been chosen as its crystal
structure and pressure-induced IPT have been studied experimentally by Oswald et al. [25].
In that work, the authors obtained a series of crystal structures of CT at various pressure
conditions and confirmed that the IPT occurs at 4.2 GPa resulting in Form II, which was
found to be more stable at pressures higher than 4.2 GPa. For CT, the most noticeable
differences between Forms I and II studied at the same conditions can be observed for “a”
length of a unit cell, which is clearly visible in Figure 2. Unit cell dimensions of all studied
structures can be found in Table 1.
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As the aim of the study was to also check the accuracy of the applied computational
methods, it was important that this coherent group of crystal structures was obtained
in one study as it allowed the elimination of the possible differences in the unit cell
dimensions caused by the application of different diffractometers or diamond anvil cells
used for high-pressure experiments. This would be an issue if the structures originated
from different works. From Figure 2 and Table 1, it can be observed that some changes
of the unit cell dimensions are non-monotonic upon compression. This was probably
caused by inaccuracies in their determinations as, at some of the studied pressures, the
authors performed solely powder X-ray diffraction (PXRD) measurements followed by
pattern refinement.
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Table 1. Structural parameters of crystal forms of chlorothiazide. Data for Form II were bolded to
increase the clarity.

Form p [GPa] a [Å] b [Å] c [Å] α [o] β [o] γ [o] V [Å 3] XRD

I 0.0 4.886 6.405 8.985 74.05 83.56 80.54 265.01 PXRD
I 0.0 4.875 6.401 8.980 74.05 83.54 80.47 264.01 SCXRD
I 0.1 4.873 6.413 8.941 74.07 83.71 80.59 263.50 PXRD
I 0.5 4.835 6.310 8.895 74.62 84.12 80.67 256.84 SCXRD
I 0.8 4.812 6.278 8.829 75.09 84.07 80.94 253.18 PXRD
I 1.3 4.760 6.146 8.737 76.06 84.56 81.25 244.06 SCXRD
I 1.4 4.768 6.185 8.767 75.66 84.53 81.24 246.43 PXRD
I 2.1 4.728 6.050 8.684 76.54 84.73 81.67 238.02 SCXRD
I 2.2 4.734 6.074 8.691 76.30 84.83 81.70 239.29 PXRD
I 2.8 4.718 5.998 8.656 76.64 84.89 82.05 235.11 PXRD
I 3.2 4.678 5.910 8.593 77.22 85.05 82.54 228.90 PXRD
I 3.5 4.693 5.901 8.599 77.48 84.97 82.35 229.53 SCXRD
I 4.0 4.676 5.812 8.543 77.95 85.11 82.77 224.41 SCXRD
I 4.1 4.681 5.895 8.587 77.34 85.12 82.36 228.31 PXRD
I 4.2 4.680 5.848 8.592 77.63 84.70 81.77 226.34 PXRD
II 4.2 4.529 5.957 8.540 76.52 76.52 83.27 216.35 PXRD
II 4.4 4.510 5.929 8.503 76.53 85.62 83.20 218.91 SCXRD
II 5.1 4.483 5.893 8.465 76.23 85.84 83.28 215.16 SCXRD
I 5.1 4.696 5.804 8.538 77.98 84.85 81.80 224.37 PXRD
II 5.1 4.524 5.933 8.524 76.64 85.54 83.48 220.50 PXRD
II 5.9 4.461 5.859 8.427 75.99 86.06 83.35 211.77 SCXRD
I 6.2 4.666 5.793 8.618 77.62 85.25 82.03 224.58 PXRD
II 6.2 4.510 5.897 8.472 76.31 85.65 83.30 216.80 PXRD

Form—either I or II polymorph, according to [21]; p—pressure at which the structure was studied; a, b, c, α, β, γ,
V—unit cell dimensions; XRD-type of X-ray diffraction experiment applied to obtain the structure information
(PXRD—powder X-ray diffraction; SCXRD—single-crystal X-ray diffraction).

Having the appropriate amount of structural data, clearly showing the IPT of CT,
there was nothing left but to check how the periodic DFT calculations performed in such
cases. Our motivation was that if we succeed with this model compound, this method can
be further validated on other solid organics undergoing IPT and could finally be used as a
screening method in order to predict if the pressure-driven IPT would occur for a particular
compound, assuming that only the low-pressure structure is known. Such a method would
surely help to design the demanding high-pressure experiments.

2. Results and Discussion
2.1. Choice of the DFT Functionals

The first set of calculations (Table S1) was performed to find out how the choice of the
DFT functional would affect the accuracy of geometry optimization and to choose the most
accurate one for the subsequent calculations. This was carried out by the optimization of
the experimental crystal structure obtained at normal conditions (refcode QQQAUG09).
This step is usually omitted in the studies presenting the results of DFT calculations on
crystals. This is because, similarly to B3LYP for in vacuo calculations, the GGA PBE
functional with TS dispersion correction has not been proved many times to be the most
accurate in the case of solid-phase modeling. Unsurprisingly, also in this study, the most
accurate results have been obtained by the GGA PBE TS approach. Using this functional,
the differences between the experimental and calculated unit cell dimensions were lower
than 0.05 Å for lengths and 0.5 ◦ for angles, while for the other functionals those differences
were in some cases found to be larger than 1 Å and 10.

However, in addition to the GGA PBE TS, we have also decided to choose the PBESOL.
Although, without any dispersion correction, this functional was specially designed and
validated for the densely packed solids, and was in some cases shown to be more accurate
than GGA PBE TS, especially for the calculations performed under increased pressure [26].
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2.2. Geometry Optimization of Forms I and II under External Pressure—Unit Cell
Dimensions Analysis

The next stage of this work was the optimization of both polymorphic forms (I and II)
under external pressure to find out if the IPT can be observed. More specifically, we
have chosen two crystal structures of CT—the structure of Form I obtained at normal
conditions (QQQAUG09) and Form II obtained at 5.9 GPa (QQQAUG17). These structures
were obtained at the most distinct pressure conditions. Both structures were optimized at
19 different values of external pressure, exactly those that had been applied experimentally,
listed in Table 1. Due to the large number of calculations (two crystal structures, two DFT
functionals, 18 values of pressure = 72 optimizations), the obtained unit cell dimensions
are listed in Tables S2 and S3 for clarity reasons. Additionally, the visual representation
of some of the results are presented in Figure 3. Below, firstly, the changes in the unit
cell dimensions upon compression (when geometry optimization starting from Form I)
or decompression (when geometry optimization starting from Form II) will be discussed.
Then, the RMSD of the calculated structures will be presented and analyzed. Finally,
the differences in the energies calculated at the same pressure and using the same DFT
functionals but different structures will be discussed.
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Looking at Figure 3, it is clearly visible that both choice of the DFT functional and
of the initial structure (polymorphic form) subjected to geometry optimization had an
influence on the obtained results. For the calculations of Form I (top left and top right),
the results obtained using PBE TS were more accurate than those obtained using PBESOL,
especially for lower pressure values (0 and 0.1 GPa). Application of neither of those
functionals enables prediction of the IPT during the compression process because even at
higher pressures Form I was still preserved after optimization.

More interesting were the results obtained through modeling of the decompression,
which is when Form II had been chosen as the starting one (bottom left and bottom
right). For the PBE TS calculations, Form II was preserved, though it is impossible to
assess the accuracy of those calculations as Form II was not obtained at pressures lower
than 4.2 GPa. However, the changes in the unit cell dimensions were continuous, which
suggested that there should be no IPT. However, when the calculations were performed
using PBESOL, Form II was preserved only for pressures higher than 3.5 GPa. At this
pressure, a jump discontinuity can be observed, which would suggest that at this point one
can expect IPT. As an experimentally determined pressure at which IPT occurs was found
to be 4.2 GPa, there was a 0.7 GPa difference between the experimental and theoretical
values. However, it should be noticed that the experiments were carried out at 293 K
while the geometry optimization calculations were performed at 0 K. Therefore, neglecting
the thermal motions could be the main reason for this inaccuracy. Nevertheless, DFT
calculations of the decompression of Form II using PBESOL enable the prediction that
IPT would occur. Unfortunately, in most cases, the low-pressure crystal structure of
a compound is known while the question remains if compression would result in the
IPT. In the case of CT, this question could not have been answered using solely energy
minimization. However, this did not discourage us to look for another solution which will
be described in one of the next paragraphs (2.5).

2.3. Geometry Optimization of Forms I and II under External Pressure—RMSD Analysis

So far, only the differences between the experimental and calculated unit cell dimen-
sions were discussed. However, to confirm the results discussed above, the analysis of
the conformational changes should also be performed. Though CT is an API with rather
limited conformational space, there are of course some conformational differences between
the molecules found in Form I and Form II. Instead of presenting the comparison of the
lengths, angles, and dihedrals, we have decided to calculate the root mean square deviation
(RMSD) values between the calculated and experimental crystal structures. This analysis
was, however, hampered by the lack of some experimental data. As is presented in Table 1,
only part of the structural parameters originated from the SCXRD measurements while the
rest from PXRD. The crystal structures have been fully solved, including the determination
of the positions of the atoms, only for structures studied by SCXRD. Besides, there was no
pressure at which the SCXRD has been done for both Form I and Form II. Therefore, the
RMSD analysis was limited to nine examples (Table 2 A–I).

The coloring scheme for the values in Table 2A–I was applied to facilitate their catego-
rization into five groups (A and B; C and D; E and F; G, H, and I) in order of increasing
pressure. In the first group (A and B), the most accurate results were obtained when PBE
TS functional was used for optimization, which is also consistent with results presented in
Table S1. Besides, the choice of the initial structure had no influence on the obtained results.
In other words, no matter whether Form I or Form II was used as the initial structure, after
geometry optimization, an accurate structure of Form I was obtained. However, in the case
of PBESOL calculations, the choice of the initial structure had an influence on the obtained
results. Though PBESOL, as described previously, was found to be less accurate than PBE
TS for the calculations at 0 GPa, more accurate results were obtained for Form I than II
(RMSD 0.1249 vs. 0.1724).
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Table 2. A. RMSD of the structures at 0 GPa. B. RMSD of the structures at 0.5 GPa. C. RMSD of the
structures at 1.3 GPa. D. RMSD of the structures at 2.1 GPa. E. RMSD of the structures at 3.5 GPa.
F. RMSD of the structures at 4.0 GPa. G. RMSD of the structures at 4.4 GPa. H. RMSD of the structures
at 5.1 GPa. I. RMSD of the structures at 5.9 GPa. To facilitate the analysis of the data in Table 2 a
three-color scale was applied. In this scale, the 50th percentile (midpoint) was calculated, and the cell
that holds this value was colored yellow. The cell that holds the minimum value was colored green,
and the cell that holds the maximum value was colored red.

A
p = 0 GPa, Form I Exp PBESOLII PBESOL I PBE TS II PBE TS I

Exp 0 0.1724 0.1249 0.1159 0.1010
PBESOL II 0.1724 0 0.0854 0.1138 0.1467
PBESOL I 0.1249 0.0854 0 0.0836 0.0862
PBE TS II 0.1159 0.1138 0.0836 0 0.0572
PBE TS I 0.1010 0.1467 0.0862 0.0572 0

B
p = 0.5 GPa, Form I Exp PBESOLII PBESOL I PBE TS II PBE TS I

Exp 0 0.1398 0.1079 0.1028 0.1039
PBESOL II 0.1398 0 0.0663 0.1153 0.1257
PBESOL I 0.1079 0.0663 0 0.0585 0.0653
PBE TS II 0.1028 0.1153 0.0585 0 0.0209
PBE TS I 0.1039 0.1257 0.0653 0.0209 0

C
p = 1.3 GPa, Form I Exp PBESOL II PBESOL I PBE TS II PBE TS I

Exp 0 0.1115 0.1093 0.1447 0.1070
PBESOL II 0.1115 0 0.0241 0.1255 0.0478
PBESOL I 0.1093 0.0241 0 0.1024 0.0367
PBE TS II 0.1447 0.1255 0.1024 0 0.0921
PBE TS I 0.1070 0.0478 0.0367 0.0921 0

D
p = 2.1 GPa, Form I Exp PBESOL II PBESOL I PBE TS II PBE TS I

exp 0 0.1192 0.1166 0.1703 0.1169
PBESOL II 0.1192 0 0.0169 0.1635 0.0325
PBESOL I 0.1166 0.0169 0 0.1478 0.0230
PBE TS II 0.1703 0.1635 0.1478 0 0.1428
PBE TS I 0.1169 0.0325 0.0230 0.1428 0

E
p = 3.5 GPa, Form I Exp PBESOL II PBESOL I PBE TS II PBE TS I

exp 0 0.2278 0.1224 0.2566 0.1212
PBESOL II 0.2278 0 0.2165 0.0407 0.2120
PBESOL I 0.1224 0.2165 0 0.2507 0.0149
PBE TS II 0.2566 0.0407 0.2507 0 0.2456
PBE TS I 0.1212 0.2120 0.0149 0.2456 0

F
p = 4.0 GPa, Form I Exp PBESOL II PBESOL I PBE TS II PBE TS I

exp 0 0.2646 0.1231 0.2767 0.1254
PBESOL II 0.2646 0 0.2577 0.0262 0.2738
PBESOL I 0.1231 0.2577 0 0.2738 0.0215
PBE TS II 0.2767 0.0262 0.2738 0 0.2898
PBE TS I 0.1254 0.2738 0.0215 0.2898 0
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Table 2. Cont.

G
p = 4.4 GPa, Form II Exp PBESOL II PBESOL I PBE TS II PBE TS I

exp 0 0.1408 0.2952 0.1422 0.3058
PBESOL II 0.1408 0 0.2846 0.0226 0.2973
PBESOL I 0.2952 0.2846 0 0.3002 0.0194
PBE TS II 0.1422 0.0226 0.3002 0 0.3127
PBE TS I 0.3058 0.2973 0.0194 0.3127 0

H
p = 5.1 GPa, Form II Exp PBESOL II PBESOL I PBE TS II PBE TS I

exp 0 0.1411 0.3171 0.1402 0.3243
PBESOL II 0.1411 0 0.3125 0.0216 0.3216
PBESOL I 0.3171 0.3125 0 0.3245 0.0179
PBE TS II 0.1402 0.0216 0.3245 0 0.3334
PBE TS I 0.3243 0.3216 0.0179 0.3334 0

I
p = 5.9 GPa, Form II Exp PBESOL II PBESOL I PBE TS II PBE TS I

exp 0 0.1453 0.3372 0.1425 0.3419
PBESOL II 0.1453 0 0.3361 0.0194 0.3421
PBESOL I 0.3372 0.3361 0 0.3462 0.0182
PBE TS II 0.1425 0.0194 0.3462 0 0.3520
PBE TS I 0.3419 0.3421 0.0182 0.3520 0

Quite opposite results could be observed in the second group (C and D). This time,
the accuracy of the results obtained using PBESOL and PBE TS was almost the same, with
one important observation. For the PBESOL, the choice of the initial form had no influence
on the results, while for the PBE TS the accurate results were obtained only if the proper
form (I) had been chosen as the initial structure.

For the third group (E and F), the accuracy of PBE TS and PBESOL was almost the
same. However, this time, the choice of the correct initial form (I) was crucial to obtain
accurate results for both functionals. This is also elegantly reflected in Figure 3, which
shows that the length of “a” edge obtained after optimization at 3.5 and 4.0 GPa depends
significantly on the initial structure but not on the DFT functional used. Those results
correspond nicely with experimental ones, as for those pressure values Forms I and II were
found to coexist. This has been proven by the PXRD analysis, as in the diffractograms
recorded at those conditions peaks from both Form I and Form II could have been observed.
This may suggest that the Gibbs free energies of those two polymorphs are very similar,
and thus if the phase transition had occurred during optimization, it would have been
associated with a negligible change of the free energy.

The last analyzed group (G, H, and I) is also very consistent in terms of the received
RMSD values. For this group, unlike for the others, Form II was the experimentally obtained
one, which resulted in small RMSD values for comparisons between the experimental and
modeled structures when Form II was used as the initial structure for calculations. As
previously stated, based on the results presented in Tables S2 and S3 and Figure 3, the
application of neither PBE TS nor PBESOL enabled the prediction of the ISP to obtain Form
II while optimizing Form I at the increased pressure. This is also reflected in the large
RMSD values between the experimental structure (Form II) and calculated ones, using
Form I as the initial for both PBESOL and PBE TS. For this group, the differences between
the results obtained using PBE TS and PBESOL were found to be negligible when either
Form I or Form II was used as the initial.

2.4. Geometry Optimization of Forms I and II under External Pressure—Energy and
Thermodynamic Parameters Differences Analysis

The next step of the analysis was the comparison of the energies obtained while
applying the same pressure values and DFT functionals but using different initial structures
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(Forms I and II). Results are presented in Tables S4 and S5, Figures 4 and 5. In those figures,
the calculated unit cell lengths “a”, obtained starting either from Form I or II, have also
been shown as they are relevant for the discussion below. The positive values of differences
indicate that form II is energetically preferred.
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Looking at Figures 4 and 5, some similarities and differences between those results
can be observed. For the lower pressure values (lower than 1.40 GPa and 3.20 GPa for
PBE TS and PBESOL, respectively), the calculated differences between the energies were
found to be very small. It is not surprising that for those calculations the transition of
Form II into Form I has been observed. This is clearly visible, by looking at the right parts
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of those figures presenting the values of “a” lengths. The absolute value of the energy
difference corresponds with the difference between the “a” values calculated using different
Forms as the initial. Then, above a certain value of pressure (2.20 GPa and 3.50 GPa for
PBE TS and PBESOL, respectively), the values of energy differences begin to increase
monotonically, meaning, that according to both PBE TS and PBESOL calculations results,
Form II is becoming more stable with the increase in pressure, which is in agreement with
experimental observations. However, in the whole studied pressure range, the differences
obtained using PBESOL were found to be negative, meaning that according to the PBESOL
calculations Form I should be more energetically favorable than Form II under those
conditions. Those results were not in agreement with experimental observations. However,
for the results obtained using PBE TS, the change of the sign of the calculated differences
was observed at a pressure higher than 5.50 GPa. Therefore, according to the calculations
obtained using PBE TS functional, Form II should be more stable than Form I at higher
pressure, which was confirmed experimentally. For the PBE TS calculations, if the difference
between the forms was larger than 3 kJ/mol the transition of Form II into Form I was
observed (at c.a. 2.00 GPa). In the case of PBESOL, the difference had to be larger than
6.60 kJ/mol to force the transition which occurred at 3.20 GPa.

The most important conclusion from the results observed and discussed above was
that the results obtained using the PBE TS functional suggested that Form II should be
more stable under increased pressure; however, the IPT was not observed during geometry
optimization. This conclusion encouraged us to try to overcome the energy barrier between
Form I and Form II using ab initio molecular dynamics (aiMD) which will be described in
detail in Section 2.5.

More accurately, it is not the electronic energy difference discussed above, but the
difference between the Gibbs free energy (∆G) that decides which polymorphic form is
more stable at certain conditions. Therefore, to obtain the thermodynamic parameters of
the studied forms, the calculations of phonon density of states were performed. The results
of those calculations are presented and discussed below (Figure 6, Table S6). The entropy
(∆S) values were multiplied by the temperature (T = 293 K) to facilitate the analysis, as
∆G = ∆H–T∆S.
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The differences between the ∆H values were found to change similarly to the changes
in energy values (Figure 4), suggesting that the IPT of Form I to Form II should be exother-
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mic at pressures higher than 5.5 GPa. However, the differences between the T∆S in the
pressure range 2.20–6.20 GPa were found to be negative and monotonically decreasing.
This indicated that the studied pressure-induced IPT should be entropy-driven transfor-
mation. The calculated changes in the free energy (∆G) suggested that the studied Forms
should coexist at pressure range 3.5–4.1 GPa and above this pressure Form II should be
more stable and dominant, which is in agreement with the experimental data.

Concluding this section, the geometry optimization and thermodynamic properties
calculations enabled the prediction of Form II to Form I IPT that occurs upon decompres-
sion. Further, the free energy calculations results agreed with experimental observations,
indicating that Form II is more stable at higher pressure. However, probably due to the
large energy barrier between Form I and Form II at higher pressure, the geometry opti-
mization of Form I did not result in obtaining Form II at any of the studied pressure values.
In order to achieve this aim, the aiMD dynamics calculations were performed.

2.5. Ab Initio Molecular Dynamics Simulations

As stated above, the geometry optimization of Form I at increased pressure did
not result in Form II, which was the major aim of this study. However, encouraged by
the results of energy (Figure 4) and thermodynamic parameters (Figure 6) calculations,
showing that Form II is indeed more stable at increased pressure, we decided to perform
the computationally demanding ab initio molecular dynamics (aiMD) simulations. Due to
the small differences between the energies of the studied Forms, even at 6.2 GPa, being
in the order of 1 kJ/mol, we have not performed the “classical” molecular dynamics
simulations based on the molecular mechanics’ framework as their accuracy was expected
to be insufficient.

For the aiMD simulations, GGA PBE TS functional was chosen, opposite to PBESOL,
and Form II was found to be energetically favorable (Figure 4) at increased pressure. The
simulations were performed at T = 293 K and p = 6.20 GPa, as this was the largest value of
pressure at which the structural information for CT was obtained and, at the same time,
the difference between the energies of the studied Forms at this pressure was the largest, in
favor of Form II (Figure 4).

The geometry optimized at 6.20 GPa Forms I (QQQAUG09) and II (QQQAUG17)
structures were used as starting for aiMD simulations. Form I was the obvious choice as
the aim was to observe the IPT and obtain Form II. Additionally, simulations with the
same parameters were performed also using Form II as initial for several reasons. First,
we wanted to confirm that under those conditions no other phase transition would occur
as well as to confirm the stability of this form under this pressure condition. Though
experimentally Form II was found to be stable at 6.20 GPa, we wanted to ensure that
the results of the calculations would be in agreement with this experimental observation.
Secondly, since the introduction of kinetic energy associated with temperature always
results in structural parameter fluctuations, it was necessary to determine the magnitude of
such fluctuations. The results of aiMD are presented in Figures 7 and 8 and Figures S1–S4.

The results of aiMD showed that it was a proper method to simulate the pressure-
induced IPT of CT Form I into Form II. All the structural unit cell parameters of Form
I changed into those of Form II during the simulation. Using previously discussed “a”
edge as an example, the value of Form II exhibits only thermal fluctuations while the
value of Form I decreases monotonically for the first 15 ps, reaching the experimental and
computational values obtained for Form II. The simulation time needed for the structural
parameters of Form I to convert into those of Form II was not common, i.e., in the case of
angle α (Figure 8) it was shorter than for the edge “a”. Nevertheless, if only Form I is known,
performing aiMD simulations at 6.20 GPa, preceded by the geometry optimization, would
suggest that IPT may occur and would allow the estimation of the unit cell parameters
of the new form. The reason why the aiMD simulations were required to observe the
IPT that was not achieved in the geometry optimization is surely connected with the
energy barrier between those two forms. The results of the thermodynamic calculations,
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presented in Figure 6, suggested that this transition is entropy-driven. Therefore, by
adding kinetic energy in the aiMD simulations, it was possible for the studied system
(Form I) to overcome this energy barrier and reach the deeper minimum (Form II). MD
simulations are complementary to lattice-dynamical calculations in the sense that the latter
are better suited to low temperatures, whereas the former are subject to ergodicity problems.
Lattice dynamics are by definition limited to the (quasi)harmonic regime, while molecular
dynamics naturally account for all the anharmonic effects occurring at high temperatures.
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Therefore, answering the question stated in the title of this work, the DFT-based calcula-
tions can predict the pressure-induced IPT of CT, though only through the aiMD simulations.
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3. Computational Methods

The density functional theory (DFT) calculations of geometry optimization, ab initio
molecular dynamics (aiMD), phonon dispersion, and density of states were carried out with
the CASTEP program [27] implemented in the Materials Studio 2017 software [28] using
the plane wave pseudopotential formalism. On the fly generated (OTFG) norm-conserving
pseudopotentials (NCP) were generated using the Koelling–Harmon (KH) scalar relativistic
approach [29].

For comparison of the conformations of structures under investigation, the direct root
mean square deviation (RMSD) of atomic positions for single molecules was calculated
(Table 2) according to the Equation:

RMSD =

√
Σid2

i
n

where d is the distance between each of the n pairs of equivalent atoms in two optimally
superposed structures.

To facilitate the analysis of the data in Table 2 a three-color scale was applied. In this
scale, the 50th percentile (midpoint) was calculated, and the cell that holds this value was
colored yellow. The cell that holds the minimum value was colored green, and the cell that
holds the maximum value was colored red.

3.1. DFT Functionals and Dispersion Correction Methods

The Perdew–Burke–Ernzerhof (PBE) [30] pure or with Tkatchenko–Scheffler (TS) [20]
or Gimme [31] dispersion correction, Perdew–Wang (PW91) [32] pure or with Ortmann–
Bechstedt–Schmidt (OBS) [33] dispersion correction, revised Perdew–Burke–Ernzerhof
(RPBE) [34], Wu–Cohen (WC) [35], solid-design version of the PBE (PBESOL) [36] exchange-
correlation functionals, defined within the generalized gradient approximation (GGA) as
well as the local exchange-correlation functional of Perdew and Zunger [37] with the
parameterization of the numerical results of Ceperley and Alder [38] (LDA CA-PZ), with
or without the OBS method of dispersion correction were used in the calculations.

3.2. Geometry Optimization

Geometry optimization was carried out using the Broyden−Fletcher−Goldfarb−Shanno
(BFGS) [39] optimization scheme and smart method for finite basis set correction. The
electronic parameters—kinetic energy cutoff for the plane waves (Ecut) and number of
Monkhorst–Pack k-points during sampling for a primitive cell Brillouin zone integra-
tion [40] were optimized and set to 990 eV and 3 × 3 × 2, respectively.

The experimental X-ray structure of chlorothiazide Form I (refcode QQQAUG09)
and Form II (QQQAUG17) from the Cambridge Structure Database (CSD) were used as
initial for calculations. During geometry optimization, all atom positions and the cell
parameters were optimized, with no constraints. The convergence criteria were set at
5 × 10−6 eV/atom for the energy, 1 × 10−2 eV/Å for the interatomic forces, 2 × 10−2

GPa for the stresses, and 5 × 10−4 Å for the displacements. The fixed basis set quality
method for the cell optimization calculations and the 5 × 10−7 eV/atom tolerance for SCF
were used.

3.3. Thermodynamic Parameters Calculations

Phonon frequencies were obtained by diagonalization of dynamical matrices com-
puted using linear response methodology (also known as density functional perturbation
theory, DFPT) [41]. DFPT is the most commonly used ab initio calculation method of
phonons. This method is different from a direct method since DFPT calculates the change
in the Hamiltonian under a given perturbation of charge density or wavefunction, rather
than directly displacing atoms in a direct method. The q-point separation parameter, which
represents the average distance between Monkhorst–Pack mesh q-points used in the real
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space dynamical matrix calculations, was set to 0.05 Å−1. The convergence criterion for the
force constants during a phonon properties run was set to 1 × 10−5 eV/Å2. This model
was employed to calculate band structure, DOS, phonon spectrum, and phonon DOS
properties. For the dispersion calculations, the separation between consecutive q-vectors
on the reciprocal space path was set to 0.015 Å−1. For the DOS calculations, the 3 × 3 × 2
Monkhorst–Pack k-points grid has been chosen, resulting in the q-vector separation of
0.04 Å−1.

The results of a calculation of phonon spectra have been used to compute, in the
quasi-harmonic approximation, zero-point vibrational energy (Ezp), entropy (S), Gibbs free
energy (G), and enthalpy (H) as functions of temperature, using the Formulas (1)–(4) below
that are based on the work by Baroni et al. [41]. In those formula, ω represents phonon
frequency, F(ω) represents the vibrational density of states for a phonon spectrum, Etot is
the total electronic energy at 0 K, k is Boltzmann’s constant, and h̄ is the Dirac’s constant.

Ezp =
1
2

∫
F(ω)h̄ωdω (1)

S(T) = k


∫ h̄ω

kT

exp
(

h̄ω
kT

)
− 1

F(ω)dω −
∫

F(ω) ln
[

1 − exp
(
− h̄ω

kT

)]
dω

 (2)

G(T) = Etot + Ezp + kT
∫

F(ω) ln
[

1 − exp
(
− h̄ω

kT

)]
dω + pV (3)

H = G + TS (4)

3.4. Ab Initio Molecular Dynamic Simulations (aiMD)

Born–Oppenheimer ab initio molecular dynamics (aiMD) [42] simulations were run
in CASTEP using an NPT ensemble maintained at a constant temperature of 293 K and
pressure of 6.20 GPa, using Nosé thermostat, Parinello barostat, and PBE TS functional.
The kinetic energy cutoff for the plane waves (Ecut) was set to 990 eV and the integration
time step was set to 0.5 fs. No symmetry constraints were applied during the simulations.
The total time of the simulation was set to 20 ps.

4. Conclusions

In this work, the pressure-induced IPT of chlorothiazide was studied using DFT
methods. First, the accuracy of the calculations using different DFT functionals was evalu-
ated, resulting in the choice of the PBE TS and PBESOL for future calculations. Then, the
geometry optimization calculations of Form I and Form II at all experimentally studied
pressure conditions were performed. It was observed that the choice of DFT functional
had a significant influence on the received results. In particular, the dispersion correction
(TS) was found to be crucial for achieving accurate results, and thus for the thermody-
namic and aiMD calculations only the PBE TS functional has been chosen. Through the
geometry optimization, the IPT of Form II into Form I upon decompression was achieved,
however, the opposite pressure-induced transition was not observed, regardless of the
chosen functional. However, both the comparison of the electronic energies and chosen
thermodynamic parameters (∆G, ∆H, ∆S) indicated that Form II is more stable at the
increased pressure. Finally, in order to observe the pressure-induced IPT of Form I into
Form II, ab initio molecular dynamics simulations were successfully applied.

Since the DFT calculations enabled to predict the IPT of CT, we will continue to
study the other IPT using the methodology described in this work. We hope that such
an approach, when successfully validated on the reasonable number of examples, will
be used in the future as a screening method to predict the isosymmetric phase transition,
lowering the costs and increasing the efficiency of the studies designed for searching of
new polymorphic forms.
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