

Received 21 October 2015 Accepted 5 November 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; benzylidene; piperidinone; methylpiperidin-4-one; hydrogen bonding

CCDC references: 1435229; 1052718 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structures of 3,5-bis[(*E*)-3-hydroxybenzylidene]-1-methylpiperidin-4-one and 3,5-bis[(*E*)-2chlorobenzylidene]-1-methylpiperidin-4-one

Yum Eryanti,^a Adel Zamri,^a Tati Herlina,^b Unang Supratman,^c Mohd Mustaqim Rosli^d* and Hoong-Kun Fun^{d,e}

^aLaboratory of Organic Synthesis, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Riau University, Pekanbaru 26293, Indonesia, ^bDepartment of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jalan Raya Bandung-Sumedang Km 21, Jatinangor 45363, Sumedang, Indonesia, ^cDepartment of Chemistry, Faculty of Mathematics and Narural Sciences, Padjadjaran University, Jalan Raya Bandung-Sumedang Km 21, Jatinangor 45363, Sumedang, Indonesia, ^dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^eDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia. *Correspondence e-mail: mustaqim@usm.my

The title compounds, $C_{20}H_{19}NO_3$, (1), and $C_{20}H_{17}Cl_2NO$, (2), are the 3-hydroxybenzylidene and 2-chlorobenzylidene derivatives, respectively, of curcumin [systematic name: (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione]. The dihedral angles between the benzene rings in each compound are 21.07 (6)° for (1) and 13.4 (3)° for (2). In both compounds, the piperidinone rings adopt a sofa confirmation and the methyl group attached to the N atom is in an equatorial position. In the crystal of (1), two pairs of O-H···N and O-H···O hydrogen bonds link the molecules, forming chains along [101]. The chains are linked *via* C-H···O hydrogen bonds, forming undulating sheets parallel to the *ac* plane. In the crystal of (2), molecules are linked by weak C-H···Cl hydrogen bonds, forming chains along the [204] direction. The chains are linked along the *a*-axis direction by π - π interactions [inter-centroid distance = 3.779 (4) Å]. For compound (2), the crystal studied was a non-merohedral twin with the refined ratio of the twin components being 0.116 (6):0.886 (6).

1. Chemical context

Curcumin (diferuloylmethane) is a naturally occurring biologically active compound, isolated from the root of the tumeric plant (Curcuma longa) (Dandia et al., 2012). It has been shown to exhibit anti-oxidant (Rostom et al., 2009), anti-inflammatory (Suzuki et al., 2005), antiviral (Kumar et al., 2007) and antibacterial (Bandgar et al., 2012) activities, and thus has potential against various malignant cancers, diabetes, allergies, arthritis and other chronic illnesses (Yadav et al., 2010; Reddy et al., 2009; Aggarwal et al., 2003; Insuasty et al., 2013; Wu et al., 2013). For the purpose of finding new derivatives with increased systemic bioavailability and enhanced pharmacological activity (Zhao et al., 2010), chemical modifications as well as the synthesis of curcumin analogues have been attempted by many research groups in order to find a better treatment for various diseases (Siddiqui et al., 2006; Gregory et al., 2013). Analogous compounds to (E)-3,5-bis(benzylidene)-4-piperidones present noteworthy cytotoxic activity against leukemia cell lines and colon cancer, among others (Gregory et al., 2013). Different substituents were designed to investigate and discuss the structure-activity relationship (Insuasty et al., 2013). Herein, we report on the synthesis, characterization and crystal structures of two mono-carbonyl analogues of N-methyl-(3E,5E)-3,5-bis(3-hydroxycurcumin, namely

benzylidene)-4-piperidone (1) and N-methyl-(3E,5E)-3,5-bis(2-chlorobenzylidene)-4-piperidone (2).

2. Structural commentary

The molecular structures of compounds (1) and (2) are shown in Figs. 1 and 2, respectively. Compound (1) crystallized in the triclinic space group $P\overline{1}$ (Z = 2), while compound (2) crystallized in the monoclinic space group $P2_1/n$ (Z = 4).

Figure 1

The molecular structure of compound (1), showing 50% probability displacement ellipsoids and the atom labelling.

Figure 2

The molecular structure of compound (2), showing 50% probability displacement ellipsoids and the atom labelling.

An inversion dimer found in compound (1), formed by $O-H\cdots N$ hydrogen bonds (dashed lines; see Table 1).

The benzene rings (C1–C6 and C14–C19) are inclined to one another by 21.07 (6)° in (1) and by 13.4 (3)° in (2). Both compounds exhibit *E* conformations about the C7—C8 and C13—C10 bonds. In both compounds, the piperidinone ring (N1/C8–C12) adopts a sofa conformation with atom N1 displaced from the mean plane through the five C atoms (C8– C12) by 0.7052 (10) Å in (1) and 0.705 (5) Å in (2). The puckering parameters for the piperidinone ring conformation in (1) are Q = 0.5280 (12) Å, $\theta = 55.17$ (14)° and $\varphi =$ 353.08 (17)°, while for (2) they are Q = 0.526 (6) Å, $\theta =$ 126.1 (7)° and $\varphi = 182.8$ (8)°. In both compounds the methyl group attached to atom N1 is in an equatorial position on the piperidinone ring.

3. Supramolecular features

In the crystal of compound (1), molecules are linked *via* pairs of $O-H\cdots N$ hydrogen bonds, forming inversion dimers enclosing an $R_2^2(18)$ ring motif (Table 1 and Fig. 3). These dimers are linked by pairs of $O-H\cdots O$ hydrogen bonds, enclosing an $R_2^2(18)$ ring motif, forming chains along $[10\overline{1}]$

Inversion dimers found in compound (1), formed by $O-H\cdots O$ and $C-H\cdots N$ hydrogen bonds (dashed lines; see Table 1).

research communications

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$) for (1).	

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} O1 - H1O1 \cdots N1^{i} \\ O3 - H1O3 \cdots O2^{ii} \\ C17 - H17A \cdots O3^{iii} \end{array}$	0.96 (2)	1.81 (2)	2.7278 (14)	160 (2)
	0.88 (2)	1.87 (2)	2.7359 (15)	171 (2)
	0.95	2.51	3.4032 (16)	157

Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 1, -y, -z + 1; (iii) -x + 1, -y + 1, -z + 2.

(Table 1 and Fig. 4). The chains are linked *via* pairs of $C-H\cdots O$ hydrogen bonds (Table 1 and Fig. 4), forming undulating sheets lying parallel to the *ac* plane (Fig. 5).

In the crystal of compound (2), molecules are linked by a weak C4—H4A···Cl2ⁱ hydrogen bond, forming zigzag chains along [204] (Table 2 and Fig. 6). The chains are linked along the *a*-axis direction by π - π interactions [Cg2··· $Cg3^i$ = 3.779 (4) Å, where Cg2 and Cg3 are the centroids of rings C1–C6 and C14–C19, respectively; symmetry code: (i) – x + 1, –y, –z].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.36, last update February 2015; Groom & Allen, 2014) of substructure (3E,5E)-3,5-dibenzylidene-1-methylpiperidin-4-one gave 49 hits. One compound, 3,5-bis(4chlorobenzylidene)-1-methylpiperidin-4-one, is the 4-chlorobenzylidene isomer of compound (2) (UNOXOL; Nesterov *et al.*, 2011). Here, the benzene rings are inclined to one another by 7.58 (8)°, compared to 21.07 (6)° in (1) and 13.4 (3)° in (2). The piperidinone ring also adopts a sofa conformation with the N atom displaced from the mean plane of the five C atoms by 0.7714 (15) Å, compared to 0.7052 (10) Å in (1) and 0.705 (5) Å in (2).

5. Synthesis and crystallization

Both compounds were synthesized according to a partially modified procedure of a previous report (Gregory *et al.*, 2013).

Figure 5

The crystal packing of compound (1), viewed along the *a* axis. Dashed lines indicate hydrogen bonds (see Table 1). H atoms not involved in the hydrogen bonding have been omitted for clarity.

Table 2	
Hydrogen-bond geometry (Å, $^{\circ}$) for (2).	

,					
$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$C4-H4A\cdots Cl2^{i}$	0.95	2.85	3.587 (7)	135	

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Compound (1): The corresponding N-methyl-4-piperidone (0.99 g, 0.01 mol), 3-hydroxybenzaldehyde (2.23 g, 0.02 mol), 40% aq. NaOH (0.7 ml) and 95% EtOH (5 ml) were mixed with stirring at room temperature for 30 min. The reaction mixture was subjected to microwave irradiation for 3 min at a power of 180 W and temperature of 333 K. The reaction product was cooled and cold water was added. The precipitate formed was filtered and recrystallized from a mixture of *n*-hexane–ethyl acetate to afford dark yellowish crystals of compound (1) (yield: 3.4 g, 34.5%; m.p. 409–410 K). $R_f = 0.43$ (*n*-hexane:EtOAc = 1:1). UV (MeOH) λ_{max} : 364 nm (ε 4,600). IR (KBr) ν_{max} cm⁻¹: 3400, 1658, 1600 and 1504 cm⁻¹. ¹H NMR (500 MHz, CDCl3): δ (p.p.m.) 8.04 (2H, s), 7.31 (2H, d, J = 7.5 Hz), 7.26 (2H, t, J = 7.5 Hz), 6.99 (2H, d, J = 8.0 Hz), 6.93 (2H, t, J = 7.5 Hz), 3.72 (4H, s) and 2.41 (3H, s). ¹³C NMR (125 MHz, CDCl3): δ (p.p.m.) 185.9, 156.6, 133.2, 130.7, 130.5, 130.3, 122.6, 119.4, 115.7, 57.2, 45.2. HR-ESI-TOFMS: calculated for C₂₀H₁₉NO₃ $[M + H]^+$, m/z 321.1365, found m/z322.1434.

Compound (2): The corresponding *N*-methyl-4-piperidone (0.98 g, 0.01 mol), 2-chlorobenzaldehyde (2.20 g, 0.02 mol), 40% aq. NaOH (0.7 ml) and 95% EtOH (5 ml) was stirred at room temperature for 30 min. The reaction mixture was subjected to microwave irradiation for 3 min at a power of 180 W and temperature of 333 K. The reaction product was cooled and cold water was added. The precipitate formed was filtered and recrystallized from a mixture of *n*-hexane–ethyl acetate to afford yellowish crystals of compound (2) (yield: 3.8 g, 38.4%; m.p. 408–410 K). $R_f = 0.60$ (CH₂Cl₂:MeOH = 9.5:0.5). UV (MeOH) λ_{max} : 309 nm (ε 4,400). IR (KBr) ν_{max} cm⁻¹: 3328, 1640 cm⁻¹. ¹H NMR (500 MHz, CDCl3): δ (p.p.m.) 8.00 (2H, *s*), 7.46 (2H, *dd*, *J* = 8.0, 1.5 Hz), 7.31 (2H,

A view along the *a* axis of the crystal packing of compound (2), showing a zigzag chain formed by weak $C-H\cdots Cl$ hydrogen bonds (dashed lines; see Table 2). H atoms not involved in the hydrogen bonding have been omitted for clarity.

Table 3Experimental details.

	(1)	(2)
Crystal data		
Chemical formula	$C_{20}H_{10}NO_3$	$C_{20}H_{17}Cl_2NO$
$M_{\rm r}$	321.36	358.24
Crystal system, space group	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/n$
Temperature (K)	100	100
a, b, c (Å)	7.4852 (6), 9.8588 (9), 11.6115 (10)	7.540 (3), 10.623 (4), 21.119 (7)
α, β, γ (°)	111.7924 (17), 96.7983 (18), 92.8848 (17)	90, 98.671 (5), 90
$V(\dot{A}^3)$	785.90 (12)	1672.2 (10)
Ζ	2	4
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.09	0.39
Crystal size (mm)	$0.29 \times 0.24 \times 0.11$	$0.32\times0.08\times0.08$
Data collection		
Diffractometer	Bruker APEX DUO CCD area detector	Bruker APEX DUO CCD area detector
Absorption correction	Multi-scan (SADABS; Bruker, 2009)	Multi-scan (SADABS; Bruker, 2009)
No. of measured, independent and observed	10462, 3562, 3133	3105, 3105, 2591
$[I > 2\sigma(I)]$ reflections		
R _{int}	0.021	0.084
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.650	0.606
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.039, 0.117, 1.04	0.077, 0.192, 1.18
No. of reflections	3562	3105
No. of parameters	226	218
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.37, -0.21	0.45, -0.43

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

dd, J = 8.0, 1.5 Hz), 7.30 (2H, *d*, J = 7.5 Hz), 7.24 (2H, *dd*, J = 7.5, 1.5 Hz), 3.61 (4H, *s*), 2.37 (3H, *s*). ¹³C NMR (125 MHz, CDCl3): δ (p.p.m.) 186.1, 135.2, 134.3, 134.0, 133.6, 130.3, 130.0, 129.9, 126.4, 56.7, 45.5. HR–ESI–TOFMS: calculated for C₂₀H₁₇Cl₂NO [M + H]⁺, m/z 357.0687, found m/z 358.0776.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The O-bound H atoms were located in difference Fourier maps and freely refined. The remaining H atoms were positioned geometrically and refined using a riding model: C-H = 0.95-0.99 Å with $U_{iso}(H) =$ $1.5U_{eq}(C-methyl)$ and $1.2U_{eq}(C)$ for other H atoms. A rotating group model was applied to the methyl groups. For compound (2) the crystal studied was a non-merohedral twin with a ratio of the twin components of 0.116 (6):0.886 (6).

Acknowledgements

The authors are grateful to the Ministry of Education and Culture of Indonesia for financial support (research grant No. 2013 for YE) and the Universiti Sains Malaysia for the X-ray measurements.

References

Aggarwal, B. B., Kumar, A. & Bharti, A. C. (2003). *Anticancer Res.* **23**, 363–398.

- Bandgar, B. P., Jalde, S. S., Korbad, B. L., Patil, S. A., Chavan, H. V., Kinkar, S. N., Adsul, L. K., Shringare, S. N. & Nile, S. H. (2012). J. Enzyme Inhib. Med. Chem. 27, 267–274.
- Bruker (2009). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dandia, A., Jain, A. K. & Sharma, S. (2012). *Tetrahedron Lett.* 53, 5859–5863.
- Gregory, M., Dandavati, A., Lee, M., Tzou, S., Savagian, M., Brien, K. A., Satam, V., Patil, P. & Lee, M. (2013). *Med. Chem. Res.* 22, 5588–5597.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Insuasty, B., Becerra, D., Quiroga, J., Abonia, R., Nogueras, M. & Cobo, J. (2013). *Eur. J. Med. Chem.* 60, 1–9.
- Kumar, R. R., Perumal, S., Senthilkumar, P., Yogeeswari, P. & Sriram, D. (2007). Bioorg. Med. Chem. Lett. 17, 6459–6462.
- Nesterov, V. V., Sarkisov, S. S., Shulaev, V. & Nesterov, V. N. (2011). *Acta Cryst.* E67, 0760–0761.
- Reddy, B. V., Sundari, J. S., Balamurugan, E. & Menon, V. P. (2009). *Mol. Cell. Biochem.* 331, 127–133.
- Rostom, S. A. F., Hassan, G. S. & El-Subbagh, H. I. (2009). Arch. Pharm. Chem. Life Sci. 342, 584–590.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Siddiqui, A. M., Cui, X. X., Wu, R. Q., Dong, W. F., Zhou, M., Hu, M.
 W., Simms, H. H. & Wang, P. (2006). *Crit. Care Med.* 34, 1874–1882.
 Spek, A. L. (2009). *Acta Cryst.* D65, 148–155.
- Suzuki, M., Nakamura, T., Iyoki, S., Fujiwara, A., Watanabe, Y., Mohri, K., Isobe, K., Ono, K. & Yano, S. (2005). *Biol. Pharm. Bull.* 28, 1438–1443.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wu, J. Z., Zhang, Y. L., Cai, Y. P., Wang, J., Weng, B. X., Tang, Q. Q., Chen, X. J., Pan, Z., Liang, G. & Yang, S. L. (2013). *Bioorg. Med. Chem.* 21, 3058–3065.

- Yadav, B., Taurin, S., Rosengren, R. J., Schumacher, M., Diederich, M., Somers-Edgar, T. J. & Larsen, L. (2010). *Bioorg. Med. Chem.* 18, 6701–6707.
- Zhao, C. G., Cai, Y. P., He, X. Z., Li, J. L., Zhang, L., Wu, J. Z., Zhao, Y. J., Yang, S. L., Li, X. K., Li, W. L. & Liang, G. A. (2010). *Eur. J. Med. Chem.* 45, 5773–5780.

Acta Cryst. (2015). E71, 1488-1492 [doi:10.1107/S2056989015020976]

Crystal structures of 3,5-bis[(*E*)-3-hydroxybenzylidene]-1-methylpiperidin-4-one and 3,5-bis[(*E*)-2-chlorobenzylidene]-1-methylpiperidin-4-one

Yum Eryanti, Adel Zamri, Tati Herlina, Unang Supratman, Mohd Mustaqim Rosli and Hoong-Kun Fun

Computing details

For both compounds, data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

(1) 3,5-Bis[(E)-3-hydroxybenzylidene]-1-methylpiperidin-4-one

Crystal data

C₂₀H₁₉NO₃ $M_r = 321.36$ Triclinic, $P\overline{1}$ a = 7.4852 (6) Å b = 9.8588 (9) Å c = 11.6115 (10) Å $\alpha = 111.7924$ (17)° $\beta = 96.7983$ (18)° $\gamma = 92.8848$ (17)° V = 785.90 (12) Å³

Data collection

Bruker APEX DUO CCD area-detector diffractometer
Radiation source: fine-focus sealed tube φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2009)

10462 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.117$ S = 1.043562 reflections 226 parameters 0 restraints Z = 2 F(000) = 340 $D_x = 1.358 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3138 reflections $\theta = 2.8-32.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 K Block, orange $0.29 \times 0.24 \times 0.11 \text{ mm}$

3562 independent reflections 3133 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -9 \rightarrow 9$ $k = -12 \rightarrow 12$ $l = -15 \rightarrow 15$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0694P)^2 + 0.2741P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.37$ e Å⁻³ $\Delta\rho_{min} = -0.21$ e Å⁻³

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	1.16705 (13)	-0.33469 (10)	-0.27862 (8)	0.0217 (2)	
O2	0.78550 (12)	-0.06971 (10)	0.30379 (9)	0.0219 (2)	
03	0.36575 (12)	0.35383 (10)	0.81746 (9)	0.0197 (2)	
N1	1.15110 (13)	0.28041 (10)	0.38630 (9)	0.0139 (2)	
C1	1.36371 (16)	-0.10777 (13)	0.09923 (11)	0.0159 (2)	
H1A	1.4117	-0.0550	0.1849	0.019*	
C2	1.47889 (17)	-0.16263 (13)	0.01131 (12)	0.0182 (3)	
H2A	1.6059	-0.1478	0.0376	0.022*	
C3	1.41151 (17)	-0.23866 (13)	-0.11397 (12)	0.0184 (3)	
H3A	1.4922	-0.2770	-0.1728	0.022*	
C4	1.22557 (17)	-0.25933 (13)	-0.15432 (11)	0.0159 (3)	
C5	1.10880 (16)	-0.20577 (12)	-0.06675 (11)	0.0145 (2)	
H5A	0.9819	-0.2202	-0.0936	0.017*	
C6	1.17643 (16)	-0.13047 (12)	0.06113 (11)	0.0137 (2)	
C7	1.04624 (16)	-0.09053 (12)	0.14976 (11)	0.0141 (2)	
H7A	0.9348	-0.1514	0.1238	0.017*	
C8	1.06141 (16)	0.02010 (12)	0.26281 (11)	0.0136 (2)	
C9	0.91333 (16)	0.02744 (13)	0.33844 (11)	0.0152 (2)	
C10	0.92406 (16)	0.15518 (12)	0.45975 (11)	0.0139 (2)	
C11	1.08023 (16)	0.27250 (12)	0.49664 (11)	0.0144 (2)	
H11A	1.0401	0.3687	0.5454	0.017*	
H11B	1.1779	0.2515	0.5511	0.017*	
C12	1.21650 (16)	0.13979 (12)	0.31593 (11)	0.0148 (2)	
H12A	1.3070	0.1144	0.3721	0.018*	
H12B	1.2760	0.1484	0.2468	0.018*	
C13	0.78975 (16)	0.15721 (12)	0.52792 (11)	0.0145 (2)	
H13A	0.7002	0.0755	0.4914	0.017*	
C14	0.75909 (16)	0.26419 (12)	0.64853 (11)	0.0136 (2)	
C15	0.58209 (16)	0.25978 (12)	0.67642 (11)	0.0143 (2)	
H15A	0.4913	0.1888	0.6179	0.017*	
C16	0.53717 (16)	0.35752 (12)	0.78829 (11)	0.0150 (2)	
C17	0.66948 (17)	0.46108 (13)	0.87504 (11)	0.0173 (3)	
H17A	0.6396	0.5296	0.9509	0.021*	
C18	0.84563 (17)	0.46288 (13)	0.84920 (11)	0.0165 (3)	
H18A	0.9366	0.5320	0.9093	0.020*	
C19	0.89262 (16)	0.36657 (13)	0.73795 (11)	0.0154 (2)	
H19A	1.0142	0.3699	0.7224	0.018*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C20	1.29894 (17)	0.39929 (13)	0.42690 (12)	0.0183 (3)
H20A	1.2574	0.4907	0.4814	0.027*
H20B	1.3364	0.4123	0.3533	0.027*
H20C	1.4017	0.3742	0.4731	0.027*
H1O1	1.044 (3)	-0.321 (2)	-0.302 (2)	0.049 (6)*
H1O3	0.311 (3)	0.266 (2)	0.7732 (18)	0.038 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0232 (5)	0.0259 (5)	0.0132 (4)	0.0063 (4)	0.0045 (4)	0.0032 (4)
O2	0.0192 (5)	0.0202 (4)	0.0187 (5)	-0.0078 (3)	0.0065 (4)	-0.0011 (4)
03	0.0171 (4)	0.0197 (4)	0.0178 (5)	-0.0004 (3)	0.0076 (3)	0.0008 (4)
N1	0.0144 (5)	0.0132 (4)	0.0126 (5)	-0.0025 (4)	0.0037 (4)	0.0030 (4)
C1	0.0172 (6)	0.0146 (5)	0.0154 (6)	0.0012 (4)	0.0019 (4)	0.0055 (4)
C2	0.0142 (6)	0.0200 (6)	0.0225 (6)	0.0028 (4)	0.0044 (5)	0.0100 (5)
C3	0.0185 (6)	0.0192 (6)	0.0198 (6)	0.0053 (5)	0.0085 (5)	0.0079 (5)
C4	0.0210 (6)	0.0139 (5)	0.0132 (6)	0.0029 (4)	0.0044 (5)	0.0047 (4)
C5	0.0142 (5)	0.0140 (5)	0.0157 (6)	0.0014 (4)	0.0035 (4)	0.0058 (4)
C6	0.0158 (6)	0.0109 (5)	0.0151 (6)	0.0014 (4)	0.0044 (4)	0.0053 (4)
C7	0.0136 (5)	0.0147 (5)	0.0141 (6)	-0.0003 (4)	0.0021 (4)	0.0058 (4)
C8	0.0129 (5)	0.0137 (5)	0.0142 (6)	0.0008 (4)	0.0025 (4)	0.0053 (4)
C9	0.0147 (6)	0.0152 (5)	0.0151 (6)	0.0001 (4)	0.0029 (4)	0.0049 (4)
C10	0.0138 (5)	0.0141 (5)	0.0126 (5)	-0.0005 (4)	0.0015 (4)	0.0042 (4)
C11	0.0148 (6)	0.0151 (5)	0.0116 (5)	-0.0017 (4)	0.0029 (4)	0.0031 (4)
C12	0.0137 (5)	0.0148 (5)	0.0147 (6)	-0.0007 (4)	0.0043 (4)	0.0037 (4)
C13	0.0142 (5)	0.0140 (5)	0.0137 (6)	-0.0012 (4)	0.0014 (4)	0.0039 (4)
C14	0.0155 (6)	0.0136 (5)	0.0124 (5)	0.0009 (4)	0.0029 (4)	0.0056 (4)
C15	0.0153 (6)	0.0142 (5)	0.0118 (5)	-0.0013 (4)	0.0019 (4)	0.0036 (4)
C16	0.0153 (6)	0.0151 (5)	0.0152 (6)	0.0017 (4)	0.0045 (4)	0.0058 (4)
C17	0.0230 (6)	0.0145 (5)	0.0130 (6)	0.0006 (5)	0.0044 (5)	0.0035 (4)
C18	0.0191 (6)	0.0149 (5)	0.0138 (6)	-0.0036 (4)	-0.0004 (4)	0.0052 (4)
C19	0.0146 (6)	0.0175 (5)	0.0146 (6)	-0.0008 (4)	0.0022 (4)	0.0070 (5)
C20	0.0183 (6)	0.0153 (5)	0.0188 (6)	-0.0044 (4)	0.0047 (5)	0.0039 (5)

Geometric parameters (Å, °)

01—C4	1.3596 (15)	C9—C10	1.4908 (16)
01—H101	0.96 (2)	C10—C13	1.3476 (16)
O2—C9	1.2351 (14)	C10—C11	1.5051 (15)
O3—C16	1.3674 (14)	C11—H11A	0.9900
O3—H1O3	0.87 (2)	C11—H11B	0.9900
N1—C12	1.4668 (15)	C12—H12A	0.9900
N1-C20	1.4684 (14)	C12—H12B	0.9900
N1-C11	1.4697 (15)	C13—C14	1.4595 (16)
C1—C2	1.3868 (17)	C13—H13A	0.9500
C1—C6	1.3996 (17)	C14—C15	1.4030 (16)
C1—H1A	0.9500	C14—C19	1.4038 (16)

С2—С3	1.3824 (18)	C15—C16	1.3912 (16)
C2—H2A	0.9500	С15—Н15А	0.9500
C3—C4	1.3944 (18)	C16—C17	1.3915 (17)
С3—НЗА	0.9500	C17—C18	1.3871 (17)
C4—C5	1.3910 (16)	С17—Н17А	0.9500
C5—C6	1.4064 (16)	C18—C19	1.3872 (17)
C5—H5A	0.9500	C18—H18A	0.9500
С6—С7	1.4625 (16)	С19—Н19А	0.9500
С7—С8	1.3472 (16)	C20—H20A	0.9800
C7—H7A	0.9500	C20—H20B	0.9800
C8—C9	1.4819 (16)	C20—H20C	0.9800
C8—C12	1.5076 (15)		
C4—O1—H1O1	112.0 (13)	C10—C11—H11A	109.3
C16—O3—H1O3	108.1 (12)	N1—C11—H11B	109.3
C12—N1—C20	110.15 (9)	C10-C11-H11B	109.3
C12—N1—C11	109.61 (9)	H11A—C11—H11B	108.0
C20—N1—C11	109.52 (9)	N1—C12—C8	110.31 (9)
C2—C1—C6	119.72 (11)	N1—C12—H12A	109.6
C2-C1-H1A	120.1	C8—C12—H12A	109.6
C6-C1-H1A	120.1	N1—C12—H12B	109.6
$C_{3}-C_{2}-C_{1}$	120.94 (11)	C8-C12-H12B	109.6
$C_3 - C_2 - H_2 A$	119 5	H12A—C12—H12B	108.1
C1 - C2 - H2A	119.5	C10-C13-C14	130.67(11)
$C_2 - C_3 - C_4$	120 23 (11)	C10-C13-H13A	114 7
$C_2 = C_3 = H_3 A$	119.9	C14— $C13$ — $H13A$	114.7
C4 - C3 - H3A	119.9	C_{15} C_{14} C_{19}	118 59 (11)
01-C4-C5	123.05 (11)	C_{15} C_{14} C_{13}	116.26 (10)
01 - C4 - C3	117 67 (11)	C19 - C14 - C13	125 13 (11)
C_{5}	119.27 (11)	C_{16} C_{15} C_{14} C_{15} C_{14}	123.15(11) 121.15(11)
C_{1} C_{2} C_{3}	119.27(11) 120.74(11)	$C_{16} = C_{15} = C_{14}$	121.15 (11)
$C_4 = C_5 = C_6$	110.6	$C_{10} = C_{15} = H_{15A}$	119.4
$C_4 = C_5 = H_5 \Lambda$	119.0	C14 - C15 - M15A O3 - C16 - C15	119.4
$C_0 = C_5 = MSA$	119.0 110.07(11)	03 - C16 - C17	121.09(11) 118.25(11)
$C_1 = C_0 = C_3$	119.07(11) 122.82(11)	$C_{15} = C_{16} = C_{17}$	110.25(11)
$C_1 = C_0 = C_7$	122.02(11) 117.00(10)	C18 - C17 - C16	119.03(11)
$C_{3} = C_{0} = C_{1}$	117.90(10) 120.28(11)	$C_{18} = C_{17} = C_{10}$	119.06 (11)
$C_{0} = C_{1} = C_{0}$	129.30 (11)	$C_{16} = C_{17} = H_{17}$	120.5
C_{0}	115.5	C10 - C17 - H1/A	120.5
$C_0 - C_1 - H_1 A$	117.0((10)	C17 - C18 - U19	121.80 (11)
$C_{}C_{-$	117.96 (10)	C10 - C18 - H18A	119.1
$C_{}C_{8}C_{12}$	124.30 (10)	C19—C18—H18A	119.1
$C_{2} = C_{2} = C_{12}$	11/./2(10) 121.55(11)	C10 - C19 - C14	119.49 (11)
02 - 03 - 03	121.33 (11)	C14 C19 H19A	120.3
02 - 09 - 010	120.44 (11)	U14—U19—H19A	120.3
$C_{0} = C_{0} = C_{0}$	118.00 (10)	N1 - C20 - H20A	109.5
C13—C10—C9	110./0(10)	N1 - C20 - H20B	109.5
C13—C10—C11	124.79 (10)	H20A—C20—H20B	109.5
C9—C10—C11	118.51 (10)	NI-C20-H20C	109.5

N1—C11—C10	111.60 (9)	H20A—C20—H20C	109.5
NI—CII—HIIA	109.3	H20B—C20—H20C	109.5
C6—C1—C2—C3	0.52 (18)	C12—N1—C11—C10	-60.87 (12)
C1—C2—C3—C4	1.06 (18)	C20-N1-C11-C10	178.18 (10)
C2-C3-C4-O1	179.88 (11)	C13-C10-C11-N1	-152.54 (12)
C2—C3—C4—C5	-1.56 (18)	C9-C10-C11-N1	26.59 (15)
O1—C4—C5—C6	178.98 (11)	C20—N1—C12—C8	-174.22 (9)
C3—C4—C5—C6	0.50 (17)	C11—N1—C12—C8	65.22 (12)
C2-C1-C6-C5	-1.56 (17)	C7—C8—C12—N1	142.85 (12)
C2-C1-C6-C7	172.99 (11)	C9—C8—C12—N1	-35.19 (14)
C4—C5—C6—C1	1.06 (17)	C9—C10—C13—C14	-179.80 (12)
C4—C5—C6—C7	-173.76 (10)	C11—C10—C13—C14	-0.7 (2)
C1—C6—C7—C8	31.69 (19)	C10-C13-C14-C15	160.79 (13)
C5—C6—C7—C8	-153.70 (12)	C10-C13-C14-C19	-20.9 (2)
C6—C7—C8—C9	-174.71 (11)	C19—C14—C15—C16	2.09 (18)
C6—C7—C8—C12	7.3 (2)	C13—C14—C15—C16	-179.43 (11)
C7—C8—C9—O2	4.94 (18)	C14—C15—C16—O3	-179.37 (11)
C12—C8—C9—O2	-176.91 (11)	C14—C15—C16—C17	-0.52 (18)
C7—C8—C9—C10	-176.05 (11)	O3—C16—C17—C18	177.59 (11)
C12—C8—C9—C10	2.11 (16)	C15—C16—C17—C18	-1.30 (18)
O2—C9—C10—C13	0.53 (18)	C16—C17—C18—C19	1.55 (19)
C8—C9—C10—C13	-178.49 (11)	C17-C18-C19-C14	0.05 (18)
O2—C9—C10—C11	-178.66 (11)	C15—C14—C19—C18	-1.85 (17)
C8—C9—C10—C11	2.31 (17)	C13—C14—C19—C18	179.83 (11)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
01—H1 <i>0</i> 1…N1 ⁱ	0.96 (2)	1.81 (2)	2.7278 (14)	160 (2)	
O3—H1 <i>O</i> 3····O2 ⁱⁱ	0.88 (2)	1.87 (2)	2.7359 (15)	171 (2)	
С17—Н17А…ОЗ ^{ііі}	0.95	2.51	3.4032 (16)	157	

Symmetry codes: (i) -*x*+2, -*y*, -*z*; (ii) -*x*+1, -*y*, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*+2.

(2) 3,5-Bis[(E)-2-chlorobenzylidene]-1-methylpiperidin-4-one

Crystal data

 $C_{20}H_{17}Cl_2NO$ $M_r = 358.24$ Monoclinic, $P2_1/n$ a = 7.540 (3) Å b = 10.623 (4) Å c = 21.119 (7) Å $\beta = 98.671$ (5)° V = 1672.2 (10) Å³ Z = 4 F(000) = 744 $D_x = 1.423 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3908 reflections $\theta = 2.7-29.2^{\circ}$ $\mu = 0.39 \text{ mm}^{-1}$ T = 100 KNeedle, yellow $0.32 \times 0.08 \times 0.08 \text{ mm}$ Data collection

 Bruker APEX DUO CCD area-detector diffractometer Radiation source: fine-focus sealed tube φ and ω scans Absorption correction: multi-scan (<i>SADABS</i>; Bruker, 2009) 3105 measured reflections 	3105 independent reflections 2591 reflections with $I > 2\sigma(I)$ $R_{int} = 0.084$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -12 \rightarrow 12$ $l = -5 \rightarrow 25$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.077$ $wR(F^2) = 0.192$ S = 1.18 3105 reflections 218 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + 13.4429P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.45$ e Å ⁻³ $\Delta\rho_{min} = -0.43$ e Å ⁻³

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.8841 (2)	0.46525 (14)	0.06491 (7)	0.0261 (4)	
Cl2	0.6925 (2)	-0.18217 (14)	-0.22186 (7)	0.0242 (4)	
01	0.6046 (5)	0.0962 (4)	-0.04698 (18)	0.0193 (9)	
N1	0.9749 (6)	-0.1131 (4)	0.0667 (2)	0.0179 (10)	
C1	0.7905 (8)	0.1999 (6)	0.1897 (3)	0.0205 (13)	
H1A	0.7492	0.1153	0.1892	0.025*	
C2	0.8325 (8)	0.2615 (6)	0.2487 (3)	0.0244 (13)	
H2A	0.8193	0.2199	0.2876	0.029*	
C3	0.8940 (8)	0.3854 (6)	0.2491 (3)	0.0263 (14)	
H3A	0.9266	0.4275	0.2889	0.032*	
C4	0.9085 (8)	0.4479 (6)	0.1928 (3)	0.0264 (14)	
H4A	0.9477	0.5329	0.1934	0.032*	
C5	0.8648 (8)	0.3841 (5)	0.1355 (3)	0.0182 (12)	
C6	0.8072 (7)	0.2581 (5)	0.1317 (3)	0.0178 (12)	
C7	0.7554 (7)	0.1956 (5)	0.0699 (3)	0.0184 (12)	
H7A	0.6965	0.2461	0.0359	0.022*	
C8	0.7825 (7)	0.0744 (5)	0.0562 (3)	0.0156 (12)	

CO	0.7007(7)	0.0275(())	0.0080 (2)	0.0101(12)
C9	0.7007(7)	0.02/5 (6)	-0.0089(3)	0.0181(12)
C10	0.7323 (7)	-0.10/1 (5)	-0.0242(3)	0.0158 (12)
C11	0.8378 (8)	-0.1877 (5)	0.0269 (3)	0.0186 (12)
H11A	0.7555	-0.2250	0.0542	0.022*
H11B	0.8959	-0.2573	0.0066	0.022*
C12	0.8874 (8)	-0.0179 (5)	0.1009 (3)	0.0179 (12)
H12A	0.9794	0.0279	0.1305	0.021*
H12B	0.8056	-0.0598	0.1268	0.021*
C13	0.6595 (7)	-0.1495 (5)	-0.0815 (3)	0.0165 (12)
H13A	0.6044	-0.0878	-0.1106	0.020*
C14	0.6534 (7)	-0.2798 (5)	-0.1058 (3)	0.0161 (12)
C15	0.6583 (7)	-0.3058 (5)	-0.1704 (3)	0.0185 (12)
C16	0.6392 (8)	-0.4257 (6)	-0.1957 (3)	0.0210 (13)
H16A	0.6420	-0.4397	-0.2400	0.025*
C17	0.6158 (8)	-0.5253 (6)	-0.1554 (3)	0.0229 (13)
H17A	0.6032	-0.6084	-0.1721	0.027*
C18	0.6106 (8)	-0.5046 (6)	-0.0912 (3)	0.0210 (13)
H18A	0.5949	-0.5729	-0.0635	0.025*
C19	0.6288 (7)	-0.3818 (5)	-0.0674 (3)	0.0187 (12)
H19A	0.6242	-0.3679	-0.0232	0.022*
C20	1.0862 (8)	-0.1939 (6)	0.1114 (3)	0.0225 (13)
H20A	1.1440	-0.2573	0.0877	0.034*
H20B	1.1783	-0.1432	0.1375	0.034*
H20C	1.0117	-0.2359	0.1393	0.034*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0287 (8)	0.0196 (7)	0.0305 (8)	-0.0023 (6)	0.0065 (6)	0.0026 (6)
Cl2	0.0292 (8)	0.0260 (8)	0.0176 (7)	-0.0003 (6)	0.0038 (6)	0.0015 (6)
01	0.020 (2)	0.018 (2)	0.019 (2)	0.0055 (17)	0.0001 (17)	0.0049 (17)
N1	0.012 (2)	0.019 (3)	0.022 (2)	0.002 (2)	0.000 (2)	-0.002 (2)
C1	0.019 (3)	0.020 (3)	0.023 (3)	0.003 (2)	0.005 (2)	-0.002 (2)
C2	0.019 (3)	0.027 (3)	0.027 (3)	0.006 (3)	0.002 (3)	-0.002 (3)
C3	0.023 (3)	0.029 (4)	0.027 (3)	0.007 (3)	0.002 (3)	-0.012 (3)
C4	0.021 (3)	0.023 (3)	0.035 (4)	0.001 (3)	0.001 (3)	-0.005 (3)
C5	0.016 (3)	0.015 (3)	0.023 (3)	0.001 (2)	0.003 (2)	0.004 (2)
C6	0.012 (3)	0.018 (3)	0.023 (3)	0.003 (2)	0.004 (2)	-0.003 (2)
C7	0.014 (3)	0.019 (3)	0.023 (3)	0.001 (2)	0.005 (2)	0.004 (2)
C8	0.015 (3)	0.015 (3)	0.019 (3)	0.000 (2)	0.007 (2)	-0.002 (2)
C9	0.013 (3)	0.025 (3)	0.018 (3)	-0.004 (2)	0.007 (2)	0.000 (2)
C10	0.013 (3)	0.018 (3)	0.017 (3)	0.003 (2)	0.006 (2)	0.004 (2)
C11	0.020 (3)	0.017 (3)	0.019 (3)	0.000 (2)	0.003 (2)	-0.003 (2)
C12	0.019 (3)	0.017 (3)	0.018 (3)	0.000 (2)	0.004 (2)	-0.005 (2)
C13	0.016 (3)	0.019 (3)	0.014 (3)	0.000 (2)	0.002 (2)	0.000 (2)
C14	0.011 (3)	0.020 (3)	0.017 (3)	0.002 (2)	0.002 (2)	-0.001 (2)
C15	0.015 (3)	0.020 (3)	0.020 (3)	0.001 (2)	0.002 (2)	-0.002 (2)
C16	0.020 (3)	0.026 (3)	0.017 (3)	0.000 (3)	0.001 (2)	-0.005 (2)

C17	0.023 (3)	0.018 (3)	0.027 (3)	-0.004 (3)	0.001 (3)	-0.008 (3)
C18	0.018 (3)	0.024 (3)	0.020 (3)	-0.003 (3)	-0.001 (2)	-0.001 (2)
C19	0.016 (3)	0.021 (3)	0.019 (3)	0.001 (2)	0.001 (2)	-0.004(2)
C20	0.025 (3)	0.020 (3)	0.022 (3)	0.002 (3)	0.001 (3)	0.001 (2)

Geometric parameters (Å, °)

Cl1—C5	1.747 (6)	C10—C13	1.331 (8)	
Cl2—C15	1.749 (6)	C10-C11	1.508 (8)	
01—C9	1.236 (7)	C11—H11A	0.9900	
N1-C20	1.447 (7)	C11—H11B	0.9900	
N1-C12	1.457 (7)	C12—H12A	0.9900	
N1-C11	1.462 (7)	C12—H12B	0.9900	
C1—C6	1.396 (8)	C13—C14	1.474 (8)	
C1—C2	1.402 (8)	C13—H13A	0.9500	
C1—H1A	0.9500	C14—C19	1.383 (8)	
C2—C3	1.395 (9)	C14—C15	1.398 (8)	
C2—H2A	0.9500	C15—C16	1.381 (8)	
C3—C4	1.381 (9)	C16—C17	1.386 (8)	
С3—НЗА	0.9500	C16—H16A	0.9500	
C4—C5	1.382 (8)	C17—C18	1.381 (8)	
C4—H4A	0.9500	C17—H17A	0.9500	
C5—C6	1.406 (8)	C18—C19	1.397 (8)	
С6—С7	1.464 (8)	C18—H18A	0.9500	
С7—С8	1.343 (8)	C19—H19A	0.9500	
C7—H7A	0.9500	C20—H20A	0.9800	
C8—C12	1.501 (8)	C20—H20B	0.9800	
С8—С9	1.505 (8)	C20—H20C	0.9800	
C9—C10	1.492 (8)			
C20—N1—C12	110.4 (4)	N1—C11—H11B	109.5	
C20-N1-C11	110.1 (5)	C10—C11—H11B	109.5	
C12—N1—C11	109.1 (4)	H11A—C11—H11B	108.1	
C6—C1—C2	122.4 (6)	N1—C12—C8	112.1 (4)	
C6—C1—H1A	118.8	N1—C12—H12A	109.2	
C2—C1—H1A	118.8	C8—C12—H12A	109.2	
C3—C2—C1	118.5 (6)	N1—C12—H12B	109.2	
C3—C2—H2A	120.8	C8—C12—H12B	109.2	
C1—C2—H2A	120.8	H12A—C12—H12B	107.9	
C4—C3—C2	121.2 (6)	C10—C13—C14	128.4 (5)	
С4—С3—Н3А	119.4	C10—C13—H13A	115.8	
С2—С3—Н3А	119.4	C14—C13—H13A	115.8	
C3—C4—C5	118.6 (6)	C19—C14—C15	116.3 (5)	
C3—C4—H4A	120.7	C19—C14—C13	122.2 (5)	
C5—C4—H4A	120.7	C15—C14—C13	121.4 (5)	
C4—C5—C6	123.2 (6)	C16—C15—C14	122.9 (5)	
C4—C5—C11	117.7 (5)	C16—C15—Cl2	118.0 (4)	
C6-C5-Cl1	119.0 (5)	C14—C15—Cl2	119.1 (4)	

C1—C6—C5	116.1 (5)	C15—C16—C17	118.8 (5)
C1—C6—C7	122.3 (5)	C15—C16—H16A	120.6
C5—C6—C7	121.5 (5)	C17—C16—H16A	120.6
C8—C7—C6	126.7 (5)	C18—C17—C16	120.4 (6)
С8—С7—Н7А	116.6	C18—C17—H17A	119.8
С6—С7—Н7А	116.6	C16—C17—H17A	119.8
C7—C8—C12	125.1 (5)	C17—C18—C19	119.1 (6)
С7—С8—С9	117.3 (5)	C17—C18—H18A	120.4
C12—C8—C9	117.6 (5)	C19—C18—H18A	120.4
O1—C9—C10	121.5 (5)	C14—C19—C18	122.4 (5)
O1—C9—C8	121.2 (5)	C14—C19—H19A	118.8
С10—С9—С8	117.2 (5)	C18—C19—H19A	118.8
С13—С10—С9	117.6 (5)	N1—C20—H20A	109.5
C13—C10—C11	124.0 (5)	N1—C20—H20B	109.5
C9—C10—C11	118.3 (5)	H20A-C20-H20B	109.5
N1-C11-C10	110.7 (5)	N1—C20—H20C	109.5
N1-C11-H11A	109.5	H20A—C20—H20C	109.5
C10-C11-H11A	109.5	H20B—C20—H20C	109.5
C6—C1—C2—C3	-0.4 (9)	C20—N1—C11—C10	-174.5 (4)
C1—C2—C3—C4	2.0 (9)	C12—N1—C11—C10	64.2 (6)
C2—C3—C4—C5	-1.6 (9)	C13—C10—C11—N1	149.3 (5)
C3—C4—C5—C6	-0.5 (9)	C9—C10—C11—N1	-33.2 (7)
C3—C4—C5—Cl1	180.0 (5)	C20—N1—C12—C8	175.3 (5)
C2-C1-C6-C5	-1.5 (8)	C11—N1—C12—C8	-63.6 (6)
C2—C1—C6—C7	-177.1 (5)	C7—C8—C12—N1	-149.2 (5)
C4—C5—C6—C1	1.9 (8)	C9—C8—C12—N1	31.0 (7)
Cl1—C5—C6—C1	-178.5 (4)	C9—C10—C13—C14	-172.8 (5)
C4—C5—C6—C7	177.6 (5)	C11—C10—C13—C14	4.8 (9)
Cl1—C5—C6—C7	-2.9 (7)	C10—C13—C14—C19	37.6 (9)
C1—C6—C7—C8	-39.9 (9)	C10—C13—C14—C15	-147.5 (6)
C5—C6—C7—C8	144.7 (6)	C19—C14—C15—C16	0.3 (8)
C6—C7—C8—C12	-5.9 (9)	C13—C14—C15—C16	-175.0 (5)
C6—C7—C8—C9	173.9 (5)	C19—C14—C15—Cl2	-179.0 (4)
C7—C8—C9—O1	-3.8 (8)	C13—C14—C15—Cl2	5.8 (7)
C12—C8—C9—O1	176.1 (5)	C14—C15—C16—C17	-0.6 (9)
C7—C8—C9—C10	179.6 (5)	Cl2—C15—C16—C17	178.6 (4)
C12—C8—C9—C10	-0.6 (7)	C15—C16—C17—C18	0.4 (9)
O1—C9—C10—C13	2.9 (8)	C16—C17—C18—C19	0.2 (9)
C8—C9—C10—C13	179.6 (5)	C15—C14—C19—C18	0.3 (8)
O1—C9—C10—C11	-174.7 (5)	C13—C14—C19—C18	175.5 (5)
C8—C9—C10—C11	1.9 (7)	C17—C18—C19—C14	-0.5 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A

C4—H4A····Cl2 ⁱ	0.95	2.85	3.587 (7)	135

Symmetry code: (i) x+1/2, -y+1/2, z+1/2.