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Abstract

Current cochlear implant (CI) strategies carry speech information via the waveform envelope in frequency subbands. CIs

require efficient speech processing to maximize information transfer to the brain, especially in background noise, where the

speech envelope is not robust to noise interference. In such conditions, the envelope, after decomposition into frequency

bands, may be enhanced by sparse transformations, such as nonnegative matrix factorization (NMF). Here, a novel CI pro-

cessing algorithm is described, which works by applying NMF to the envelope matrix (envelopogram) of 22 frequency channels in

order to improve performance in noisy environments. It is evaluated for speech in eight-talker babble noise. The critical sparsity

constraint parameter was first tuned using objective measures and then evaluated with subjective speech perception experi-

ments for both normal hearing and CI subjects. Results from vocoder simulations with 10 normal hearing subjects showed that

the algorithm significantly enhances speech intelligibility with the selected sparsity constraints. Results from eight CI subjects

showed no significant overall improvement compared with the standard advanced combination encoder algorithm, but a trend

toward improvement of word identification of about 10 percentage points atþ15 dB signal-to-noise ratio (SNR) was observed

in the eight CI subjects. Additionally, a considerable reduction of the spread of speech perception performance from 40% to 93%

for advanced combination encoder to 80% to 100% for the suggested NMF coding strategy was observed.
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Introduction

Cochlear implants (CI) are electrical devices that help to
restore hearing to the profoundly deaf. The main prin-
ciple of CIs is to stimulate the auditory nerve via elec-
trodes surgically inserted into the inner ear. With the
development of new speech processors and algorithms,
CI users benefit more and more from their implants
(Wilson & Dorman, 2007; Zeng, 2004), and many of
them are even able to communicate via telephone.
However, average speech perception performance of CI
users is still far below that of normal-hearing (NH) lis-
teners, especially in the presence of background noise.
This may occur because there are information transmis-
sion bottlenecks (Olshausen & Field, 2004), both in the
CI device itself and in the impaired auditory system,
which limit acoustic information transmission to audi-
tory neurons (Greenberg, Ainsworth, Popper, & Fay,
2004). Examples of such bottlenecks include the smaller
dynamic range of CIs, relative to NH, and the limited
number of electrodes.

There are currently two main ways by which speech
processing algorithms aim to improve CI performance:

one focuses on noise reduction preprocessing by trying to
enhance speech and suppress noise (Hendriks & Martin,
2007; Hussain, Chetouani, Squartini, Bastari, & Piazza,
2007; Mauger, Arora, & Dawson, 2012; Mauger,
Dawson, & Hersbach, 2012; Roberts, Ephraim, & Lev-
Ari, 2006; Wouters & Berghe, 2001); the other focuses on
redundancy reduction using different coding strategies
(Buchner, Nogueira, Edler, Battmer, & Lenarz, 2008;
Buechner et al., 2011; Li, 2008; Li, Lutman, Wang, &
Bleeck, 2012; Loizou, Lobo, & Hu, 2005; Nie, Drennan,
& Rubinstein, 2009) to make better use of the limited
transfer capacity in the CI electrical-auditory system.
Speech has a high degree of redundancy (Cooke, 2006;
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Kasturi, Loizou, Dorman, & Spahr, 2002), and humans
can understand speech based on partial information and
in difficult environments. This phenomenon has been
explored and modeled using, for example, glimpsing
(Cooke, 2006) or binary masking (Wang, Kjems,
Pedersen, Boldt, & Lunner, 2009). Existing CI strategies,
such as continuous interleaved sampling (Wilson et al.,
1991), spectral peak (Seligman & McDermott, 1995)
and the advanced combination encoder (ACE; Clark,
2003; Patrick, Busby, & Gibson, 2006), already take
advantage of the redundancy properties of speech by
selecting only few channels or only using envelope infor-
mation for stimulation. Li and colleagues (Li, 2008; Li
et al., 2012) demonstrated that these strategies deliver
stimulation in a sparse representation of the speech and
they introduced a SPARSE strategy, in which an algo-
rithm based on independent component analysis is
applied to the spectral envelope. Their results were pro-
mising, showing that the SPARSE strategy improved
speech intelligibility for some CI users even with very
limited familiarity with the stimulation strategy (Li,
2008; Li et al., 2012). The redundancy properties of
speech were further investigated in Hu et al. (2011) by
introducing an enhanced SPARSE strategy. Both object-
ivemeasures and subjective listening tests with vocoder CI
simulation in NH showed that the SPARSE strategy is a
potential candidate for a future stimulation algorithm
(Hu et al., 2011; Li, 2008; Li et al., 2012).

Nonnegative matrix factorization (NMF) (Lee &
Seung, 1999, 2000) is an alternative algorithm that pro-
duces a sparse representation. It has recently attracted
interest across many scientific and engineering discip-
lines, such as image processing, speech processing, and
pattern classification (Cichocki, Zdunek, Phan, & Amari,
2009; Mohammadiha, Gerkmann, & Leijon, 2011;
Potluru & Calhoun, 2008; Shashanka, Raj, &
Smaragdis, 2008; Smaragdis & Brown, 2003; Spratling,
2006; Wang, Cichocki, & Chambers, 2009). NMF is
useful for transforming high-dimensional data sets into
a lower dimensional space (Potluru & Calhoun, 2008).
Moreover, instead of developing holistic representations,
NMF usually conducts parts-based decomposition and
reconstruction using nonnegativity constraints (Lee &
Seung, 1999). A nonnegative approach is suitable for
envelope representations, which cannot be negative.

Motivated by the nonnegativity feature of the signal
envelopes in CI channels and the positive firing rate of
auditory neurons, a sparse coding strategy based on
NMF is proposed in the current study, and we investi-
gate whether it can improve the performance of CI users
in noisy environments. Considering the computational
complexity of NMF and an envisaged real-time imple-
mentation, a basic NMF method with a sparse constraint
l (Hoyer, 2002) is applied. The choice of l to deal with
the trade-off between sparseness and intelligibility, and

thus to maximize the performance of the whole algo-
rithm, is a substantial challenge.

The proposed algorithm is evaluated in eight-talker
babble noise with both objective measures and experimen-
tal listening tests, using specific l values to assess the effect
of l on the algorithm output. The article is organized as
follows: First, the sparse NMF algorithm is presented after
a short introduction to NMF. The ACE strategy and how
the proposed sparse NMF strategy is embedded are
described. Second, the objective evaluation methods and
subjective tests for both NH and CI subjects are described.
Subsequently, the evaluation results are provided. Finally,
a discussion and the conclusions are presented.

Algorithm

NMF is a method to factorize a nonnegative matrix Z

into the basis matrix W and component matrix H so that
Z �WH. To perform the factorization, a cost function
DðZjjWHÞ is usually defined and minimized. There are
many possibilities to define the cost function and various
procedures for performing the subsequent minimization
to derive meaningful factorizations for specific applica-
tions (Cichocki, Zdunek, & Amari, 2006; Févotte,
Bertin, & Durrieu, 2009; Zdunek & Cichocki, 2008).
The general notation of the minimization is:

Ŵ, Ĥ
h i

¼ argmin
W,H

DðZjjWHÞ þ f Wð Þ þ gðHÞ½ �;

where f Wð Þ and gðHÞ are regularity functions for basis
matrix W and component matrix H. The most common
regularizations are motivated by the sparseness of the
signal (Hoyer, 2004; Rennie, Hershey, & Olsen, 2008;
Schmidt, 2008; Virtanen, 2007) and the correlation of
the signal over time (Mysore, Smaragdis, & Raj, 2010;
Virtanen, 2007). In this article, a squared Euclidean dis-
tance DEucðZjjWHÞ ¼ 1

2 kZ�WHk22 is used as the cost
function (Cichocki et al., 2006). It is then combined
with a L1 regularized least-squares sparseness penalty
function through a least absolute shrinkage and selection
operator framework; that is, the sparsity is measured by
the L1 norm (Hoyer, 2002, 2004).

Principle of Sparse NMF in Envelope Domain

In our application, Z is a matrix consisting of the enve-
lopes of CI channels in multiple frequency bands,
referred to as envelopogram. NMF is applied to factorize
the envelopogram into two matrices consisting of NMF
basis vectors W and the NMF components H represent-
ing the activity of each basis vector over time. Although
standard NMF usually provides sparseness of its com-
ponents to a certain degree, an additional sparseness
constraint is applied to explicitly control the sparsity of
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the NMF component matrix H. The L1 norm of H is
used as the sparsity measure and the optimization algo-
rithm proposed by Hoyer (2002, 2004) is applied to
obtain nonnegative matrices W and H.

Problem formulation. Let Z denote an N�M envelopo-
gram of one analysis block, where N and M indicate
the number of channels and the number of frames,
respectively. Given the nonnegative envelopogram
matrix Z, NMF aims to obtain the basis matrix W and
component matrix H such that

DðZjjWHÞ ¼
1

2
kZ�WHk22 þ lgðHÞ ð1Þ

is minimized, under the constraints 8i,j,k : wik50; hkj50,
l50, where

Z ¼

z11 . . . z1M

..

. . .
. ..

.

zN1 . . . zNM

2
64

3
75

N�M

,

W ¼

w11 . . . w1K

..

. . .
. ..

.

wN1 . . . wNK

2
64

3
75

N�K

,

H ¼

h11 . . . h1M

..

. . .
. ..

.

hK1 . . . hKM

2
64

3
75

K�M

,

zij is the envelope-time bin in the ith channel of the jth frame,
wi denotes the i

th column of W, g Hð Þ ¼
PK

k¼1

PM
j¼1 hkj.

The sparseness constraint l in equation (1) is an
important parameter that handles the compromise
between the NMF approximation and the sparsity. One
goal of the current study is to choose l to maximize the
performance of the algorithm, assessed in objective evalu-
ation and subjective psychophysical experiments in the
following sections.

Algorithm description. As proposed by Hoyer (2002, 2004),
an iterative algorithm is implemented to minimize the
cost function in equation (1), in which the basis matrix
W and the component matrix H are updated by gradient
descent and multiplicative update rules, respectively.
There is no training stage in this study. The whole algo-
rithm can be described as follows:

1. Initialize basis matrix W and component matrix H

with random positive matrices W0 and H0, and
rescale each column of W0 to unit norm.

2. Iterate until convergence:

(a) W maxðW� � WH� Zð ÞHT, 0Þ

(b) Rescale each column of W to unit norm, so that

wk ¼ wk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 w
2
ik

q

(c) H HðWTZÞ=ðWTWHþ lÞ

The variable� is the step size, a small positive constant,
which should be set appropriately to achieve reasonable
optimization time and good resolution in obtaining the
optimal values of W. Here, �¼ 1 was chosen.

Sparse NMF Strategy for CIs

The suggested sparse NMF strategy was integrated with
a research ACE strategy which served as a comparison
framework. It was implemented in the Nucleus
MATLAB Toolbox (NMT) v4.20 (Cochlear
Technology, 2002; Swanson, 2008). NMT is a set of
MATLAB scripts provided by Cochlear Limited and
allows researchers to derive or modify speech processing
strategies either at the speech processing strategy level or
at a lower level to create sequences of electrode stimula-
tion patterns and programmatically stream the patterns
directly to Nucleus devices or simulators.

Figure 1a illustrates a basic block diagram of the
research ACE strategy. zðtÞ is the measured noisy
speech signal sampled at 16 kHz after applying a preem-
phasis filter. The preemphasis filter attenuates low fre-
quencies and amplifies high frequencies, to compensate
for the �6 dB/octave natural slope in the long-term aver-
age speech spectrum. Then a filter bank, which is imple-
mented with a short-time Fourier transform, is applied
to the previously windowed audio signal; 128-point
Hanning windows are used. After transforming the
input speech signal into a spectrogram, the 22-channel
envelopogram is extracted by summing the weighted
short-time Fourier transform bin powers of a certain
number of frequency bins within each channel. The enve-
lope of channel i is calculated as:

aðiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xei
j¼si

gz jð Þr2ð j Þ

vuut ð2Þ

Where r2 jð Þ is the fast Fourier transform (FFT) bin
power, j ¼ 1, 2, . . . , 64, i ¼ 1, 2, . . . ,N. For the first chan-
nel, s1 ¼ e1 ¼ 3 and gz 3ð Þ ¼ 0:98 is used, which means
only the third frequency bin is selected and the corres-
ponding weight is 0.98, while the other frequency bins
have weightings of gz jð Þ ¼ 0. For the ith channel, the
starting nonzero weighting frequency bin is
si ¼ si�1 þ Li�1, the number of ascending bins is Li;
thus the end frequency bin is ei ¼ si þ ðLi � 1Þ; the cor-
responding nonzero weights gz jð Þ for these selected Li

bins FFT powers r2 jð Þ are listed in Table 1 (Cochlear
Technology, 2002; Swanson, 2008).
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In the channel selection block, a subset of envelopes
with the largest amplitudes is selected for stimulation. In
the vocoder simulation block, the noise vocoder in the
NMT is used for the generation of the vocoded speech.
The extracted envelopes from 22 channels after the
maxima selection process are used to modulate pink
noise signals, which have been band-pass filtered by
fourth-order Butterworth filters corresponding to the
analysis channels. Finally, all the modulated channels
are summed to produce the vocoded stimuli (Dorman,
Loizou, Spahr, & Maloff, 2002; Swanson, 2008).
Although the simulations cannot model individual CI
users’ performance perfectly, it has been shown that
these simulations are still useful tools for evaluation
new algorithms in their initial stages (Loizou, 2006).

In the CI stimulation block, the electrical stimulation
pulses are modulated by the envelopes of the signals in
the corresponding frequency bands. In addition, the

Figure 1. Flowcharts of the ACE strategy and the proposed sparse NMF strategy: (a) illustrates the research ACE strategy, (b) shows the

flowchart of the proposed sparse NMF algorithm and how it is integrated with the research ACE strategy.

Table 1. Number of FFT Bins and Weightings ðN ¼ 22Þ.

Band

number

Number

of bins L Gain gz

Band

number

Number

of bins L Gain gz

1 1 0.98 12 2 0.68

2 1 0.98 13 2 0.68

3 1 0.98 14 3 0.65

4 1 0.98 15 3 0.65

5 1 0.98 16 4 0.65

6 1 0.98 17 4 0.65

7 1 0.98 18 5 0.65

8 1 0.98 19 5 0.65

9 1 0.98 20 6 0.65

10 2 0.68 21 7 0.65

11 2 0.68 22 8 0.65
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pulse trains are separated in time and interleaved in
order to minimize electrical interaction among the
electrodes.

Figure 1b shows the flow chart of the proposed sparse
NMF algorithm using a modified ACE strategy frame-
work. The new modules are highlighted by the dashed
frame of Figure 1b. The sparse NMF algorithm is
applied to the envelopogram on a block-by-block basis
by buffering a certain number of continuous frames in
each channel. The envelopes are reconstructed from the
modified sparse NMF components. The same maxima
selection process as used in the research ACE strategy
is applied on the reconstructed envelopogram after sparse
NMF processing.

Each column of Z consisted of N ¼ 22 channel enve-
lope bins. Except in the simulation part of Algorithm
section (Figures 2–4), the buffer length used in each ana-
lysis block was M ¼ 10 frames, which was the same as
used in Hu et al. (2011) and is short enough to allow for
a real-time implementation. The resulting throughput
delay caused by buffering (considering a frame length
of 8ms and 75% overlap) was around 20ms. The total
delay imposed by the algorithm is equal to the sum of the
buffering time and processing time for each block. In the

MATLAB implementation, the processing of each block
takes roughly 10ms (with 100 iterations to obtain NMF)
using a PC with 3.4GHz Intel CPU and 16GB RAM.

To visualize the NMF decomposition of the envelopo-
gram of both clean and noisy speech signals, monosyl-
labic words taken from Foster and Haggard (1979) as
used in Lutman and Clark (1986) were assessed. The
block length was the length (L in samples) of the corres-
ponding word. The total short-time frame number for
each individual word is T � L=ð0:25 � 128Þ, with 75%
overlap. Figure 2a shows the waveforms of two clean
words (Din, Tin). The x-axis shows the time in samples
at a sample rate of 16 kHz. Figure 2b shows the corres-
ponding envelopograms of 22 channels extracted accord-
ing to Figure 1a. The x-axis is time in frames, y-axis is
channel number. The 22 intra-cochlear electrodes are
numbered from 1 to 22 in the basal to apical direction,
so that channel 22 is the lowest frequency channel.

Figure 3 shows the decomposition and reconstruction
of the envelopogram with l ¼ 0 (no sparsity constraint).
Here, five basis and component vectors are calculated
(Hu, Krasoulis, Lutman, & Bleeck, 2013) for each envel-
opogram. Figure 3a shows the component matrix H,
which determines the activity of different basis vectors
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Figure 2. Example sounds (Din, Tin) in the time and envelope domains: (a) waveforms of the words with x-axis is time in samples with a

sample rate of 16 kHz (b) envelopogram of the corresponding words with x-axis and y-axis being time in frames and channel number,

respectively.
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over time. The x-axis and y-axis show the time in frames
and the number of components showing the parts-based
decomposition of these monosyllabic words (Lee &
Seung, 1999). Each NMF component reflects part of
the patterns in the envelopogram along time dimension
for both words. Figure 3b shows the basis vectors W for
different words. The x-axis and y-axis show the number
of basis and the channel numbers. Note that the basis
vectors are different for different words, and there are
no obvious patterns. Additionally, as illustrated in
Figure 3a, the inherent correlation in the speech signal
is conserved in the component matrix after applying
NMF. The NMF components (the activity of basis vec-
tors) tend to be continuous over time; in other words, if a
basis vector is active (meaning that its corresponding
coefficient is relatively large in the component matrix)
at a specific time-frame, it will often remain active
for several time-frames. This illustrates that the

representation in the NMF domain is more sparse than
in the time domain, indicating that NMF can reconstruct
speech with reduced information by choosing only few
components (Hu et al., 2013). Moreover, this also reflects
the fact that speech has a high degree of redundancy and
only few components are necessary to reconstruct an
intelligible speech signal, at least in quiet (Cooke, 2006;
Kasturi et al., 2002).

For noisy signals, it can be assumed that the factoriza-
tion of the envelopogram into the basis and component
matrices yields some components that mainly correspond
to the speech source while others are mainly produced by
the noise source. The application of sparse NMF can be
interpreted by assuming either that the smaller NMF
components correspond to the noise basis vectors, or
they do not contribute significantly to the intelligibility
of speech. By normalizing each basis vector to unit
norm and by applying different sparseness constraint l
to the factorization, the small NMF components will be
removed and hence a more sparse signal will be obtained
while effectively performing noise reduction and reducing
redundancy. The sparseness of the reconstructed signal
can be controlled via tuning l.

Figure 4 shows simulation results of the application of
NMF on the envelopogram of the word “Bin” in noisy
situations for two sparsity levels (l ¼ 0 and l ¼ 0:1) to
demonstrate the effect of l on the sparse NMF recon-
struction. The subplots in the bottom left and bottom
middle panels are the waveform and the corresponding
envelopogram in eight-talker babble noise with
SNR ¼ 5 dB. As a comparison, the corresponding sub-
plots of the clean speech are shown in the top left and top
middle panels. The subplots in the right panels are the
reconstructed noisy speech envelopograms for l ¼ 0 (top)
and l ¼ 0:1 (bottom), respectively. As expected, more
information is removed using a larger sparsity constraint
(l ¼ 0:1) than no constraint (l ¼ 0). The NMF recon-
structed envelopogram appears more similar to the clean
envelopogram than the unprocessed noisy one, for both l
values. Thus the processed envelopogram is less noisy.

Methods

Three experiments were designed to evaluate the pro-
posed sparse NMF algorithm with a specific l and to
compare the results with the research ACE strategy. To
mimic a more realistic (and more difficult) scenario,
eight-talker babble noise instead of Gaussian noise was
used in this study. In Experiment I, a wide range of
values for l was selected for objective evaluation in
order to narrow down the l range for the subjective lis-
tening tests with NH and CI subjects. In Experiment II,
speech reception thresholds (SRT) were assessed (Hu
et al., 2012) in NH subjects. Noise vocoder simulated
signals produced with the NMT software (shown in
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Figure 3. Decomposition and reconstruction by sparse NMF of

the envelopogram of the words “Din” and “Tin”: (a) component

matrices H with x-axis and y-axis being time in frames and number

of components; (b) basis matrices W with x-axis and y-axis being

number of basis and channel number; (c) reconstructions Ẑ with all

the components with x-axis and y-axis being time in frames and

channel number.
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Figure 1) were used in Experiments I and II. In
Experiment III, CI subjects were recruited to evaluate
the proposed algorithm.

Experiments for both NH and CI subjects were per-
formed at the Institute of Sound and Vibration Research,
Southampton, and were approved by National Health
Service ethics committee (ref 09/H0504/116) and
Institute of Sound and Vibration Research Human
Experimentation Safety and Ethics Committee (ref 2346).

Experiment I: Objective Measures

Objective measures were applied to assess the effect of l
on the algorithm output as a preselection stage. A wide
range of l values between 0.01 and 0.2, with a step size of
0.01 was used. The objective measures aimed to evaluate
the sparsity and to predict speech intelligibility. As
applied by Li (2008), kurtosis was used to assess sparsity.
Since it is unclear which objective evaluation method
better predicts speech perception for vocoded speech, a
two-step parameter selection procedure was developed
based on Hu et al. (2012), where the results of the object-
ive measures were used to set a smaller range of l for a
further SRT (Plomp & Mimpen, 1979) experiment for
NH listeners. Results from Hu et al. (2012) showed
that both the normalized covariance metric (NCM)
and short-time objective intelligibility (STOI) could

predict the performance of intelligibility for noise
vocoded speech in some instances. This finding is con-
sistent with Chen and Loizou’s (2011) study, where it
was demonstrated that the coherence-based and speech
transmission index-based measures are good tools
for modeling the intelligibility of vocoded speech.
Therefore, kurtosis, NCM, and STOI were all used
here to explore the possible effect of l on the speech
perception prior to the subjective listening tests.

Speech material. Bamford-Kowal-Bench (BKB) sentences
(Bench, Kowal, & Bamford, 1979) were used. BKB sen-
tence lists are standard British speech materials with 21
lists. Each list contains 50 keywords in 16 sentences.
Eight-talker babble noise was added to the speech mater-
ial at three different long-term SNRs (0, 5, and 10 dB).
The noise vocoder as described in Figure 1 was applied
to the whole sentence corpus, on their output envelopes
either from the ACE strategy (baseline condition) or
from the sparse NMF strategy.

Kurtosis. Kurtosis based on equation (2) was used as a
measure of sparseness (Li, 2008):

K ¼
1
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Figure 4. Reconstruction of sparse NMF envelopograms in babble noise. The bottom left and bottom middle panels are waveform and

envelopogram of noisy speech “Bin” (SNR¼ 5 dB). The top left and top middle panels are the corresponding subplots of the clean speech.

The top right and bottom right panels are the reconstructed noisy envelopograms for � ¼ 0 (top) and � ¼ 0:1 (bottom), respectively.
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where x is the amplitude, � is the mean, and � is the
standard deviation of the signal. For a normalized
Gaussian (non-sparse) distribution with � ¼ 0 and
� ¼ 1, the kurtosis is by definition K ¼ 0; for other sig-
nals, the kurtosis may be larger than zero for a super-
Gaussian or smaller than 0 for a sub-Gaussian process.
If the kurtosis becomes larger, the sparseness of the
signal increases.

Normalized Covariance Metric. The NCM measure was
used as one of the objective measures for speech intelli-
gibility. NCM is similar to speech transmission index
(Steeneken & Houtgast, 1980), which is based on the
covariance between the input and output envelope sig-
nals. It is expected to correlate highly with the intelligi-
bility of vocoded speech due to similarities in the NCM
calculation and CI processing strategies: Both use infor-
mation extracted from the envelopes in a number of
frequency bands while discarding fine-structure informa-
tion (Chen & Loizou, 2010; Goldsworthy & Greenberg,
2004). For computing the NCM value, the stimulus was
first band-pass filtered into k ¼ 20 bands spanning the
signal bandwidth. The envelope of each band was com-
puted using the Hilbert transform, anti-aliased using
low-pass filtering and then down-sampled to limit the
envelope modulation frequencies.

Short Time Objective Intelligibility. The STOI is based on a
correlation coefficient between the temporal envelopes of
the clean and the degraded speech in short-time overlap-
ping segments (Taal, Hendriks, Heusdens, & Jensen,
2011). The input of STOI is the clean and the processed
signal in the time domain, and the output is a scalar
value which has a monotonic relation with the average
intelligibility of the processed signal (Taal et al., 2011). In
our case, since vocoded speech signals were the test
materials for NH subjects, the first input is the vocoded
NMF processed signal and the second is the correspond-
ing vocoded ACE clean speech.

Experiment II: SRTs for NH Subjects

In this experiment, NH subjects were recruited to evalu-
ate the sparse NMF strategies in different combinations
of SNR and l values.

Subjects. A total of 10 NH subjects (with NH thresholds
between �10 and 15 dBHL, as established by pure tone
audiometry between 500Hz and 8 kHz; 6 males, 4
females; age 18–26 years) were recruited. All participants
were native English speakers with no previous experience
of BKB sentence lists.

Speech material. The same noise-vocoded BKB sentences
and babble noise as in Experiment I were used. Based on

the results of Experiment I, three sparsity levels were
selected for the listening tests. The parameters of the
ACE strategy and three NMF strategies with different
sparsity conditions are listed in Table 2. Condition 1 was
the ACE strategy that does not use l. Conditions 2 to 4
are the NMF strategies with three constraints: l ¼ 0:08
(NMF008), 0.10 (NMF010), and 0.13 (NMF013) for
SNR (from �1 to 10 dB).

Equipment and procedures. All experiments were per-
formed in a sound-isolated room with diotic sounds pre-
sented through Sennheiser HDA 200 headphones using a
Creek OBH-21SE headphone amplifier. The vocoded
BKB sentence lists of a female speaker were used. A
two-up one-down adaptive procedure was used to find
the SNR required for 70.7% correct recognition in each
condition. The speech presentation level was fixed, while
the SNR was varied adaptively with a 1-dB step size by
changing the noise level (Dahlquist, Lutman, Wood, &
Leijon, 2005). The sentence list was randomized for each
participant. A sentence was classified to be correctly
identified when at least two keywords were correctly
repeated. The participants were trained for a few minutes
with noise vocoded clean BKB sentences to become
familiar with the test procedure.

Experiment III: Word Identification
Tests for CI Subjects

In this experiment, CI subjects were recruited to evaluate
the sparse NMF strategies in babble noise with different
combinations of SNR and l values.

Subjects. A total of 10 participants were recruited from
the University of Southampton Auditory Implant
Service database. Two (one male, one female, aged 65
and 55) underwent the pilot experiments for fine-tuning
of the experimental setup and parameters, and the other
eight (two males, six females, aged between 30 to 87
years) took part in Experiment III formal tests. Only
the data from these eight participants are included and
analyzed in the results. All of them were native English
speakers and unilaterally implanted (four left sided, four
right sided) with a Nucleus 24 CI. The hearing threshold
levels of their unimplanted ears were at least 90 dB
(as established by pure tone audiometry between

Table 2. The NH Subjective Experiment Conditions.

Condition Strategy �

1 ACE –

2 NMF008 0.08

3 NMF010 0.10

4 NMF013 0.13

8 Trends in Hearing



500Hz and 8 kHz). They all had been implanted for
more than 1 year (ranged 3–12 years) and had BKB sen-
tence scores in quiet 4 35%.

Speech material. Considering that the participants might
have experienced the BKB sentences previously as a part
of their CI assessment and rehabilitation process and to
avoid learning effects, an alternative sentence set known
as IHR sentence lists (Faulkner, 1998) was used in these
experiments. Again, eight-talker babble noise was used
as masker. Both the IHR database and BKB database
have the same structure and same talker; they contain a
similar level of complexity in both vocabulary and
syntax. Eighteen sentence lists were used, each contain-
ing 15 sentences, with 3 keywords each. One sentence list
was used for each condition. The sentence list used in
each condition was randomized across participants.
BKB sentences were used for practice.

Sparsity parameter �. Because of large individual differ-
ences in speech perception performance in quiet among
CI users, the same sparsity level might not be appropriate
for different CI users. Thus, three different sparsity levels
were generated in the CI experiments. First, the “optimal”
l values were obtained in the same way as in Experiment I
(Figure 6). According to the results of Experiment I, the l
values obtained with theNCMand the STOI at 5 dB SNR
(Table 4) are similar; they are equally good in predicting
the speech recognition performance of the NH partici-
pants in Experiment II (Figure 7). Since NCM gives a
larger optimal l at SNR ¼ 0 than STOI, it indicates
that the algorithm is more sparse or “aggressive” in
lower SNR conditions. A previous study (ur Rehman
Qazi, van Dijk, Moonen, & Wouters, 2012) showed that
CI subjects generally tolerate higher levels of distortion
than NH subjects, and therefore, more aggressive noise
reduction may be appropriate for CI recipients. To set
more varied sparsity levels for CI subjects, NCM was
used to initialize the l values in Experiment III. First,
an optimal l� SNR curve was obtained according to
the NCM measure; then a higher and a lower sparsity
level were introduced based on curve fitting.

Figure 5a shows l for different conditions obtained
from NCM. The SNR was in the range from �5 to
16 dB in 1-dB steps. Each SNR condition was tested
for a range of l values, for example, for SNR ¼ 5 dB,
l 2 ½0:01, 0:02, . . . , 0:22�. The brown dotted curve shows
the optimum values obtained from NCM. The blue solid
curve shows a fitted exponential curve of these optimum
l values as a function of SNR. The approximated least-
squares solution is

lopt �ð Þ ¼ G:e�0:1122:� ð3Þ

where � represents the SNR in dB, G ¼ 0:2. An increased
or a decreased value for Gmeans a higher or lower spars-
ity level, respectively. In this experiment, G in equation
(3) was increased or decreased by 0.02.

Table 3 shows the sparsity values l used in Experiment
III for four different SNRs that are derived from the three
l� SNR fitting curves shown in Figure 5b. Three sparse
NMF strategies corresponding to these three sparsity
levels (named NMFhigh, NMFncm, and NMFlow)
under four SNR scenarios (0, 5, 10, 15 dB) were tested,
resulting in 16 conditions in the following experiment.

Equipment and procedure. The Nucleus Implant
Communicator (NIC) software (provided by Cochlear
Corporation) was used to communicate with the
Nucleus implant and to send stimulus sequences to the
implanted electrodes through a research processor (L34)
via the standard hardware. The NIC is a set of software
modules and libraries associated with NMT, which
allows encoding of the envelopogram to stimuli sequences
of electrode stimulation and programmatically streaming
these sequences to the L34 processor (Swanson, 2008).
The L34 processor acts as hardware for communicating
between the PC and the Nucleus implant and controlling
transmission of radio frequency pulses to the subject’s
implant. All stimulus sequence files were generated indi-
vidually according to existing individual CI map settings
and saved for each participant and each condition
offline.

All experiments were performed in a sound proof
room. During the experiment, participants were asked
to repeat whatever they recognized after each presented
sentence, and the correctly identified keywords were rec-
orded by the experimenter. A percentage keywords cor-
rect rate (KCR) was then calculated and stored at the
end of each condition. Participants were offered breaks
after each condition or when they experienced any fati-
gue during the experiment. The duration of the break
was determined by the participant. Five BKB practice
sentences from each condition at 15 dB SNR were pre-
sented before the formal experiments to get used to the
new stimulation pattern. This familiarization lasted
around a minute, and it thus cannot be assumed that

Table 3. The Sparsity � Used in the CI Experiments for Each

Condition.

SNR Low NCM High

0 0.108 0.2 0.22

5 0.102 0.114 0.126

10 0.059 0.065 0.071

15 0.033 0.037 0.041

Note. SNR¼ signal-to-noise ratio; NCM¼ normalized covariance metric.
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participants were fully acclimatized to the new sounds.
The order of presentation of all the 16 conditions was
randomized. Total testing time varied between partici-
pants between 1 and 2 hours.

Results

Results of Experiment I

Figure 6 shows the kurtosis, NCM, and the STOI out-
puts of the speech processed by the ACE strategy and the
sparse NMF strategies with a range of l at three SNRs
(0, 5, and 10 dB). The x-axis represents l and the y-axis
shows the corresponding objective measure output value.
Each value is the average across all 21� 16BKB sen-
tences. Although ACE is independent of l, different hori-
zontal lines are plotted in order to compare the results
from the ACE processed vocoded speech signals: the red
dash-dot line is for SNR¼ 0 dB, the green dashed line is
for SNR¼ 5 dB, and the black dotted line is for
SNR¼ 10 dB. The corresponding marked curves (“«,”
“o,” “þ”) are calculated from the sparse NMF processed
vocoded speech signals, with corresponding l showed in
the x-axis. The solid blue dots indicate the optimal l
values obtained with different objective measures as cri-
teria at different SNRs.

The top left panel in Figure 6 shows the kurtosis values
of clean and noisy conditions at three SNRs, respectively.
The average kurtosis values of the vocoded ACE noisy
speech signals (SNR ¼ 0, 5, and 10 dB) are 5.4, 7.5, and
9.3, which correspond to the three horizontal lines. The
average kurtosis value of the ACE vocoded clean speech is
11.7 and is shown as a horizontal brown solid line.
Overall, the kurtosis value increases with the SNR. The
other three curves are the Kurtosis� l functions, under
three SNR conditions of vocoded sparse NMF speech. It
is expected that the kurtosis increases for higher l in each
condition given that the signal becomes increasingly

sparse. One could assume that speech intelligibility for
the processed noisy speech approaches that of the clean
speech when the sparseness of the processed noisy speech
approaches the sparseness of the clean speech. Therefore,
the optimized l values according to kurtosis are those
where the processed noisy speech has the same kurtosis
as the corresponding clean speech. The solid blue dots in
the top left panel show where the NMF processed
vocoded speech and the ACE processed vocoded clean
speech have the same kurtosis values. In this case, the
optimal l values are 0.2, 0.09, and 0.04 for corresponding
SNRs (0, 5, and 10 dB), respectively.

The bottom left and right panels in Figure 6 show the
NCM and the STOI values of the clean and noisy con-
ditions. The NCM and the STOI values of the ACE pro-
cessed noisy speech signals (SNR ¼ 0, 5, 10 dB) are (0.42,
0.55, 0.63) and (0.60, 0.65, 0.67), which are represented
as the three horizontal lines in the corresponding panels.
Both the NCM and STOI values increase with the SNR
for the ACE processed vocoded speech. For different
NMF strategies, the three curves in each panel show
that both the NCM and the STOI increase first with l,
then decrease after reaching a peak at a specific l for
each SNR condition. Consequently, the optimized
values under the three SNR conditions according to
NCM and STOI are obtained by finding the maxima
of the three NCM� l and three STOI� l curves, indi-
cated by the blue solid dots. The corresponding optimal
l values (x-axis) of these maxima are (0.19, 0.10, 0.06)
and (0.14, 0.11, 0.06) for NCM and STOI, respectively.
Table 4 lists the optimal l obtained according to these
three measures in three SNR scenarios.

According to Table 4, the l obtained with the NCM
and the STOI at 5 dB SNR are 0.11 and 0.1, respectively.
They are very similar to each other and also close to l
(0.09) obtained from kurtosis analysis, where the NMF
processed vocoded speech has a similar kurtosis as that
of the clean ACE vocoded speech. But for 0 dB SNR,
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Figure 5. (a) Optimum � values as a function of the SNR. The brown dotted curve shows the optimum values obtained from NCM of

vocoded speech using sparse NMF strategy. The blue curve shows a fitted exponential decay function. (b) Optimum � values and two

alternatives, one for a higher sparseness constraint and one for a lower sparseness constraint.
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NCM-based optimal l (0.19) is closer to the kurtosis
(0.2). Overall, the optimized l for SNR ¼ 5 dB according
to these three measures is around 0.09 to 0.11.

Results of Experiment II

Figure 7a shows the individual SRT of the 10 NH par-
ticipants in four conditions (indicated by different
colors). The results show large individual performance
differences. Figure 7b shows the results as a box plot
(median, inter-quartile ranges and overall range). On

average, there was a 0.74 dB improvement for NMF010
and a 0.92 dB improvement for NMF013 compared with
the ACE strategy. A one-way repeated measures
ANOVA shows a significant effect of strategy,
Fð3, 27Þ ¼ 7:13, p5 :01. Post hoc tests with Benjamini-
Hochberg’s false-discovery rate adjustment (5%) show
that the NMF013 strategy outperforms the ACE strategy
(p¼ .023). Moreover, both NMF010 and NMF013 stra-
tegies outperform the NMF008 strategy (p¼ .006 and
p¼ .011, respectively) and there is no significant differ-
ence between NMF010 and NMF013.

In summary, the proposed algorithm with individually
selected l can outperform ACE for NH subjects listening
to noise-vocoded speech. Objective measures at 5 dB
SNR predicted a l range between 0.08 and 0.13. This
is in line with the results from the NH test. According
to the NH data, l can be slightly larger than 0.13, but
this needs to be further evaluated in future, for example,
by testing l ¼ 0:15. The implication is that larger l
values may be needed for lower SNRs, such as 0 dB.
Consequently, although both NCM and STOI can pre-
dict speech perception of noisy vocoded speech quite
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Figure 6. Kurtosis, NCM, and STOI of vocoded speech reconstructed from different strategies at three SNRs: 0, 5, and 10 dB. Top left

panel: Kurtosis. Bottom left panel: NCM. Bottom right panel: STOI. Red dash-dotted line: SNR¼ 0 dB from ACE. Green dashed line:
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values of each objective measure under different SNR conditions.

Table 4. The Optimal � of Different Conditions.

0 dB 5 dB 10 dB

Kurtosis 0.2 0.09 0.04

NCM 0.19 0.11 0.06

STOI 0.14 0.10 0.06

Note. NCM¼ normalized covariance metric; STOI¼ . short-time objective

intelligibility.
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well, in this article, the optimal � according to NCM is
used in the CI experiment to give a larger sparsity con-
straint � at SNR¼ 5 dB in comparison to optimization
based on STOI.

Results of Experiment III

Figure 8a shows the results of the KCR speech of the
eight CI participants for ACE, NMFlow, NMFncm, and
NMFhigh (indicated by the different colors). The four
subpanels in Figure 8a are the results for the four differ-
ent SNR conditions 0, 5, 10, and 15 dB. The results show
large variability between subjects, demonstrating that
individual participants do not benefit equally from all
NMF conditions; for different SNRs, a different NMF
condition might be optimal for each participant.
Figure 8b shows the boxplot of the KCR results for
the different algorithms. Figure 8c shows the individual
KCR improvement for the different algorithms com-
pared with ACE averaged over all SNRs and Figure 8d
shows the corresponding boxplot of the KCR improve-
ment for the different algorithms compared with ACE
averaged over all SNRs and participants.

It appears that the CI users who show worst perform-
ance with ACE may benefit most. In fact, Participant 4
(who benefits least) is a top performing CI user (using
ACE) at SNRs of 5 dB and above, while Participant 3
(who benefits most) has the lowest speech recognition
score in 15 dB SNR and was so impressed with the
sound quality that he asked if he could have our experi-
mental coding strategy as his standard setting.

However, due to the variability of the individual
results and the small number of participants, the overall

effect of coding strategy is not statistically significant: a
two-way repeated-measures ANOVA showed no signifi-
cant effect of strategy, F 3, 21ð Þ ¼ 0:73, p ¼ :55, and a
highly significant effect of SNR, Fð3, 21Þ ¼ 140:33,
p5 :001. There was no significant interaction,
Fð9, 63Þ ¼ 0:80, p ¼ :62. Post hoc pairwise comparisons
with Benjamini-Hochberg’s false-discovery rate adjust-
ment (5%) showed that all SNR conditions were signifi-
cantly different from each other.

Assuming CI users were allowed to choose the opti-
mal coding strategy among the three NMF options and
ACE in the fitting practice based on their performance,
only Participant 4 would use ACE instead of NMFncm.
In total, seven out of eight participants performed better
with at least one of the NMF strategies than with the
ACE strategy. However, it should be noted that such a
result could occur by chance if all algorithms perform
similarly, given that there are three NMF alternatives.

Although there is no significant effect of coding strat-
egy, there is still a trend and reduced variability in the
data, at least at the highest SNR (15 dB). While for ACE,
there is considerable spread in the speech perception per-
formance with a range of 40% to 93% (see Figure 8a),
for NMFncm, all subjects perform in the range 80% to
100% with little spread and are on average 11 percentage
points better than for ACE. Accordingly, the improve-
ment of NMFncm over ACE may be largest for the
participants with lowest ACE performance.

Discussion and Conclusions

A novel CI coding strategy has been proposed in which
sparse NMF is applied to the envelopes of CI channels in

S1 S2 S3 S4 S5 S6 S7 S8 S9S10
0

1

2

3

4

5

6

Participant

S
R

T
(d

B
)

ACE
NMF008
NMF010
NMF013

1

2

3

4

5

ACE NMF008NMF010NMF013
Algorithm

S
R

T
(d

B
)

(a) (b)

Figure 7. SRTs of the 10 NH participants for ACE and the 3 NMF strategies with different sparsity levels. (a) Individual SRTs of the 10

NH participants (S1–S10). The category is the participant index and the vertical axis shows the SRT in dB. (b) Boxplot of the results

(median, inter-quartile ranges, and overall range). Here, the category axis indicates the algorithms (ACE, NMF008, NMF010, and NMF013).

12 Trends in Hearing



1 2 3 4 5 6 7 8
0

20

40

60

80

100

0 dB

K
C

R
 (

%
)

ACE NMFlow NMFncm NMFhigh

1 2 3 4 5 6 7 8
0

20

40

60

80

100

5 dB

K
C

R
 (

%
)

1 2 3 4 5 6 7 8
0

20

40

60

80

100

10 dB

K
C

R
 (

%
)

1 2 3 4 5 6 7 8
0

20

40

60

80

100

15 dB

K
C

R
 (

%
)

0

20

40

60

80

100

ACE NMFlow NMFncm NMFhigh

0 dB

K
C

R
 (

%
)

0

20

40

60

80

100

ACE NMFlow NMFncm NMFhigh

5 dB

K
C

R
 (

%
)

0

20

40

60

80

100

ACE NMFlow NMFncm NMFhigh

10 dB

K
C

R
 (

%
)

0

20

40

60

80

100

ACE NMFlow NMFncm NMFhigh

15 dB

K
C

R
 (

%
)

1 2 3 4 5 6 7 8
-40

-30

-20

-10

0

10

20

30

Im
p

ro
ve

d 
K

C
R

 (
%

)

NMFlow
NMFncm
NMFhigh

-40

-20

0

20

NMFlow NMFncm NMFhigh

Im
pr

ov
ed

 K
C

R
 (

%
)

(a)

(b)

(c) (d)

Figure 8. Keyword correct rate (KCR) results for the CI participants: (a) Individual KCR for the eight participants with the different

coding strategies (indicated by the colors) at the four SNRs (sub panels); (b) boxplot of KCR for the four coding strategies at the different

SNRs in the same style as in (a). (c) KCR improvement for the three NMF coding strategies compared with ACE averaged over all SNRs.

(d) boxplot of KCR improvement compared with ACE averaged over all SNRs and participants.

Hu et al. 13



order to improve the performance of CI users in noisy
environments. Babble noise was used in both objective
and subjective speech intelligibility assessments.
Subjective listening experiments with 10 NH listeners
and noise vocoder CI simulation demonstrated that the
proposed sparse NMF strategy could significantly out-
perform the existing ACE strategy when using appropri-
ate sparsity constraints. The objective measures of
vocoded speech imply that an SNR-dependent sparsity
constraint l might produce better results.

The proposed sparse NMF algorithm also showed
improved speech recognition performance for seven out
of eight CI users in babble noise with at least one of the
NMF strategies. However, the individual optimum
NMF strategy varied strongly across subjects, and
there was no significant improvement for any of the
three NMF settings over ACE. As a trend, the highest
KCR improvement averaged across all eight participants
of 11 percentage points was observed for the NCM l
constraint at the highest SNR of 15 dB, with all subjects
showing a speech perception performance in the range
80% to 100%. Note that this was the case, although
there was minimal familiarization with the stimulus.
The improvements are smaller at lower SNR, but we
expect that acclimatization may lead to further improve-
ment. This needs to be shown in a future study. It has
been shown that listeners need acclimatization periods
on the order of days if not weeks to get the full benefit
of any new strategy. Our listeners had been listening to
ACE for years, but had virtually no exposure to the new
stimulation, which also changed every few minutes due
to randomization of conditions.

The current trend of improved speech perception in
near-quiet (þ15 dB SNR) indicates that NMF might be
suited to overcome the CI-auditory-nerve bottleneck by
selecting crucial speech information. But there are large
individual performance variations; possible reasons
might be differences in the number of surviving spiral
ganglion cells, variable brain plasticity, and ability to
adapt to the coding strategy among participants. The
smaller improvements in the noisy situations, however,
indicate that the power of the proposed NMF strategy as
noise reduction might be limited to higher SNRs.
Therefore, further improvements might be achieved by
combining NMF with noise reduction algorithms like
beamforming or by developing more intelligent NMF
component selection techniques instead of pure energy-
based methods.

The power of the experiment including all participants
was low (10 %) because of the small effects being mea-
sured, the small number of participants and large vari-
ability among them. A fully powered experiment (80 %)
would require around 100 participants under the same
circumstances. Note, however, that any algorithm that

would help some, but not all, CI users would be helpful,
potentially more so if they could fine-tune it to suit their
own auditory characteristics and the current listening
conditions.

Although there was no statistically significant
improvement for any of the NMF conditions over
ACE, nevertheless a particular sparseness condition
(supported by the trend for improvement with
NMFncm in the current data) might be best for each
participant. If future results support this trend, for clin-
ical applications, such an optimal coding strategy might
have to be selected by comparing speech reception scores
in quiet for the different NMF strategies and ACE.

Overall, the study shows that the NMF algorithm
may have the potential to confer better real-world
speech recognition performance for at least some CI
users. It might be preferable to optimize the trade-off
between the sparseness and reconstruction for each
individual CI user in the future, perhaps under user
control. This approach needs to be evaluated with
more CI subjects using a real-time sparse coding
system (Hu et al., 2013), which would allow individual
parameter tuning, daily acoustic scenario training over
prolonged periods, and online speech testing for CI
subjects in real time.
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