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Abstract
Bone grafting replaces damaged or missing bone with new bone and is used for surgical arthrodesis. Patients
benefit from a huge variety of bone graft techniques and options for spinal fusions. This article reviews the
rich history of bone grafts in surgery with particular emphasis on spinal fusion. During the early years of
bone grafting in spine surgery, bone grafts were used on tuberculosis patients, and the structural support of
the graft was most the important consideration. Between 1960 and 2000, many advances were made,
specifically in the use of bone graft substitutes. The field of bone grafts in spine surgery has evolved rapidly
since first described.
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Introduction And Background
Bone grafts are widely used in orthopedic surgery, with materials progressively evolving over time from gold
plates to advanced molecular approaches harnessing bone morphogenetic proteins (BMP) and stem
cells. Bone grafting dates from the Neolithic age, when a Peruvian tribal chief‘s frontal bone was repaired
with a gold plate [1]. There is some evidence that the Aztecs used wooden sticks to repair bone fractures [1].
Furthermore, two skulls in Ishtkunui were found by Jagharian, an anthropologist who noticed elements of
bone grafts within skulls dating back to around 2000 BCE. The first skull he found showed a piece of animal
bone that had been inserted into an injured area of a skull, demonstrating very early attempts at
xenografting [2]. The first reports of bone grafts in spine surgery in the 20th century began with Hibbs and
Albee, who used bone chips from the tibia and transverse processes [3-4]. Such grafts have evolved over the
years. More recent examples of bone graft materials include bioactive glass and biologicals such as bone
matrix protein. Therefore, this aspect of spine surgery is continuously evolving. Such materials can be
osteoinductive, osteogenic, or osteoconductive (Table 1).

Osteoconductive Osteogenic Osteoinductive

Hydroxyapatite BMP Calcium phosphate

Coralline hydroxyapatite  Calcium sulfate

Collagraft   

Autograft Autograft Autograft

Allograft  Allograft

TABLE 1: Various bone substitutes and their ability to act as osteoconductive, osteogenic, or
osteoinductive
BMP: bone morphogenetic protein

In view of the rich history of bone grafts, the purpose of this paper is to highlight the evolution of bone
grafts in relation to spine fusion in more detail.
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Ancient history
There is evidence of orthopedic surgeries performed in Ancient Egypt (656-535 BCE). Many Egyptians
examined after death showed evidence of limb prostheses, as illustrated by the “black leg miracle,” a
medieval painting depicting a homoplastic transplant of an Ethiopian limb onto the sacristan Justinian [5].
More modern techniques were developed beginning in the 1600s by Job van Meekeren. Meekeren is credited
with the first heterologous bone graft procedure in 1668, when he grafted a dog skull fragment into the skull
of an injured soldier. When the soldier wanted the graft removed for religious reasons, Meekeren observed
the bony fusion. When he looked to see if he could remove the fragment, he noticed it had been fully
incorporated into the soldier’s skull [6].

Modern history
Sub-periosteal resection was the standard treatment of non-union fusions in the nineteenth century until
1820, when Philips von Walter performed the first autologous bone graft on a skull in Germany [7]. In 1861,
Leopold Ollier published “Traite de la regeneration des os,” which was the first paper to define the term bone
graft. Like Meekeren, Ollier also noticed the importance of the periosteum for osteogenesis [8]. Barth,
however, described the importance for bone regeneration of not only the periosteum but also the bone itself
and the marrow. The first homologous bone graft was not performed until 1880; William Macewen used the
tibia of a child with rickets to treat a child burdened with an infection in his humerus [6]. Phelps (1891) was
the first to recognize the importance of vascularization for the success of bone grafting when he took a piece
of bone from a dog and transplanted it into a boy’s tibia. He kept the dog and the boy attached to each other
for two weeks so the blood could circulate between them. This allowed new bone to grow in the boy [9]. 

Twentieth-century spinal fusion had two brilliant minds at the helm, Russell Hibbs and Fred Albee. These
two individuals paved the way for advanced techniques in orthopedic surgery still used today. Originally,
spinal fusions were developed to remediate diseased tissue in tuberculosis and to correct mild to extreme
spinal deformations from scoliosis. Hibbs and Albee both used bone grafts to achieve union; Hibbs used
fragments of the spinous processes and laminae and Albee used grafts from the tibia [10]. Hibbs’s interest in
the pathology of tuberculosis ultimately led him to find a way to immobilize the diseased tissue of a
vertebral column completely once fused, and thus “make development of deformity impossible” [10]. On
January 9, 1911, Hibbs performed the first spinal fusion on a boy with spinal tuberculosis. His ingenuity was
evident, as he also implemented grafts of the laminae and lateral articulations [10]. He admitted that in very
young individuals, grafting from the tibia seemed to be better for preserving aspects of the laminae and
lateral spine, presumably because those spines had yet to achieve significant development.

In the same year, Albee successfully harvested tibial bone grafts, incorporating them into the spinous
processes of his patients (Figure 1).
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FIGURE 1: A drawing that shows insertion of bone graft into five
thoracic spinous processes with soft tissue suturing
(After Albee, 1915)

A detailed molecular explanation of why autogenous and homogenous grafting material was optimal had
not yet been elucidated, but Albee recognized that grafts “derived from the same individual were most
trustworthy” [4]. In one case, Albee achieved approximation between the inferior aspects of the superior
lamina and the superior aspect of the inferior lamina with a “heavy kangaroo tendon,” which progressed to a
successful union after chips of the spinous processes were placed across this interface. This was seen at the
time as ingenious, interesting, and welcome [10]. Albee suggested that grafting fruit trees was analogous to
bone tissue grafting; just as the bark, sap, and wood are firmly approximated to the recipient branch, so
there must be an intimate juxtaposition between the graft and recipient bone across the area of contact.
Albee noted that the “technique is not difficult because it has to do with plane surfaces” [4]. His thorough
understanding of Wolff’s law, asserting it to be paramount in achieving successful restoration of the bone’s
original tensile strength, was apparent in his remark: “the external shape of the bone is the result of
functional adaptation, [allowing] bones or grafts in their altered positions and relationships to meet the new
and abnormally directed stress thrown upon them” [4].

By 1915, the procedures of Hibbs and Albee had been performed in hundreds of cases, including Farrell’s
osteoplastic treatments of Pott’s disease [3-4]. In 1920, Sheen described a case of a 22-year-old girl with a
tuberculous spine. He grafted a six-inch-long tibial graft into her back. The six-month radiographical follow-
up showed that “the graft is visible as a long, curved rod rounded at the ends.” The author concluded that
“there can be no doubt that the graft has maintained its vitality” [11].

In 1921, Radulesco modified Albee’s tibial graft procedure by using half of a rib with the periosteum intact
[12]. Other materials used for bone grafts included bovine bone by Brown and Kleinberg [13-14]. Additional
indications for spinal fusions with grafting were generated, and in 1914 and 1937, the first fusions were
performed to correct mechanical conditions (e.g., hemivertebra) and disc herniation, respectively (Figure 2
and Figure 3) [4,10].
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FIGURE 2: Illustration showing the first spinal fusion operation
performed
The illustration to the far right shows the use of the pieces from the lamina and the scrapings of the lateral
articulations.
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FIGURE 3: Stages of a spinal fusion with the cutting of the spinous
processes and ligamentum flavum, excision of the posterior articular
capsules, articular cartilage, and insertion of bone chips (left)
The same procedure in the lumbar spine is shown to the right.

(After Dommisse, 1959)

Petter also used a splintered rib to produce firmer fixation following the destruction of the articular facets,
resulting in a larger surface area of graft covering the entire surface of the laminae [15]. The middle of the
20th century saw another advance in autologous and homologous graft procedures: Abbott modified the
Cloward interbody fusion by using autologous and homologous grafts from harvested discs of cranial bones
(Figure 4) [16].
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FIGURE 4: Lateral view of the lumbosacral spine after interbody spinal
fusion (arrow) using calvaria
(After Cloward, 1958)

The anterior approach to the cervical spine was first introduced in the early 1950s [17-19]. In 1952, Bailey
and Badgely used an autologous on-lay strut bone graft for anterior decompression and fusion in a patient
with a cervical lytic lesion [17].

In 1955, Robinson and Smith reported the first use of a tri-cortical horseshoe-shaped iliac crest graft for
anterior cervical discectomy and fusion for spondylosis [19]. In 1959, Boucher mentioned work with the
posterior superior iliac spine (PSIS), where the external cortex of the iliac spine was removed, and the inner
spongy bone was removed with a curette and replaced in the fusion cavity [20]. Dommisse (1959) also
claimed that lumbosacral spine fusions were successful only if both sides of the PSIS were grafted (Figure 5).
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FIGURE 5: The process of using cancellous bone from the posterior
superior iliac spine for spinal fusion (left). The completed spinal fusion
(right).
(After Dommisse, 1959)

He noted that shear strain was a limiting factor that had kept non-union rates high in the past; ensuring
maximal contact between graft and graft bed was a crucial detail in establishing fusion [21].

There were many advances in bone grafts between 1960 and 2000, specifically in the use of bone graft
substitutes. In 1965, Urist discovered bone morphogenic proteins (BMPs) [21-22], which led to further
improvement of growth factor-enhanced absorbable collagen sponges [23]. During the 1970s, porous metals
were considered possible bone graft substitutes due to their physical strength [24]. The first use of ceramics
for spinal bone grafts was reported in 1979 by Shima et al., where 20 dogs underwent an anterior cervical
discectomy and interbody fusion. The first use of ceramics in a human spine was reported in 1991. Hase et
al. described the use of ceramic laminae in bilateral open laminoplasty for cervical myelopathy [25]. During
the 1990s, the use of ceramics in spine surgery was reported by Ransford et al. in a study that compared
ICBG with β-TCP (tricalcium phosphate) [26].

Lindholm et al. analyzed the use of demineralized bone grafts for inducing new bone formation during the
1980s. One of the first reports described the capability of grafts consisting of demineralized bone matrix
(DBM) combined with autogenous bone marrow to enhance fusion in the thoracic and lumbar spines of
rabbits [27-28]. Since then, DBM has been widely used as a potential bone graft enhancer, extender, or
substitute. In 1988, stainless steel interbody cages were introduced [29]. Since then, interbody cage
technology has improved to now use polyetherketone, titanium, and carbon fiber-reinforced polymers [30].
Curylo reported the first case of autologous bone marrow aspirate used for posterolateral fusion in a rabbit
model in 1999 [31]. Finally, during the early 2000s, tantalum became the first porous metal to be used as an
implant in bone grafting [32-33].

Pitfalls of bone grafts
Iliac crest harvest sites are used because they have been shown to have increased expression of natural
BMPs, BMP receptors, and other factors important for graft success [34], making them osteogenic,
osteoinductive, and osteoconductive. While grafting from the iliac crest has been shown to have many
benefits, it also has its pitfalls. Since autografts come from the same individual, they may have
complications, including chronic pain from the graft site, decreased sensation in the graft site, infection, and
the possibility of hematoma development at the harvest site [35-36]. Additionally, iliac crest bone grafts
have been shown to increase donor site morbidity (up to approximately 50%, although this decreases over
time) in that they can lead to both an increase in operating time and increased length of stay in the hospital
[37-38] as compared to grafts from other body sites. Due to these complications, much research has been
done to counteract how much of graft is needed for a successful surgery. Synthetic compounds called
extenders are often used as additives to auto/allografts and have been helpful in limiting the amount of graft
that needs to be taken from the iliac crest [39-41].
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An alternative to the autograft is an allograft in which bone is taken from another person. Allografts are
osteoconductive and osteoinductive, however, they lack osteogenic properties, as those cells are lost when
the allograft is sterilized. A popular form of allograft in spine surgery is demineralized bone matrix (DBM),
so named because the mineralized portion of the bone gets removed once it has been treated with an acid
extraction in the sterilization process. This process leads to a decreased amount of growth factors limiting
the osteogenic potential of allograft [41]. Thus, BMPs have been developed as a supplement to allografts to
help with osteogenicity and create better fusion rates [42]. Allografts are rarely used by themselves, as data
suggest that when combined with an autograft, better fusion rates occur [43-44]. Compared to an autograft,
an allograft has an even higher risk of infection and rejection. Additionally, while BMPs have been
postulated to have a synergistic effect with iliac crest bone grafts [45], there have been doubts regarding the
cost-effectiveness of using them [46].

Present and future of bone grafts in spine fusion
Newer synthetic materials each have their own innate properties that make them valuable alternatives to
bone grafts. Hydroxyapatite, coralline hydroxyapatite, and collagraft (Zimmer and Collagen
Corporation) are all osteoconductive, but they are not osteogenic or osteoinductive [47]. Calcium phosphate
and calcium sulfate cement are solely osteoinductive, which makes them good at filling metaphyseal holes,
but they are expensive and unable to endure torsional and shear forces [48]. Autograft is the only option that
has all three properties of being osteoconductive, osteoinductive, and osteogenic [49]. Table 1 lists various
examples of bone substitutes and their properties.

There have been many recent developments of products and materials to be used as alternatives or additives
to bone grafts. Bone graft substitutes, like demineralized bone matrix, are used instead of autografts.
However, their potential to be osteoinductive, osteoconductive, and osteogenic is limited. Bone graft
extenders are osteoconductive compounds used as additives to auto/allografts to increase bone graft volume
and add structural support. Enhancers are compounds that have been developed to help with the fusion of
bone grafts [41].

BMPs have been used as carriers for osteogenic growth factors. In 2009, there was a randomized controlled
trial that compared the use of one BMP, called rhBMP-2, with iliac crest bone grafts to evaluate fusion rates
in a posterior lumbar interbody fusion. The study showed that the rates of fusion were greater than that of
the grafts used from the iliac crest [40]. Additionally, those who received iliac crest bone crafts tended to
experience more blood loss and longer surgery times [50]. A potential risk of BMP use is paradoxical
osteolysis, seroma formation, and recurrence of certain bone cancers.

While autografts remain the mainstay of bone grafting, synthetic bone substitutes and enhancers help
combat some of the complications created by autografts. They help decrease donor site morbidity, risk of
infection, and inflammation in the recipient tissue. The synthetic materials are constantly being adjusted for
proper composition, making them more diverse [41].

The future of bone grafts will continue to develop. New materials are constantly being developed and
evaluated. For example, Bhakta et al. took a new graft material made up of silane-
modified polycaprolactone-tricalcium phosphate and heparin sulfate glycosaminoglycan, and they looked at
the potential osteostimulatory properties in rats [51]. Likewise, Geurts et al. performed an in vitro study that
showed support for autologous degenerative facet joint bone grafts to have very comparable osteogenicity to
iliac crest bone grafts [52].

Today, patients benefit from a huge variety of bone graft techniques and options for spinal fusions. There are
approximately 200,000 to 250,000 spinal fusion procedures in the United States annually [53-55]. Bone grafts
are graded according to their ability to provide osteoinductivity, osteoconductivity, and osteogeneticity
[25]. The surgeon has to choose according to the risk/benefit profile of patients and consider autograft,
allograft, polymer-based, ceramic-based, growth factor-based, and cell-based bone grafts. The bone graft
market is growing and is estimated to hit the $2 billion dollar mark in 2023 [56]. New options, such as
mesenchymal stem cells (MSC), which can be found in different adult tissues and used as autografts for bony
fusions, are gaining more popularity [57]. Nevertheless, despite these promising and interesting new bone
graft options, ICBG remains the gold standard. 

Conclusions
The field of bone grafts is evolving rapidly and is becoming increasingly complex. In the early days of bone
grafting in spine surgery, bone grafts were used for tuberculosis patients and the structural support of the
graft was the most important consideration. In light of modern research, bone grafts must meet specific
criteria for successful implantation, and the spine surgeon must be aware of the risks and benefits of each
option in order to provide the best choice for the patient.
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