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ABSTRACT
Trials of potential neuroreparative agents are becoming
more important in the spectrum of multiple sclerosis
research. Appropriate imaging outcomes are required
that are feasible from a time and practicality point of
view, as well as being sensitive and specific to myelin,
while also being reproducible and clinically meaningful.
Conventional MRI sequences have limited specificity for
myelination. We evaluate the imaging modalities which
are potentially more specific to myelin content in vivo,
such as magnetisation transfer ratio (MTR), restricted
proton fraction f (from quantitative magnetisation
transfer measurements), myelin water fraction and
diffusion tensor imaging (DTI) metrics, in addition to
positron emission tomography (PET) imaging. Although
most imaging applications to date have focused on the
brain, we also consider measures with the potential to
detect remyelination in the spinal cord and in the optic
nerve. At present, MTR and DTI measures probably offer
the most realistic and feasible outcome measures for
such trials, especially in the brain. However, no one
measure currently demonstrates sufficiently high
sensitivity or specificity to myelin, or correlation with
clinical features, and it should be useful to employ more
than one outcome to maximise understanding and
interpretation of findings with these sequences. PET may
be less feasible for current and near-future trials, but is a
promising technique because of its specificity. In the
optic nerve, visual evoked potentials can indicate
demyelination and should be correlated with an imaging
outcome (such as optic nerve MTR), as well as clinical
measures.

INTRODUCTION
Multiple sclerosis (MS) is a multifocal central
nervous system (CNS) disease characterised histo-
pathologically by inflammatory demyelination and
neuroaxonal loss seen in both white matter (WM)
and grey matter (GM). Historically, the focus of
therapeutic research has been on the WM compo-
nent of the disease with specific regard to reducing
episodes of inflammatory demyelination. More
recently, there has been increased work on neuro-
protection and remyelination. In this review article,
after briefly considering mechanisms of demyelin-
ation and remyelination, we discuss imaging
outcome measures that might be used to provide
evidence of remyelination in therapeutic trials.

DEMYELINATION AND REMYELINATION IN MS
The term ‘demyelination’ refers to the loss of
myelin sheath surrounding axons. It is the main
pathological process in both the WM and GM in

MS, and is a major contributor to impaired func-
tion and disability through impaired saltatory con-
duction and conduction block. In the WM, it is
likely that demyelination occurs secondary to an
inflammatory T cell mediated insult to myelin and/
or oligodendrocytes, although oligodendrocyte
apoptosis has also been implicated. The new
inflammatory demyelinating lesions are associated
with breakdown of the blood–brain barrier (BBB)
and are seen on MRI as new signal hyperintensity
on T2-weighted (T2w) sequences, as well as on
T1-weighted (T1w) sequences after the administra-
tion of gadolinium-chelate contrast agents.
Demyelination in the GM may also occur second-
ary to a similar immune pathology, although
inflammatory changes and BBB breakdown tend to
occur less often than in the WM. There is also evi-
dence that meningeal inflammation is prominent
and may play an important role in cortical demye-
lination, especially in progressive disease and in the
subpial region.
‘Remyelination’ refers to the process of restoring

the myelin sheath around demyelinated axons. It
can result in recovered function through improved
conduction, as well as providing a degree of axonal
protection. It is thought that endogenous remyeli-
nation in the CNS occurs through the action of
oligodendrocyte precursor cells generating new oli-
godendrocytes, which encourage the production of
myelin in demyelinated areas.
In MS, remyelination can occur in variable

amounts; when it occurs, and by how much, is
poorly understood. Unlike toxin-induced demyelin-
ation, where postinsult remyelination often occurs
in a complete fashion, in MS the continued pres-
ence of auto-reactive T cells may create a hostile
environment for optimal oligodendrocyte function,
and may thus inhibit complete remyelination.
Despite this, however, some patients may demon-
strate complete or near complete remyelination in a
number of lesions, especially in early MS. It is
likely that constitutional factors such as sex, age,
stage of disease and genetic make-up influence the
efficiency of remyelination.
A number of potential remyelinating pharmaco-

logical therapies have shown promise in experimen-
tal models of demyelination. Some examples of
recent or current interest are mentioned in table 1.

INVESTIGATING REMYELINATION IN MS
In investigating potential remyelinating pharmaco-
logical therapies in patients with MS, there is a
need for outcome measures that are sensitive and
specific to myelination, with the added requirement
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of being quantitative and reproducible. Ultimately, such mea-
sures should also reflect and predict a clinically meaningful
outcome.

Acute lesions that correspond to acute clinical episodes
(relapses) pathologically demonstrate the presence of demyelin-
ation, inflammation and oedema to varying extents.
Improvement in clinical symptoms reflects varying degrees of
resolution of inflammation and oedema as well as remyelina-
tion; no clinical markers are specific to myelin content alone.
Although histopathological assessment through biopsy is pos-
sible and suited to experimental models or postmortem MS
studies, it is an unrealistic outcome measure in patient studies.
Certain electrophysiological investigations may infer myelination
status for specific functions, such as visual evoked potentials
(VEP) for the optic nerve. As a whole, however, imaging
markers offer the most direct and practical potential means for
detecting remyelination in vivo.

IMAGING REMYELINATION IN THE BRAIN
Conventional MRI sequences
Conventional T2w MRI is very sensitive in identifying brain
WM lesions of MS. However, it is qualitative in nature and
lacks the specificity to differentiate between the pathological
substrates of MS, such as inflammation, oedema, axonal
damage, demyelination, remyelination and gliosis.

On T1w imaging, active lesions (those showing
gadolinium-enhancement) appear hypointense on T1w images,
and these are often referred to as Black Holes (BHs). Following
the evolution of BHs, postresolution of active inflammation may
be a useful outcome measure in trials of neuroprotection.1 A
longitudinal change in lesion signal intensity from hypointense
to isointense on T1w images (the disappearance of BHs) after
the period of active inflammation may be indicative of remyeli-
nation,2 but also reduction in oedema. Given that T1w lesions
show poor specificity for myelin per se and are strongly influ-
enced by axonal pathology,3 they are likely to be of only indirect
value in studies of remyelination and repair.

Magnetisation transfer ratio
Magnetisation transfer (MT) imaging is a semiquantitative tech-
nique based on the premise that protons in biological tissue
exist in two ‘pools’: a free (‘liquid’) pool, in which protons are
highly mobile, and a restricted (‘semisolid’) pool consisting of
protons attached to macromolecules such as proteins or lipids,

which are therefore relatively immobile. Exchange of magnetisa-
tion takes place between the two pools, and this can have
important effects on the relaxation properties of tissue. The
bulk of the observable signal in conventional MRIs originates
from the free proton pool since the restricted proton pool has a
very short T2 relaxation time (∼10–20 μs) and therefore its
signal decays very rapidly, rendering this compartment ‘invis-
ible’. MT imaging provides access to the restricted protons,
which are located in biologically interesting tissue regions.

The magnetisation transfer ratio (MTR) is a widely used
measurement of the amount of MT exchange taking place
between the two proton compartments obtained from two
images acquired with and without MT-weighting (through the
application of a dedicated radiofrequency pulse) so that a ratio
can be estimated from the signal intensities. Most commercial
scanners have the ability to acquire MTR sequences, and whole
brain acquisition times are short enough to be feasible for most
study protocols.

MTR is strongly affected by myelin, but may also be influ-
enced by water content and inflammation,4 and axonal density.5

In MS brain WM lesions (figure 1), the MTR is lower than in
the normal appearing white matter (NAWM), although NAWM
also shows decreased MTR in MS compared with healthy con-
trols.6 Lesion MTR is lower in the presence of demyelination,
with significantly higher MTR observed in remyelinated
lesions,5 although still lower than in NAWM, which may be due
to incomplete remyelination, morphological differences in the
newly formed myelin and a degree of axonal loss. Similar find-
ings were reported in another postmortem MRI and histopatho-
logical study performed in 36 MS patients.7

Chen et al measured the MTR in acute gadolinium-enhancing
lesions longitudinally in four MS patients, examining both the
MTR of individual lesions and the mean normalised MTR over
all lesion voxels during and after contrast enhancement. They
found significant reductions and subsequent increases in MTR
values consistent with demyelination and remyelination.
Temporal MTR changes differed between lesions, and persisted
in lesion regions for at least 3 years following lesion formation.8

qMT: the restricted proton fraction, f
Although MTR protocols are readily available on clinical scan-
ners, they have the drawback of being ‘semiquantitative’ in that
the MTR value depends on the MT pulse properties, the type
of acquisition sequence (eg, gradient echo/spin echo), excitation

Table 1 Remyelinating agents recently or currently under investigation

Retinoid X receptor-γ (RXR-γ)
agonists

RXR-γ is significantly upregulated in oligodendrocyte-derived cells in remyelinating lesions in experimental lysolecithin (LPC) models and in
the CNS in humans. Administration of an RXR-γ agonist (9-cis-retinoic acid) upregulated endogenous OPC differentiation and increased
myelination in demyelinated cerebellar slice cultures, suggesting that RXR-γ is a feasible target for CNS remyelinating therapy

Anti-LINGO-1 monoclonal
antibody

LINGO-1 is a transmembrane signal-transducing molecule that is expressed on oligodendrocytes and neurons in the CNS, which inhibits
oligodendrocyte differentiation, and may be a potentially important cause of remyelination failure in MS. Anti-LINGO-1 monoclonal
antibody enhanced oligodendrocyte differentiation and myelination, and promoted functional recovery in EAE models, which correlated
with radiological and electron microscopy metrics showing increased remyelination and axonal integrity in the spinal cord

Olexosime Olexosime, which has a number of potentially neuroprotective and neuroregenerative properties, accelerated maturation of
oligodendrocytes and promoted remyelination in vitro and in vivo in LPC and cuprizone mouse models of demyelination

Mesenchymal stem cells Autologous mesenchymal stem cells are multipotent bone marrow-derived stromal cells that may have potential to promote myelin repair,
in addition to other potential complementary effects, in MS. A phase II trial of autologous mesenchymal stem cells in secondary
progressive MS patients with visual pathway disease (MSCIMS) demonstrated significant improvement in visual acuity, visual evoked
potential latency and optic nerve area

Wnt signalling pathway
modifiers

The Wnt signalling pathway, which is an important aetiology in a number of neoplastic conditions, also downregulates differentiation of
OPCs. In experimental models, inhibiting the activity of tankyrase (a polymerase enzyme) can reduce activity in the Wnt signalling
pathway, enhancing remyelination

Other agents A number of other therapies may also promote remyelination in experimental models, such as progesterone and fingolimod

CNS, central nervous system; EAE, experimental allergic encephalitis; MS, multiple sclerosis; OPC, oligodendrocyte precursor cell.
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pulse flip angle and echo time, repetition time and spoiling
characteristics. Mathematical models of the MT effect in bio-
logical tissues have been proposed in order to measure more
fundamental quantitative parameters related to tissue structure,
such as the restricted proton fraction, f (the fraction of protons
that are attached to macromolecules).9 As well as a measure of f,
other quantitative parameters related to tissue structure and
magnetisation exchange can be obtained from a quantitative
MT (qMT) experiment; these include T2B (the T2 relaxation
time of the restricted proton pool); 1/RAT2A (the ratio of T1 to
T2 for the free proton pool); and RM0

A (the forward exchange
rate constant from the free to the restricted proton pool). These
quantitative parameters are more robust and greatly influenced
by the myelin content in the brain or spinal cord (since
restricted protons are known to be attached to macromolecules
such as myelin), and have been demonstrated to be reliable and
reproducible.10 The restricted proton fraction, f, has also been
shown to correlate mainly with myelin content and, to a lesser
extent, axonal count in the brain.11 Results of animal studies
have also supported the hypothesis that f is an imaging bio-
marker of demyelination.12

Giacomini et al studied six relapsing-remitting MS (RRMS)
patients with acute gadolinium-enhancing lesions serially using
qMT imaging and demonstrated reductions in both MTR and
the ratio of restricted to free protons (f ) in acute lesions, indi-
cating a reduction in macromolecular content. Both parameters
then recovered over a period of several months. The reduction
in MTR was smaller than that observed in the macromolecular
content, which the authors attributed to the confounding effect
of oedema increasing the T1 and thereby attenuating the MTR
reduction.13

Performing qMT measurements is challenging because it
requires several images to be sampled (rather than just two) with
different MT-weighting in order to fit the model to the data and
estimate the fundamental qMT parameters. This can result in
long scan times, and the model of the MT effect is not unique
as the tissue structure is complex.

Multi-component T2 relaxometry: the MWF
Complicated biological systems are likely to be characterised by
many different tissue compartments. Multi-component relaxo-
metry (MCR) probes these different proton environments by
exploiting their different relaxation characteristics. It has previ-
ously been shown that it is possible to separate the signal from
brain tissue into three distinct components based on their T2

relaxation times.14 Previous studies have found that a short T2

component with T2 between 10 and 55 ms (approximately
20 ms) is attributed to water trapped within myelin bilayers
(myelin water); a medium T2 component with T2 between 70
and 95 ms (approximately 80 ms), thought to be intracellular
and extracellular water; and a long T2 component with T2 of
more than 100 ms, which reflects the cerebrospinal fluid (CSF).

The ratio of the short T2 (myelin water) signal to the total
water signal, termed the myelin water fraction (MWF),14 has
been shown to correlate with histological measures of myelin
content,15 and is also independent of concomitant pathological
processes such as axonal degeneration, and is insensitive to
inflammation.16

The major limitation to of this technique is limited reduced
brain coverage compared with traditional multi-component T2

relaxometry using 2D multi-spin echo (MSE) sequences. These
2D sequences, though, are additionally at risk of MT effects.17

In order to prevent this, 3D sequences should be considered,
which can increase acquisition time. These limitations would
most likely make using standard 2D/3D MSE T2 relaxometry-
derived MWF unfeasible for most clinical trials of potential
remyelinating agents. Recently, other sequences have been used
for MCR, such as T2prep 3D SPIRAL,18 and 3D-GRASE,19

which allow whole brain coverage with acquisition speeds that
are faster than traditional 2D MSE T2 relaxometry, and demon-
strate similar MWF values in brain tissues.

Multi-component driven equilibrium single pulse observation
of T1 and T2 (mcDESPOT) is a MCR technique that uses rapid
gradient acquisition steady-state imaging (ie, spoiled gradient
echo (SPGR) and balanced steady-state free precession) over a
range of flip angles, giving a more clinically feasible sequence
(acquisition times ∼16–30 min), enabling whole brain cover-
age.20 In a study of two patients with primary progressive MS
compared with healthy controls, mcDESPOT demonstrated
decreased MWF in areas corresponding to WM lesions.21 It
should be noted, however, that one recent study performed
propagation-of-error analysis of mcDESPOT data and demon-
strated an inability of mcDESPOT signals to precisely estimate
parameters of a two-pool model with exchange.22 Therefore,
further investigation may be required in order to interpret the
quantitative parameters obtained from mcDESPOT.

Diffusion tensor imaging
Diffusion-weighted imaging provides quantitative information
about the diffusion behaviour of water molecules in vivo, which

Figure 1 Axial view of slices of the
brain of a multiple sclerosis patient
demonstrating appearance on (A) T2w
imaging and (B) magnetisation transfer
ratio (MTR) map of the corresponding
slice. The red box contains a lesion
which is markedly hypointense
compared with normal appearing
white matter (NAWM), hence
corresponding to a low MTR value in
the lesion, and compatible with
demyelination. The green box contains
three lesions which appear isointense
or only slightly hypointense compared
with NAWM, hence corresponding to
higher lesion MTR (similar to or
slightly less than NAWM), suggesting
possible remyelination.
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is altered in pathology as a consequence of microstructural
changes.23 By modelling the signal behaviour of water in tissue
when sensitised to water molecule diffusion using diffusion
tensor imaging (DTI), it is possible to derive several parameters
that provide sensitive biomarkers for characterising tissue micro-
structural abnormalities. These include the fractional anisotropy
(FA), mean diffusivity (MD), axial diffusivity (λk) and radial dif-
fusivity (λ⊥) (see online supplementary figure S1).

FA has been shown to correlate both with axonal counts24 25

and myelin content.25 In healthy tissue and in the presence of a
main fibre bundle with a well-defined direction, radial diffusivity
(λ⊥) reflects movement of water molecules perpendicular to the
axon and is thought to reflect myelin content.26 In contrast, axial
diffusivity (λk) reflects movement of water molecules parallel
with the axon, and is potentially sensitive to axonal pathology.27

Loss of myelin has been associated with increased λ⊥ in experi-
mental models,26 27 but not with λk.

27 The main limitation of
these indices is that the diffusion tensor (DT) and its eigenvalues
are a mathematical model based on the assumption of Gaussian
water diffusion behaviour, which is not true in tissue where
restriction and hindrance take place. Therefore, indices like λ⊥
and λk depend on the ability of the DT to detect the correct fibre-
tract orientation per voxel. Complex tissue microstructure or
tissue disrupted by pathology can affect the ability to detect
myelin content via measurement of the radial diffusivity.28 29 It is
essential that when analysing radial diffusivity as a measure of
demyelination, care is taken to understand how the DT has been
fitted to the signal and examine its eigenvectors as well as its
eigenvalues.30 Additionally, it should be noted that in the pres-
ence of concomitant inflammation, where tissue structure
changes because of axon and myelin injury and of infiltration of
other cell types, λ⊥ may be affected by these extra processes, thus
underestimating the effects of demyelination, while λk may over-
estimate the extent of axonal damage or loss.31 This, in addition
to the presence of crossing fibres,29 means that diffusion
parameters derived using the current DTI model have reduced
specificity and sensitivity to the underlying pathologies in MS.

Neurite orientation dispersion and density imaging
Neurite orientation dispersion and density imaging (NODDI) is
a promising new diffusion imaging technique that quantifies
microstructural indices of neurites in vivo using a multi-
compartment model. It provides two key parameters, the
neurite density (υIC) (the intracellular volume fraction) and the
orientation dispersion index, which characterises the orientation
dispersion of the axonal and/or dendritic projections. These
parameters have been shown to disentangle the source of diffu-
sion anisotropy, providing more specific measures of brain tissue
microstructure than the standard parameters derived from the
DTeigenvalues.32

A three-compartment tissue model is fitted to high-angular-
resolution diffusion imaging acquired with two different diffu-
sion weightings (ie, one shell with low and one shall with high
b-value), optimised for clinical feasibility.

A strong correlation of neurite density with the intensity of
myelin stain under light microscopy has previously been demon-
strated, indicating that neurite density may be a useful marker
for demyelinating disorders such as MS.33

MR spectroscopy
Proton MR spectroscopy has the ability to detect active demye-
lination (due to the existence of peaks from lipids associated
with myelin breakdown and/or increases in the choline peak,
attributed to increased membrane turnover) but is unable to

assess intact myelin,28 and is thus unlikely to be of use as a
primary imaging measure in trials of potential remyelinating
therapies.

Positron emission tomography
Positron emission tomography (PET) imaging uses various
radio-labelled isotopes to target specific tissue substrates and as
such has a range of clinic uses in various medical conditions.
Thioflavin T derivative [methyl-11C]-2-(40-methylaminophenyl)-
6-hydroxybenzothiazole ([11C]PIB, a carbon-labelled version of
Pittsburgh Compound B) has been shown to be a useful bio-
marker for PET imaging in Alzheimer’s Disease (AD). Previous
Congo Red derivatives that showed affinity for amyloid plaques
in AD were also shown to bind to myelin in the CNS.34

Stankoff and colleagues have demonstrated via in vitro studies
that PIB binds to myelinated tracts in the cerebellar WM and
corpus callosum of mice, as well as in human WM tracts. In MS
brains, PIB demonstrated lack of staining within demyelinated
lesions and the ability to differentiate among NAWM, partially
demyelinated WM and fully demyelinated WM. In addition,
after systemic injection in vivo into mice, PIB was found to stain
WM areas, and the level of staining varied with myelin
content.35

As PIB shows binding affinity to CNS myelin, [11C]PIB can be
seen as a potential biomarker for in vivo PET imaging of myelin
in MS. Stankoff and colleagues looked at PET imaging with
[11C]PIB in baboons, showing selective labelling of WM, espe-
cially in the subcortical areas. In a proof-of-concept study of
two patients with RRMS, PET imaging with [11C]PIB labelled
NAWM effectively, with reduced uptake in lesions seen on MRI.
Reduced PIB uptake was of a lesser degree in
gadolinium-enhancing lesions, suggesting that levels of myelin-
ation differ between newer and older lesions, with newer lesions
showing incomplete demyelination.35

While further in vivo studies are required, these findings are
encouraging and suggest [11C]PIB PET could be a potential future
imaging outcome in trials of remyelination and repair in MS.

IMAGING REMYELINATION IN THE SPINAL CORD
Involvement of the spinal cord is common in MS, and often
leads to substantial motor, sensory and sphincter dysfunction.
Demyelinating lesions are commonly seen on MRI, especially in
the cervical spine. However, clinical, especially motor, disability
appears from postmortem studies to be less associated with
lesion numbers and more so with axonal loss in the cord.36

Imaging the spinal cord in vivo is technically challenging,
mostly because of the small cross-sectional size of the cord and the
potential for cord motion during the scan, caused both by respira-
tory and cardiac motion. Additionally, magnetic susceptibility
effects due to the surrounding bones (vertebrae) and pulsation of
the CSF may cause problems with particular types of scans.
Quantitative measurements in the spinal cord are much more chal-
lenging than in the brain as a result of issues such as partial volume
effects with CSF, registration of different volumes, physiological
noise and the lack of a standard common spinal cord template.37

Nevertheless, there is a great potential in studying this part of the
CNS as its contribution to disability is substantial.

Magnetisation transfer ratio
MTR is reduced in the spinal cord in MS, both in vivo38 and
postmortem,39 and correlates with myelin content39 and clinical
disability.40 MTR measurement is often performed using an
SPGR sequence, which is time-consuming, and may be suscep-
tible to motion artefact. MTR normalised to CSF signal
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intensity on an MT-weighted scan (MTCSF) is a measure that
can be useful where conventional MT imaging is not feasible
due to motion degradation or low SNR signal-to-noise ratio
(SNR).41 However, discriminating myelination and inflamma-
tion may be difficult as MTCSF is also sensitive to CSF flow
and tissue relaxation times.

Diffusion tensor imaging
In MS, radial diffusivity (λ⊥) reflects demyelination in ex vivo
spinal cords.42 FA and radial diffusivity (λ⊥) in the corticospinal
tracts and posterior columns are correlated with clinical out-
comes such as the Expanded Disability Status Scale (EDSS), the
timed 25-Foot Walk and the 9-Hole Peg Test.43 However, speci-
ficity of DTI metrics to myelin in the spinal cord is unclear and
similar to the brain, the confounding effects of increased cellu-
larity or inflammation-induced oedema are not taken account of
in current DTI models. Compared with the brain, DTI metrics
should theoretically be easier to measure in the spinal cord,
given that fibre-tract orientation in WM columns is essentially
unidirectional. However, the small size of the spinal cord,
physiological noise, signal contamination from CSF and poor
homogeneity due to the presence of tissue–bone interface make
DW measurements in the spinal cord more difficult than in the
brain.44

Neurite orientation dispersion and density imaging
The feasibility of this sequence in studying the spinal cord of
healthy volunteers and MS patients has recently been shown.45

The potential clinical value of NODDI in the spinal cord in MS
needs further investigation to evaluate its sensitivity towards the
effects of disease when an optimised protocol has been
implemented.

Positron emission tomography
[11C]MeDAS is a radio-labelled substrate that, in experimental
models, crosses the BBB and selectively labels WM regions in
the brain and spinal cord, and is highly sensitive and specific to
myelin content.46 Serial PET imaging with [11C]MeDAS in LPC
rat models showed low spinal cord uptake at the peak of demye-
lination on day 7 postinjection and demonstrated gradual
increased uptake on days 14 and 21, reflecting remyelination.
Similar changes in uptake in the spinal cord reflecting myelin-
ation were also seen in the experimental allergic encephalitis
model.46 At present, there have been no human studies of [11C]
MeDAS-PET.

IMAGING REMYELINATION IN THE OPTIC NERVES
The optic nerve forms part of the anterior afferent visual
pathway, a discrete WM tract, and is often affected in patients
with MS. Optic neuritis (ON) may be the initial clinical presen-
tation in 20% of cases of MS47 and may occur during the
disease course in 50% of MS cases.48 Subclinical involvement of
the optic nerves is also common,49 as is involvement of the
optic radiation.50 The main pathology in the optic nerves is the
demyelinating lesion, although similar to the brain and spinal
cord, inflammation, gliosis, oedema and axonal loss are also
present.51 The optic nerve thus represents an important area of
investigation when considering possible remyelinating agents in
MS.

VEP, which records evoked potentials following the adminis-
tration of visual stimuli in the central 30° of the visual field
(P100), can suggest demyelination in the optic nerves as
increased latency, and axonal loss as decreased amplitude (con-
duction block due to demyelination can also reduce amplitude).

In the MSCIMS trial, subjects with secondary progressive MS
who received autologous mesenchymal stem cells demonstrated
significantly reduced VEP latencies (p=0.02), increased optic
nerve area (p=0.006), increased LogMAR visual acuity overall
(0.003), as well as a trend suggesting increasing mean T1w
lesion MTR (p=0.097).52

Optical coherence tomography (OCT) is a non-invasive
imaging technique that allows quantifiable measurement of
retinal structures.53 Retinal nerve fibre layer (RNFL) thickness is
a measure of axon integrity of the optic nerve, and many MS
patients, even without a clinical episode of ON, will have dem-
onstrable RNFL thickness reduction on OCT.54 Ganglion cell
and inner plexiform layer thickness are also reduced in MS, and
may correlate better with clinical vision measures than RNFL
thickness.55 These retinal measures are representative of axonal
integrity in the anterior visual pathways.

It has been reported that delayed latency on VEP correlates
with RNFL thinning in MS patients with ON,56 as well as
without ON,57 suggesting the clinical and subclinical demyelin-
ation may be associated with increased axonal vulnerability. This
also supports the concept that remyelination may be neuropro-
tective. Thus, while OCToutcomes are not themselves intrinsic-
ally representative of myelin content, they may be useful
adjuncts in trials of potential remyelinating agents to measure
possible secondary neuroprotective effects.

Imaging the optic nerves (see online supplementary figure S2)
can be technically more difficult than imaging the brain and
cord, as the optic nerves are small in diameter, and are espe-
cially susceptible to motion artefact. In addition, orbital fat and
CSF in the optic nerve sheath may contaminate optic nerve
signal, making interpretation difficult. These limitations need to
be taken into account when considering the feasibility of any
imaging modality in the optic nerves.58

Conventional MR sequences
The lesions of ON can be seen as signal hyperintensities on con-
ventional T2w images, but surrounding fat also generates high
signal, making identification of lesions difficult. The use of fat
suppression sequences, such as short-τ inversion recovery,59 can
help, but can result in high signal from the surrounding CSF,
obscuring signal from the optic nerve. In addition, these
sequences lack the ability to differentiate among demyelination,
oedema, gliosis, inflammation and axonal loss.

Magnetisation transfer ratio
MTR (see online supplementary figure S3) is reduced in optic
nerves affected by ON, compared with both unaffected and
control nerves, and correlates inversely with VEP latencies.60

This correlation may be greater when assessing lesion, rather
than whole nerve, MTR.60 While MTR reduction often occurs
rapidly in new brain lesions,61 one study noted that reduction
was not marked in the acute phase of the symptomatic ON
lesion, and nadir was not reached for many months after the
initial clinical episode.62 Recovery of lesion MTR is often seen
within the first few months and can continue up to 1 year
postappearance.

Patients with incomplete recovery and poorer visual outcomes
following ON demonstrate lower affected optic nerve MTR
compared with the unaffected nerve,60 as well as the affected
nerve of patients showing good recovery.63

While good inverse correlation with VEP latencies in ON sug-
gests that MTR is sensitive to demyelination, axonal loss has
also been shown to be an important factor, and one study
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suggests that it may even exert greater influence than demyelin-
ation on MTR values.64

Diffusion tensor imaging
In one study of acute ON, significantly decreased λ|| at baseline
was associated with worse visual outcomes, smaller VEP ampli-
tude, prolonged VEP latency and thinner RNFL at 6 months.65

In a study more than 6 months following an episode of ON, λ⊥
was highly correlated with visual outcomes, VEP latency, VEP
amplitude and RNFL thickness.66 It is at present unclear
whether diffusion measurements reflect changes in myelin or
axonal integrity,67 although a recent study in patients with MS
demonstrated reduction of FA and increase in λ⊥, with no differ-
ence of MD and λ||, suggestive of demyelination.68

Applying DTI imaging to the optic nerves may be technically
challenging. Signal contamination from fat and CSF,69 and
motion artefacts,70 can occur. A fat and CSF suppressed zonal
oblique multi-slice echo planar imaging (ZOOM-EPI) sequence
can improve resolution and reliability, and reduce artefacts to a
minimum,71 but this, and other selective excitation sequences,
are not readily available on all scanners, and may require long
scan times in order to acquire anisotropy indices such as FA.72

SAMPLE SIZE CALCULATIONS FOR TRIALS USING LESION
MTR AS AN OUTCOME MEASURE
In this section, we consider the sample sizes required for
proof-of-concept trials of potential remyelination agents using
lesion MTR as an outcome measure. The simplest analysis
approach involves measuring average lesion MTR per subject per
time point and observing change longitudinally. MTR lesions
would need to be correlated with either T2w lesions (acute and/
or chronic) or gadolinium-enhancing lesions (acute).

A recent paper used data from in vivo and ex vivo studies to
estimate required sample sizes for remyelination trials in MS
using mean MTR change of lesions detected at baseline on T2w
images.73 As these lesions are likely to be chronic, the assump-
tion is that any spontaneous remyelination has already taken
place, and thus MTR would remain more-or-less stable over
time. The ex vivo study, which included 12 patients with pro-
gressive MS who had died, showed that remyelinated lesion
MTR lay approximately halfway between NAWM and demyeli-
nated lesions.74 The in vivo data were derived from 18 subjects
with RRMS of short duration (less than 3 years) and low disabil-
ity (EDSS less than 3).75 Subjects had two scans separated by a
year interval. Power calculations on these data were performed
on the basis that remyelinated MTR values were roughly
halfway between lesion and NAWM MTR. Sample sizes for
both in vivo and ex vivo data are summarised in table 2.

Other factors which could complicate the assumption of a
direct correlation between lesion MTR increase and extent of
remyelination include the presence of significant inflammation
and oedema, variability in the extent and quality of remyelina-
tion in different lesions, and technical factors, such as scanner
differences in multi-centre studies.73

In contrast to chronic lesions, acute lesions typically have an
early MTR nadir consistent with demyelination followed by
partial recovery that is thought, at least partly, to reflect spontan-
eous remyelination.61 Taking this into account, trials of potential
remyelinating agents focusing on acute lesions (as detected by
gadolinium-enhancement, for instance) using mean lesion MTR
as an outcome measure will need to be able to measure levels of
residual (final) MTR in recovered acute lesions, in comparison
with NAWM, as the main treatment effect. Power calculations for
studies using mean MTR of gadolinium-enhancing (acute) lesions
were performed using data from 32 RRMS patients, assuming a
mean number of six gadolinium-enhancing lesions per patient,
and a mild variance in treatment response between patients, and
are summarised in table 2.76

Another approach to analysing lesion MTR involves calculat-
ing the MTR for individual lesions, per patient per time point,
and following these longitudinally. The simplest method is to
follow every lesion detected at baseline over the therapeutic
time course, which allows for longitudinal assessment of MTR
of individual chronic lesions. This method could also be used
for lesions not seen at baseline, but appearing at subsequent
time points, effectively allowing longitudinal assessment of
MTR of individual acute lesions.

A more novel technique for studying MTR in individual acute
lesions has recently been described based on data from a study on
autologous haematopoietic stem cell transplantation (ASCT) in 10
patients with aggressive MS.77 Subjects had three MRI scans
pre-ASCT, and a number of follow-up scans post-ASCT. The paper
described a measure of cumulative change in MTR (ΔMTR),
which is the difference between MTR at a time point compared
with the first time point, and defined significant changes in ΔMTR
according to a method described by Chen et al.8 Voxels were iden-
tified as ‘increasing’ (ΔMTR >99th percentile of NAWM ΔMTR),
‘decreasing’ (ΔMTR <1st percentile of NAWM ΔMTR) or ‘stable’
(neither ‘increasing’ nor ‘decreasing’), and this detection method
was applied to the entire brain parenchyma. Only groups of five or
more changing (‘increasing’ or ‘decreasing’) voxels that overlapped
with T2w lesions which were not changing at the previous time
point were included, thereby producing a map of newly changing
lesions. Newly increasing lesions corresponding to lesions at previ-
ous time points with MTR decreases were discarded to avoid
accounting for the same lesion multiple times.

Table 2 Sample sizes per arm for a placebo-controlled trial using in vivo lesion magnetisation transfer ratio (MTR) recovery as a primary
surrogate outcome marker of remyelination (80% power)

Mean lesion MTR Individual lesion MTR

Gd lesions ΔMTR lesions

Effect size (%) T2w lesions Gd lesions MTRRecovered MTRDrop MTRRecovered MTRDrop

30 38 68 22 12 19 21
40 21 38 – – – –

50 14 24 10 6 8 8
60 10 18 – – – –

70 – 14 6 6 5 5

Gd lesions, gadolinium-enhancing lesions.
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The paper also defined two metrics: MTRRecovered, which is
the relatively stable MTR value after the recovery phase follow-
ing the nadir, and MTRDrop, which is the difference in MTR
prelesion (ie, at baseline) and postlesion (ie, at follow-up). Both
were applied to ΔMTR lesions, as well as gadolinium-enhancing
lesions. Approximately a third of gadolinium-enhancing voxels
did not correspond to ΔMTR voxels, and ΔMTR voxels were
also identified that did not show gadolinium-enhancement.
Subjects demonstrating clinical improvement post-ASCT showed
significantly improved MTR recovery, whereas those who
remained stable clinically showed significantly poorer MTR
recovery. Power calculations on these data are summarised in
table 2.

It is evident in table 2 that the required sample sizes for acute
gadolinium-enhancing lesions are larger than that of all T2w
lesions, probably because there is spontaneous partial MTR
recovery of the former whereas the latter are assumed to have
an unchanged MTR without active treatment. However, the
acute and postacute lesions may be more biologically amenable
to remyelination.78 In addition, the MTRRecovered and MTRDrop

metrics appear to have potentially greater statistical power for
detecting treatment effects and correlate with clinical outcomes.

CONCLUSIONS
Trials of potential neuroreparative agents are becoming more
important in the overall spectrum of MS research and should be
designed in order to maximise their sensitivity to true treatment
effects. In addition to selecting patient groups with the most
potential to show a response, and generating sound sample size
calculations that give a trial sufficient power to detect a true
effect on the chosen primary outcome measure, imaging out-
comes are needed that are feasible from a time and practicality
point of view, as well as being sensitive and specific to myelin,
while also being reproducible and clinically meaningful.

There are a number of potential outcome measures available
for use in such trials (table 3). Some, such as MTR, DTI and
MWF, have shown excellent sensitivity to detecting changes in
myelin in vivo. However, it is difficult to ascribe the influence
of a specific biophysical phenomenon on the MR signal, and
this is complicated by the typical coupling of different patho-
logical features, such as inflammation, oedema, axonal loss and
demyelination.

Given that no one measure demonstrates sufficiently high spe-
cificity, reproducibility and correlation with clinical features, it
may be useful to employ more than one imaging outcome sensi-
tive to remyelination in future trials, and results from these
must be correlated with other measures, especially with func-
tionally relevant clinical outcome measures, in order to better
understand their potential to detect myelination and reflect clin-
ically meaningful effects.

At present, in addition to the standard T1w, T2w and
gadolinium- enhanced sequences, MTR and a DTI metric such as
radial diffusivity (λ⊥) would appear to represent realistic and feas-
ible options to be considered as imaging outcomes in the brain and
spinal cord. Clear multi-centre study designs (including both
acquisition and analysis procedures) are essential for evaluating the
sensitivity and reproducibility needed for detecting changes modu-
lated by treatment response. PETwith [11C]PIB and [11C]MeDAS
represent promising future imaging modalities, but radiation accu-
mulation will limit the number of repeat studies possible, and
further investigation and validation are required to determine their
utility, especially in human MS studies.

The optic nerves are frequently affected in MS and demyelin-
ation is commonly seen, corresponding well with clinical and
paraclinical measures. The afferent visual pathway thus repre-
sents an important WM system for studying demyelination and
remyelination. VEP can infer demyelination and, although quan-
titative imaging of the optic nerve is technically challenging,
should be correlated when possible with an imaging outcome
(such as optic nerve MTR), potentially adding support for the
sensitivity of these outcomes to myelination. Although OCT
reflects axonal pathology, it should be considered as an adjunct
to more intrinsic measures of myelin as it may demonstrate
potential neuroprotective effects secondary to remyelination.
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Table 3 Summary of imaging outcomes for remyelination and repair in multiple sclerosis

Modality
Myelin
sensitivity

Myelin
specificity

Clinical
correlation

Acquisition
time Comments

T2 lesion evolution Excellent Poor Poor Short Confounded by inflammation, axonal loss and oedema
T1 lesion evolution Good Poor Poor Short T1 hypointense lesion evolution may be useful in

neuroprotection trials
MTR Excellent Good Good Short Semiquantitative
qMT Excellent Good Good Moderate/long Modelling the MT effect in tissue is complex
MWF Excellent Good Good Long Limited brain coverage
▸ mcDESPOT Excellent Good Unknown Moderate Accuracy questioned
▸ T2prep 3D SPIRAL Excellent Unknown Unknown Moderate Limited evidence in patient groups
▸ 3D-GRASE Excellent Unknown Unknown Short Limited evidence in patient groups

DTI Excellent Good Good Moderate Low resolution and SNR, motion artefact susceptibility
PET Excellent Excellent Unknown Moderate/long Further in vivo studies required
OCT Poor Poor Excellent Moderate Useful to detect secondary neuroprotective effects

Ratings of ‘Excellent’, ‘Good’ and ‘Poor’ are qualitative and, although based on best currently available data, are inherently subjective in nature. Clinical correlation: refers to
associations that have been observed between the imaging measure and a relevant clinical function measure. Acquisition times: Short <15 min, Moderate=15–30 min and Long
>30 min.
DTI, diffusion tensor imaging; MT, magnetisation transfer; MTR, magnetisation transfer ratio; MWF, myelin water fraction; OCT, optical coherence tomography; PET, positron emission
tomography; qMT, quantitative MT.
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