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Abstract

Human social behaviour is complex, and the biological and neural mechanisms underpin-

ning it remain debated. A particularly interesting social phenomenon is our ability and ten-

dency to fall into synchronization with other humans. Our ability to coordinate actions and

goals relies on the ability to distinguish between and integrate self and other, which when

impaired can lead to devastating consequences. Interpersonal synchronization has been a

widely used framework for studying action coordination and self-other integration, showing

that even in simple interactions, such as joint finger tapping, complex interpersonal dynam-

ics emerge. Here we propose a computational model of self-other integration via within- and

between-person action-perception links, implemented as a simple Kuramoto model with

four oscillators. The model abstracts each member of a dyad as a unit consisting of two con-

nected oscillators, representing intrinsic processes of perception and action. By fitting this

model to data from two separate experiments we show that interpersonal synchronization

strategies rely on the relationship between within- and between-unit coupling. Specifically,

mutual adaptation exhibits a higher between-unit coupling than within-unit coupling; leading-

following requires that the follower unit has a low within-unit coupling; and leading-leading

occurs when two units jointly exhibit a low between-unit coupling. These findings are consis-

tent with the theory of interpersonal synchronization emerging through self-other integration

mediated by processes of action-perception coupling. Hence, our results show that chaotic

human behaviour occurring on a millisecond scale may be modelled using coupled

oscillators.

Author summary

Interacting with other people is crucial for our everyday life. We regularly and without

much effort synchronize our movements with other people’s movements, across a wide

range of interactions such as when dancing together and performing music. However,
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even a very simple interaction such as tapping a rhythm together can result in complex

interaction dynamics. Two people tapping can choose different synchronization strate-

gies, such as leading-following wherein one person is a leader and the other a follower,

mutual adaptation where both adapt to each other, or leading-leading where both try to

lead at the same time. In this paper we show how these strategies can be described using a

mathematical model of coupled oscillators. Specifically, we show how the strategies rely

on different coupling strengths between the oscillators in the model. This shows that even

complex human behaviour may be modelled using simple mathematical terms.

Introduction

When two people perform a simple task together, such as walking together or applauding after

a successful performance, they tend towards synchronization [1, 2]. This emergence of syn-

chronization is also found in many other natural phenomena [3], such as the collective flash-

ings of fireflies [4], or the pacemaker cells in the heart [5]. For this reason, the mathematical

framework of coupled oscillators provides an approach for understanding the conditions and

parameters necessary for synchronization to emerge [6–8]. However, in many cases of human

interaction, synchronization is not simply emergent, but rather a goal or a prerequisite of the

task. A particularly prominent example of this is rhythmic joint action, as found in musical

performance. Here, multiple people coordinate their movements and adapt to each other on a

millisecond basis. In this sense, human interpersonal synchronization presents as a more com-

plex system. Experiments using joint finger tapping paradigms (illustrated in Fig 1) show that

this type of synchronization relies on different synchronization strategies, such as mutual

adaptation and leading-following [9–12]. Common for these is that they cannot be differenti-

ated by looking merely at measures of synchronization, as different strategies may exhibit the

same synchronization level. Instead, differences between synchronization strategies can be

detected when a lagged cross-correlation is calculated between the resultant time-series, as

illustrated in Fig 1B and 1C [9]. Here, we see how a cross-correlation performed at lag -1, lag

0, and lag +1 gives rise to characteristic lag patterns, which are used to infer the synchroniza-

tion strategy in use.

The most commonly found strategy is mutual adaptation, which occurs when both mem-

bers in an interacting dyad simultaneously and continuously adapt to each other on a per-

action basis [12, 13]. This results in positive correlations at lag -1 and lag +1, and usually a neg-

ative correlation at lag 0, as the members are mutually correlated with the previous tap of the

other. Another well-documented synchronization strategy is the leading-following strategy,

where one of the dyad members exhibits less adaptability than the other and hence becomes a

leader. This results in a positive correlation at lag +1 (or lag -1, depending on which member is

leading), and no correlation at lag -1 (or lag +1). While both these strategies have been

reported in multiple studies, recently a third strategy called leading-leading was found [1, 9,

10, 14]. In the leading-leading strategy both members resist adaptation and rather tap along

without much regard to the performance of their tapping partner. This results in a pattern

with low correlation coefficients across all lags. While there have been attempts at modelling

such behaviour with coupled oscillators, the existing models have not focused on capturing the

mechanisms underlying these distinct synchronization strategies [1, 15–18].

One explanation for the emergence of these different strategies may lie in the increased

complexity compared to physical systems such as coupled pendulums. In humans, the cou-

pling is mediated by perceptual links, such as visual or auditory information, as opposed to the
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physical coupling found in non-biological systems [12]. Unsurprisingly, if no such link is pres-

ent (for instance if one cannot perceive the other’s movement) experiments show that synchro-

nization does not occur [19]. Hence, interpersonal synchronization necessitates two separate

processes, wherein one process is perceiving the stimuli to be synchronized to, and another

process is in charge of producing the actions leading to synchronization. The last couple of

decades of research point towards these two processes, action and perception, being intrinsi-

cally coupled in terms of processing in the human brain [20, 21]. In joint finger tapping such

action-perception coupling can occur when one dyad member perceives the auditory feedback

from the other member as belonging to its own tapping, hence blurring the lines between self

and other. It is this type of coupling that has been hypothesized to underlie the mutual adapta-

tion synchronization strategy observed in previous studies [12]. On the other hand, if one

dyad member chooses to ignore feedback from the other dyad member and instead solely

monitors its own model of the task, this will force the other dyad member to take over the

Fig 1. In A) a joint finger tapping paradigm is illustrated. Two persons (dyad members) tap an isochronous

rhythm together. Their auditory feedback can be manipulated so that the dyad is bidirectionally coupled, i.e. that dyad

member 1 hears dyad member 2 and vice versa, here illustrated in the top right. In the two bottom illustrations we see

unidirectional coupling, wherein the information between dyad members only goes one way, for instance so that dyad

member 1 only hears dyad member 2, and dyad member 2 hears only themselves. B) Time series representing the

intertap interval, a measure of the time between successive taps, of each dyad member. Colours indicate dyad member.

When these time series are cross-correlated at lag -1, lag 0, and lag +1, a pattern such as illustrated in C) emerges. Here,

the pattern would indicate a mutual adaptation synchronization strategy.

https://doi.org/10.1371/journal.pcbi.1007422.g001
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coordination task, and thus create a leading-following relationship. By necessity, this then

requires the leading dyad member to decouple its motor actions from its auditory perception

of the other.

Here we test the hypothesis that synchronization strategies emerge as a function of action-

perception coupling strength. Specifically, we test if the rhythmic joint finger tapping tasks

commonly used in the field of joint action can be modelled using a coupled oscillator model,

and if empirically encountered synchronization strategies are systematically linked to differing

coupling strengths in the model. This type of computational modelling method is a powerful

approach towards elucidating the rules governing the behaviour of coupled dynamical systems.

Specifically, the joint finger tapping tasks modelled in this paper illustrate social interaction on

a millisecond scale, and insight into its universal rules may translate into a better understand-

ing of psychiatric disorders involving atypical social interaction, such as autism and schizo-

phrenia [22–24]. In the first part of this study, we examine the behaviour of a four-oscillator

Kuramoto model to determine its ability to reach and maintain synchronization within the

short amount of time as is seen in joint finger tapping experiments, while at the same time pro-

ducing distinct synchronization strategies. We chose this type of continuously coupled model

for its well-documented behaviour, previous application to interpersonal synchronization

tasks, and generalized application to a broad range of synchronization phenomena observed in

nature [3, 15, 18, 25–27]. In the second part we use empirical data to validate the model, and

determine how coupling parameters are linked to specific synchronization strategies.

Our model aims at representing the dynamics of interacting dyads performing joint finger

tapping in a reduced form, retaining only the necessary features to capture the fundamental

principles underlying the complex synchronization strategies observed in joint finger tapping.

Each person is considered a unit, with two internal oscillators serving as proxies for perception

and action (see Fig 2A). These two within-unit oscillators are bidirectionally linked through

the internal coupling term i representing the intrinsic coupling found between auditory and

motor processes in the brain. The two units are coupled so that the action oscillator in one

unit is unidirectionally linked to the perception oscillator in the other unit, through the exter-

nal coupling term e. This coupling term represent the extrinsic flow of information between

the two interacting units. The model is based on the Kuramoto model of coupled oscillators,

with the exception that the connection strength between each pair of oscillators n and p is

defined by the coupling matrix Knp (Fig 2B), as defined by the following equation:

dynðtÞ
dt
¼ onðtÞ þ

Pk
p¼1

Knp sinðypðtÞ � ynðtÞÞ þ xðtÞ; n ¼ 1; ::; k ð1Þ

where θn is the phase of each oscillator n, ωn is its intrinsic frequency, and ξ is a Gaussian noise

component with mean μ = 0 and standard deviation σ. Together, the variability in frequency

and the added noise represents the natural variability and noisiness in joint finger tapping (see

full details in the Methods section) [27, 28]. It is important to note that a continuously coupled

model such as this does not accurately capture all the aspects of information flow in a joint fin-

ger tapping task. For instance, the auditory information between dyads is transmitted in short

bursts rather than continuously as in this model. In addition, it is likely that individual differ-

ences in variables such as multimodal feature integration and perspective taking also impacts

the dynamics of interacting dyads [10, 29]. However, here we aimed at creating a model as

mathematically simple as possible, yet retaining explanatory power in relation to the synchro-

nization strategies found in joint finger tapping, and in particular the balance between the lag

+1 and lag -1 measures.

To examine the behaviour of the model we first determine the coupling strength producing

maximum synchronization, by globally varying the four coupling terms (i1, i2, e1, e2) equally
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(for further details see the Methods section). This allowed us to determine the range of cou-

pling strengths for which the model switches from exhibiting unsynchronized to fully synchro-

nized behaviour. Following this, we sampled the model at a selection of coupling strength

combinations, and calculated cross-correlation lag patterns of the output from each unit’s

action oscillator (ω2 and ω3 in Fig 2A). These lag patterns were thereafter clustered to identify

significantly different lag patterns.

Results

Simulations showed that the model reached a maximum synchronous state at an equal cou-

pling weight of 15.5 1/s on all coupling parameters, as measured with the synchronization

index [30]. This index is calculated based on the variance of relative phase between two signals,

and is a unitless number ranging from 0 to 1, with 1 indicating full synchronization. Subse-

quently, we ran further simulations for a combination of selected coupling weights (see Meth-

ods) below this critical range to determine if the model was able to produce distinct lag

patterns that are consistent with empirically observed synchronization strategies. We found

that the model exhibited a rich and varied sample of lag patterns, with 12 of these patterns

being different at α<0.001. Multiple clusters produced by the model have patterns with resem-

blances to a leading-following strategy (see Cluster 3 in Fig 2C) and one cluster exhibits fea-

tures of a mutual adaptation strategy (see Cluster 7 in Fig 2C). Hence, we found that a model

with four coupled oscillators and four coupling terms are able to produce an array of differing

lag patterns, with some sharing similarity to known synchronization strategies.

To verify if this behaviour was dependent on each unit having two oscillators, we tested an

even more reduced model containing only one oscillator per unit. This reduced model failed

Fig 2. Overview of the model. In A we see the four-oscillator model, with the oscillators represented as circles within

the two units. The coupling terms are shown as arrowed lines. In B the coupling matrix Knp is shown, and two out of

12 significantly different lag patterns produced by the model are shown in C.

https://doi.org/10.1371/journal.pcbi.1007422.g002
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at producing lag patterns consistent with synchronization strategies, by showing either a con-

siderable positive lag 0 component, or weak correlations across the lags (see methods).

To validate our model, we tested it on empirical data from two separate joint finger tapping

studies. Dataset 1 was acquired from a 2018 study by Heggli et. al [14], and dataset 2 was

acquired from the 2010 study by Konvalinka et. al [9]. Both datasets were collected in compli-

ance with local and national research ethics standards.

In dataset 1, musicians were paired and asked to tap one of two rhythms together while

bidirectionally coupled. Both rhythms had an intertap interval of 500 ms, corresponding to a

beat-per-minute (bpm) of 120. A cluster-analysis of the cross-correlated lags identified three

subgroups of participants. One subgroup used the leading-leading strategy, and the two

remaining subgroups exhibited patterns of mutual adaptation at two different cross-correla-

tion coefficient strengths.

In dataset 2, pairs of non-musicians tapped together in differing auditory coupling condi-

tions: 1) uncoupled, with no auditory feedback from the other dyad member, 2) unidirectional

coupling so that dyad member 1 hears their own tapping sound and member 2 hears member

1’s tapping, and mirrored so that member 2 hears their own tapping and member 1 hears

member 2’s tapping, and 3) bidirectional coupling wherein dyad member 1 only hears the taps

of dyad member 2 and vice versa. In addition, the tapping was performed at different tempos

(96 bpm, 120 bpm, and 150 bpm). Here, a leading-following was found in the unidirectional

condition, and mutual adaptation in the bidirectional condition. For the purposes of model

validation, we chose only the 120-bpm tempo from this dataset, and only the conditions

wherein the dyad members interacted (unidirectional coupling, and bidirectional coupling).

Together, these two datasets contain three distinct synchronization strategies, in six indepen-

dent groups.

We performed a two-step consecutive parameter search to determine which coupling

weights best fit the data. For dataset 1 we used the three subgroups found in the empirical data,

and for dataset 2 we used data from three different coupling conditions (bidirectional cou-

pling, unidirectional coupling 1 with dyad member 1 being the leader, and unidirectional cou-

pling 2 with dyad member 2 being the leader). We optimized our search on the numerical

distance between the averaged cross-correlated lags in the empirical data and the data pro-

duced by our model. Once the best fit was found, we calculated the mean Bhattacharyya coeffi-

cient between the empirical and simulated data to serve as a measure of goodness of fit [31].

Our parameter search provided a good fit for all subgroups found in the empirical data (see

Fig 3). We found that the three empirically encountered synchronization strategies, as repro-

duced by our model, are characterized by the weighting of between- and within-unit cou-

plings. Mutual adaptation, the most common synchronization strategy, relies on a high

between-unit coupling strength and a correspondingly low within-unit coupling strength.

Leading-following, in our case the unidirectionally forced type of leading-following, relies on

the leader unit having a balanced coupling strength on both the within- and between-unit cou-

pling term. However, the follower unit exhibits a much stronger between-unit coupling

strength than its within-unit coupling. The remaining strategy, leading-leading, presents as

both units having a strong within-unit coupling strength, and a low between-unit coupling

strength. The weakest component of the fit between empirical and simulated data is the lag 0

component, which becomes apparent in the instances of mutual adaption. This may stem

from the continuous coupling used in our model, where the units share information in contin-

uous time as opposed to in discrete taps as found in the experimental data. Nonetheless, the

mean Bhattacharyya coefficients were over 0.8 in all cases except for one instance of the mutual

adaptation strategy found in in dataset 2 (see Table 1).
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Discussion

Our results show that complex human behaviour can be described by a reduced model consist-

ing of four oscillators and four coupling terms. While there have been multiple previous

attempts at modelling interpersonal synchronization using either an information-processing

or a dynamical systems approach, our work is the first to reproduce all three empirically-

observed synchronization strategies [1, 15–18]. We find that these strategies rely on the bal-

ance of within- and between-unit coupling strengths in our model, and are placed at different

points in the parameter space of the model. Mutual adaptation is found when the interacting

units symmetrically downregulate their within-unit coupling strength with a corresponding

Fig 3. Overview of the main results. In the first row, synchronization patterns from the empirical data are shown.

Leading-leading (1) corresponds to a subgroup from dataset 1. Leading-following (2) and (3) are from the two

unidirectional conditions in dataset 2. From the mutual adaptation group, (4) is the bidirectional condition from

dataset 2, whereas (5) and 6) are the two remaining subgroups from dataset 1. The green lag patterns show the

empirical data. The blue lag patterns show the synchronization strategy patterns produced by the model at the given

coupling weights listed in Table 1. The patterns are plotted as the mean value, with error bars indicating the standard

error of the mean. Note that the lag 0 component in the simulated data is consistently more positive than in the

empirical data, likely as a result of the continuous coupling in the model.

https://doi.org/10.1371/journal.pcbi.1007422.g003
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increase in the between-unit coupling strength. Leading-leading is found on the opposite side

of this symmetric axis, with both units exhibiting a higher within-unit coupling strength than

the between-unit coupling strength. We found that the leading-following synchronization

strategy requires two asymmetric units, with the follower unit having a strong between-unit

coupling and the leading unit a balanced between- and within-unit coupling. If we consider

the unit’s oscillators to represent processes of auditory perception and motor action our find-

ings are consistent with theories positing that synchronization strategies emerge as functions

of action-perception coupling [12].

Given these results, mutual adaptation in bidirectionally coupled joint finger tapping can

be seen as a form of self-other merging, whereby two interacting people collectively attribute

the auditory feedback stemming from their tapping partner as intrinsically linked to their own

tapping actions. This results in an interaction wherein both dyads continuously and recipro-

cally adapt their tapping to each other on a tap-to-tap basis. In this sense, the dyad members

can be considered to actively and collectively work towards minimizing the difference between

their action and the related auditory feedback, resulting in a strong interpersonal action-per-

ception coupling. This leads to the dynamics of the oscillators being predominantly governed

by the information flow between the units, as expected in mutual adaptation. In the leading-

leading strategy, this relationship is reversed.

The most likely behavioural explanation of leading-leading is that the dyad members both

decouple the self-other loop, and instead focus on their own representation of the task [14].

Accordingly, our best fit for this strategy shows that both units exhibit a strong within-unit

coupling, and a weak between-unit coupling. Hence, information flowing between the two

units does not, to a noticeable degree, impact the behaviour of the individual unit. A key factor

in understanding the emergence of this synchronization strategy is that in the behavioural

experiment the two participants are in fact strongly coupled to the same external metronome

at the start of the task. In our model, this is reflected in the starting frequency of the oscillators,

and given a strong enough within-unit coupling this frequency is preserved to the point where

synchronization occurs without the need for a strong between-unit coupling to modulate any

deviance in the starting frequency. Hence, given two participants with sufficient skill it is possi-

ble to exhibit synchronization, predominantly as an artefact of their beat-keeping skills. How-

ever, the small, but non-zero, between-unit coupling may then function as an error-detection

threshold, such that if one participant should strongly deviate the other may still choose to

follow.

For the leading-following strategy wherein the leader hears themselves and the follower

only hears the leader, the model converges on the leading unit having a balanced weight on its

within- and between-unit coupling. The follower unit exhibits a stronger self-other (between-

Table 1. Overview of the best coupling weights found for each group. The numbering of the groups corresponds to the labelling used in Fig 3. The Bhattacharyya coeffi-

cient listed here is the mean coefficient between the three lags. The coupling strengths i1, e1, i2, e2, from the coupling matrix K are measured in 1/s and scaled according to

the integration time step used in the simulations. For details, see Methods section.

Overview of best coupling weights Unit 1 Unit 2

Coupling term i1 e1 i2 e2 Bhattacharyya coefficient (mean)

1. Dataset 1—Leading-leading 6.5 1.5 7.8 1.3 .97

2. Dataset 2—Leading-following (1) 1.7 5.5 4.1 5.5 .82

3. Dataset 2—Leading-following (2) 4.1 5.7 1.7 4.5 .81

4. Dataset 2—Mutual adaptation (1) 2.5 6.3 2.3 5.1 .77

5. Dataset 1—Mutual adaptation (2) 2.5 4 2.3 8 .93

6. Dataset 1—Mutual adaptation (3) 1 5 1.3 3.3 .98

https://doi.org/10.1371/journal.pcbi.1007422.t001
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unit) coupling than its within-unit coupling. To achieve synchronization, the follower needs to

consistently monitor the auditory feedback coming from the leader, while the leader is decou-

pled from the follower. It is interesting that the model here converges to a balanced within-

and between-unit coupling in the leading unit. One likely explanation for this comes from the

characteristics of the participants in dataset 2, which were all non-musicians. This is evident in

the increased noisiness of their tapping, and we reflected this in the simulations by having an

increased noise level as compared to the simulations for dataset 1 (see Methods). Having a bal-

anced within-unit coupling may then act as a sort of self-correcting behaviour, ensuring that

the contribution from noise in the individual oscillator is kept from increasing to heavily. It

should also be noted that the leading-following behaviour seen here is experimentally forced

due to the unidirectional auditory coupling between the participants. Previous research has

shown that the leading-following strategy can also occur in cases of bidirectional auditory cou-

pling, and that leaders can be distinguished from followers by increased frontal alpha suppres-

sion measured with EEG [11]. This finding has been interpreted to indicate an increase in

cognitive load for leaders in bidirectionally coupled leading-following, due to the need for sep-

arating the auditory information from the followers from their own tapping actions. In this

case, it may be that unidirectional leading-following differs from bidirectional leading-follow-

ing, and it remains a possibility that our model would choose differing coupling weights for

this strategy dependent on the participant’s auditory feedback.

The weakest point in our model appears to be the lag 0 component in the mutual adaptation

strategy, as is evident from the low measure of fit found in the bidirectional condition in data-

set 2. A likely explanation for this is that our model is continuously coupled, and is therefore

able to adjust also when there would be no information present in a real-world setting, such as

between taps. A solution for this would be to couple the two units intermittently, so that the

coupling only exists when one unit produces an output. Such type of pulse-coupled oscillators

have previously been used, for example, to model groups clapping in unison, and a hybrid

approach may improve the fit of our model [1, 32]. In addition, due to limitations in the per-

ceptual threshold, we would suggest including a filtering method wherein such information

would only be passed between the units if it exceeds a pre-defined tolerance region, akin to

mechanisms of predictive coding [33]. Another avenue for improvement could be implement-

ing a feature pulling the action oscillator towards the participants’ preferred tapping rate [34].

For future work we would therefore primarily suggest that incorporating time varying cou-

pling weights could prove beneficial towards modelling human behaviour with coupled

oscillators.

As we have discussed above, all three synchronization strategies can be interpreted as

emerging from different combinations and strengths of within- and between-person action-

perception links. A likely explanation for how and why such action-perception links emerge

can be found in mechanisms of self-other integration. There is ample evidence that the human

brain processes perceived and performed actions using overlapping networks (for a review see

Keysers and Gazzola 2009) [35]. For instance, observing an action can produce activity in

motor areas of the brain, and observing someone else being touched can lead to activity in

somatosensory regions in the brain [36]. Hence, there needs to be a mechanism that distin-

guishes between actions related to the self, and to others, commonly referred to as self-other

representation. This refers to the process of categorizing whether a percept belongs to self- or

other-produced actions. One way of considering action-perception coupling would then be

that it occurs as the result of minimizing the distance between self- and other-representations.

In other words, in tapping tasks such as those used in this work, action-perception coupling

may stem from participants categorizing the auditory feedback they hear as related to their

own tapping actions, instead of belonging to their tapping partner. This view of action-
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perception coupling finds support in the brain’s tendency towards minimizing computing

costs, as formalized by Friston’s work on the free energy principle and its implications for the-

ory of mind [12, 37–40]. Here, the brain is considered to constantly strive for energy optimized

representations of its environment. In joint finger tapping, minimizing the difference in self-

other representation decreases the need for maintaining a cognitive model of the tapping part-

ner’s behaviour. This would suggest that mutual adaptation is a strong attractor state, particu-

larly in interactions where there is information symmetry such as in most joint finger tapping

studies [12]. However, mutual adaptation is not the only stable synchronization strategy in

interpersonal synchronization as both leading-following and leading-leading have been shown

to emerge in cases of bidirectional coupling [11].

As with any computational model of a complex real-world process, our model can only

approximate the processes involved. When considering the neural underpinnings of interper-

sonal synchronization, our model does not make any strict assumption. Rather, the structure

of the model may be interpreted to represent action-perception coupling, as part of the more

complex processes of self-other representation. Likely, these processes are all involved in inter-

personal synchronization and in the selection of synchronization strategies. As rhythmic inter-

personal synchronization requires auditory perception, and motor action, we expect brain

regions and networks linked to such to be involved. It is also likely that regions and networks

linked to social cognition are involved. For instance, our data includes a case of bidirectional

coupling resulting in two distinctly different synchronization strategies, mutual adaptation

and leading-leading. Previous research has also shown the existence of leading-leading in cases

of bidirectional auditory coupling [11]. Hence, there needs to be a neural structure or network

involved in the selection of synchronization strategy, that is independent of auditory coupling.

A likely candidate here is the temporoparietal junction (TPJ) [41]. This region, located where

the temporal and parietal lobes meet, has been shown to act as a network node between the

thalamus and the limbic system as well as with sensory systems [42], and is proposed to be a

key region in brain networks implicated with ‘mentalizing’ [22]. In particular, the right TPJ is

involved in segregating self-produced actions from actions produced by others, as is shown in

lesion studies and in studies using transcranial magnetic stimulation [43, 44]. We would there-

fore hypothesize that the involvement of the TPJ, either separately or as part of a distributed

network, is a key factor in the emergence of synchronization strategies [45]. An interpretation

of our model is then that the two oscillators represent an interplay between auditory and

motor regions mediated by the TPJ, as shown in Fig 4. Here, the between-brain couplings rely

on the auditory perception of the motor actions produced by the other. We hypothesize that

synchronization strategies may be distinguished in electrophysiological recordings by activity

in such a network. For instance, mutual adaptation likely requires neural synchronization

between representation of self- and other, as mediated in tapping tasks by motor and auditory

systems in the brain [12]. Hence, one would expect to see more coherent activity between the

involved brain regions during mutual adaptation than in leading-leading or leading-following.

Conclusion

In this paper we have shown how synchronization strategies found in human joint action may

be successfully modelled using a reduced model consisting of four oscillators and four cou-

pling terms. We found that synchronization strategies can be distinguished based on their

within- and between-unit coupling strengths. For this particular study we interpret our model

within the framework of self-other integration via within- and between-person action-percep-

tion links. However, we believe the model may be successfully applied to many other types of

behaviour, such as modelling groups of people and other processes relying on perceptually
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mediated couplings between individuals. Here, an interesting avenue for future research is pre-

dicting social behaviour in population groups with psychiatric conditions impeding self-other

distinction, such as schizophrenia [46]. As schizophrenia is linked with reduced activity in the

TPJ, a comparison of patients with schizophrenia with a neurotypical population could offer a

way to test predictions made by our model as well as our hypothesized neural interpretation

shown in Fig 4 [47, 48].

The coupled oscillators approach has previously been successfully used for modelling syn-

chronization behaviour in group interactions, and a logical next step for future work is compar-

ing our two-oscillator unit approach with, for instance, the second order coupling term variation

of the extended Haken-Kelso-Bunz model proposed by Zhang and colleagues [8, 27, 49, 50]. Our

model is easily scalable, although increasing the interacting units comes at computational cost.

In informal tests with up to 200 interacting units we observe complex behaviours such as short-

lived stable states of both in- and anti-phase synchronization. Hence, the model may be a prom-

ising tool for exploring network topologies in multi-person interactions with natural occurrences

of leading and following behaviour, such as for instance in symphony orchestras or in jazz

bands. We furthermore present a likely neural interpretation of the model, where we suggest

that interpersonal synchronization strategies may be represented as coherence in a network

between auditory and motor regions, and the temporoparietal junction. Our model and its

behaviour suggest that complex human behaviour may be reasonably modelled by simple inter-

acting components, and that coupled oscillators are able to capture these dynamics.

Methods

Implementation of the models

We implemented the models in MATLAB R2016b [51], using a script for performing numeri-

cal integration of the Kuramoto model of coupled oscillators [52, 53]. The phase of an oscilla-

tor n at time t, denoted by θn(t), behave according to the following dynamic equation:

dynðtÞ
dt
¼ onðtÞ þ

Pk
p¼1

Knp sinðypðtÞ � ynðtÞÞ þ xðtÞ; n ¼ 1; ::; k ð2Þ

Fig 4. Illustration of regions involved in interpersonal synchronization. Motor regions (shown in light blue) are bidirectionally linked to

auditory regions (shown in light yellow), and with the temporoparietal junction (shown in light red). Actions produced by one individual’s

motor system is perceived in auditory regions of the other individual.

https://doi.org/10.1371/journal.pcbi.1007422.g004
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The coupling is defined by the matrix Knp. When we use a two-oscillator model, this matrix

is given by:

Kmodel1 ¼
e1 0

0 e2

" #

ð3Þ

whereas when we use the full four-oscillator model, this matrix is given by:

Kmodel2 ¼

0 i1 e1 0

i1 0 0 0

0 0 0 i2

0 e2 i2 0

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð4Þ

Both models have a noise component ξ drawn from a Gaussian distribution with mean μ =

0 and standard deviation σ. This was included to account for the natural variability and noisi-

ness observed in empirical data. As shown in Eq 2, the coupling weights measured in 1/s are

scaled according to the integration time dt, and thus remain constant independent of simula-

tion time and temporal resolution. For study 1 and for dataset 1 in study 2 the standard devia-

tion σ was set to 0.2513 rad, which is equivalent to 20 ms at a frequency of 2 Hz, corresponding

to the interquartile range (IQR) of the intertap intervals observed in the empirical data used

for study 2 [14]. For dataset 2 in study 2, the standard deviation of the noise was set to 0.4335

rad, which is equivalent to 34.5 ms at a frequency of 2 Hz, corresponding to the IQR of the

intertap intervals in dataset 2. Hence, the noise in the model was based on the shared dyadic

variability in tapping rates. In all simulations the oscillators intrinsic frequency ω was set to 2

Hz (12.57 rad/s), with a standard deviation of 0.2 Hz (1.26 rad/s). This distribution accounts

for the natural variations in the ability to catch and lock on to the metronome frequency [27,

28]. The oscillators were initiated at random phases. For inspecting the model’s performance

and behaviour, we calculated the phases of the oscillators in steps of 25 ms and sampled the

phase at intervals of 500 ms for computational efficiency, and linearly interpolated the zero-

crossing point as a basis for creating a time-series of tap events. From this time-series of tap-

events we calculated the intertap intervals. However, for the comparison between empirical

data and simulated data reported in the model validation section, we calculated and sampled

the phases of the oscillators in steps of 10 ms for increased accuracy.

Model behaviour

To determine the range of coupling weights wherein the models transitioned from an incoher-

ent to coherent state we ran simulations over a wider range of coupling weights. We linearly

increased coupling weights equally for all coupling terms in both models, starting at a mini-

mum coupling weight of 0.1 up to a maximum of 30 with a step size of 0.1. 200 simulations of

12 seconds each were averaged per step. Note that in model 2 we only considered synchroniza-

tion between the two action oscillators. We found that the models quickly reached coherent

synchronization state, as shown in Fig 5.

To examine the behaviour of the models we performed a parameter search within the previ-

ously determined bifurcation range. For the two-oscillator model, we restricted the search to a

coupling weight of 0 to 10 in steps of 1 for between-unit coupling term 1 (e1), and let between-

unit coupling term 2 (e2) range from e1 to 10, in steps of 1. This results in 66 possible combina-

tions, and for each combination 200 simulations of 12 seconds were run. The oscillators were

initiated at random phases, and the first two seconds of simulations were discarded to account
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for the metronome that was present in the first two seconds of the interaction in the empirical

experiments. For the four-oscillator model we decided to sample the model at four different

coupling weights, 1, 5, 9, and 13. This gives 256 possible combinations, which we simulated in

the same way as the two-oscillator model.

We analysed the time series produced by the model by performing a cross-correlation at lag

-1, 0 and +1 for each simulation run. These correlations coefficients were then averaged for

each coupling weight combination. We then clustered the lagged cross-correlations using the

complete linkage method, and performed a similarity profile analysis in R [54], using the sim-

prof-package [55], at an adjusted alpha of 0.001 (shown in Fig 6)

Model validation on empirical data

To calculate the coupling weight which best fitted to the empirical data we performed a

two-step consecutive parameter search. For both datasets we searched for the coupling

weights that resulted in the best fit with each of the three subgroups of participants in the

empirical data. For each of the three separate subgroups we first simulated 300 trials for

each possible coupling value combination between the four oscillators, with the coupling

weights ranging from 1 to 15 in steps of 1. Each trial was simulated using the same approach

as for study 1. We averaged the cross-correlated lags of the individual time series produced

in each trial per coupling value combination, and calculated the numerical distance between

the simulated data and the empirical data. The best fit was then selected, and a second

search performed at coupling weights of +- 0.9 in steps of 0.2 following the same procedure.

The resultant best fit based on numerical distance was then chosen, and its coupling weights

were used to simulate 2000 trials. Here, we increased the accuracy in the time series data by

calculating and sampling the phase of the oscillators in steps of 10 ms. The Bhattacharyya

coefficient was calculated for each of the three lags (-1, 0, and +1) between the simulated

data and the empirical data separately and then averaged, using the disparity package in R

[56]. While this two-step semi-exhaustive search may not be computationally optimal, it

serves well when dealing with a noisy dataset and a noisy model. In particular, as we opti-

mised on the cross-correlation lag coefficients calculated from the time series of phases gen-

erated by the model, existing algorithmic approaches such as the SINDy algorithm were not

easily adaptable to our needs [57]. Our approach resulted in approximately 8 × 1011 simula-

tions, which were performed over the course of roughly 60 hours on a MATLAB Distributed

Computing Server.

Fig 5. Synchronization as measured by the synchronization index as a function of coupling weight. In A we see the

synchronization index of the two-oscillator model as a function of coupling weight. The vertical orange line indicates

the point of maximum synchronization. In B the same is shown for the four-oscillator model.

https://doi.org/10.1371/journal.pcbi.1007422.g005
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Fig 6. Clustering dendrogram and resulting lag patterns. In A and in B the clustering dendrogram for, respectively, the two-oscillator model and the four-

oscillator model are shown. In C the corresponding mean lag patterns for the two-oscillator model is shown. In this case, the two-oscillator model produced

six significantly different lag patterns. Out of these six, three exhibit a strong lag-0 component (clusters 1, 5, and 6), and the remaining three shows weak

correlations across the lags. In D we show the same procedure applied to data from the four-oscillator model. Here we see a much richer variety of lag

patterns, with 12 being significantly different. Note that the lag patterns produced from the clustering algorithm do not necessarily constitute synchronization

strategies, but rather patterns that are quantitatively different from each other. The high number of different clusters also, in part, stems from the flip

symmetry in the system, as is seen for instance in cluster 1 and cluster 8.

https://doi.org/10.1371/journal.pcbi.1007422.g006
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