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Abstract

ABC (ATP-Binding Cassette) proteins with altered function are responsible for numerous

human diseases. To aid the selection of positions and amino acids for ABC structure/

function studies we have generated a database, ABCMdb (Gyimesi et al., ABCMdb: a

database for the comparative analysis of protein mutations in ABC transporters, and a

potential framework for a general application. Hum Mutat 2012; 33:1547–1556.), with

interactive tools. The database has been populated with mentions of mutations extracted

from full text papers, alignments and structural models. In the new version of the data-

base we aimed to collect the effect of mutations from databases including ClinVar.

Because of the low number of available data, even in the case of the widely studied

disease-causing ABC proteins, we also included the possible effects of mutations based

on SNAP2 and PROVEAN predictions. To aid the interpretation of variations in non-

coding regions, the database was supplemented with related DNA level information. Our

results emphasize the importance of in silico predictions because of the sparse informa-

tion available on variants and suggest that mutations at analogous positions in homolo-

gous ABC proteins have a strong predictive power for the effects of mutations. Our

improved ABCMdb advances the design of both experimental studies and meta-analyses

in order to understand drug interactions of ABC proteins and the effects of mutations on

functional expression.
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Introduction

ABC (ATP Binding Cassette) membrane proteins are mo-

lecular machines converting the binding and hydrolysis of

ATP to conformational changes in the protein to relocate

substrates through the membrane bilayer or regulate chan-

nel function (1–3). The function of ABC proteins is import-

ant in various physiological processes. Some members of

this protein superfamily (e.g. MDR1/ABCB1, MRP1/

ABCC1, BCRP/ABCG2) transport substrates with hydro-

phobic character, such as lipids, hormones and xenobiotics

(4). TAP1 and TAP2 transporters associated with antigen

processing catalyze the movement of small peptides from

the cytosol to the endoplasmic reticulum for presentation

by the MHC-I complex (5). ABCA1 is involved in choles-

terol transport and ABCA4 transports vitamin A de-

rivatives in rod photoreceptor cells thus participating in

HDL biogenesis and vision cycle, respectively (6, 7).

Interestingly, three members of the ABCC subfamily are

not active transporters. CFTR (cystic fibrosis transmem-

brane regulator, ABCC7) exhibits cAMP-dependent chlor-

ide channel function, while ABCC8 (Sulfonylurea receptor

1) and ABCC9 (Sulfonylurea receptor 2) regulate inward-

rectifier potassium ion channels and thus membrane poten-

tial changes associated with various downstream events,

such as insulin secretion in pancreatic cells (8, 9).

The function and expression of these ABC proteins can

be altered either by mutations or regulatory processes and

their malfunction or changed expression level can lead to

numerous pathological states (1, 10). Mutations in many

ABC proteins have been linked to severe inherited diseases.

Deleterious variations in ABCA1 and ABCA4 lead to

Tangier and Stargardt diseases, respectively (6, 7).

Mutations in TAPs result in immune deficiency manifested

e.g. as increased risk for cancer (11). Genetic alterations in

the ABCB11 gene can cause a severe form of liver disease,

progressive familial intrahepatic cholestasis type 2 (PFIC2)

(12). Mutations of ABCC6 and CFTR are associated with

their decreased functional expression that lead to a rare

disease, pseudoxanthoma elasticum and the most frequent

severe, monogenic inherited disease, cystic fibrosis (CF),

respectively (8, 13). Several transporters from the ABCB,

ABCC and ABCG subfamilies are multidrug transporters

promiscuously recognizing different compounds with

highly diverse chemical properties (3, 4). These trans-

porters strongly influence the ADME-Tox (Adsorption,

Distribution, Metabolism, Excretion and Toxicity) proper-

ties of xenobiotics including drugs. Prescribing a drug at

the generally recommended dose for a patient carrying a

mutation in a multidrug transporter may result in serious

or even lethal increase in the side effects caused by the

changed half-life and concentration of the drug in the

body. For example, the Q141K variation in ABCG2 causes

a decreased expression and function of this transporter

thus results in increased brain accumulation of chemother-

apeutic agents, such as tyrosine kinase inhibitors (14–16).

There is a great importance to understand the effects of

variations in detail in order to predict the severity of a dis-

ease, or to apply a drug at a different concentration than the

usual recommended dose. For these reasons, gene variations

are collected and annotated from many sources in various

databases. dbSNP has been created to provide a central re-

pository for single base nucleotide substitutions, short dele-

tions and insertions (17). There are also annotations on the

type of mutations (e.g. stop gained, frame shift) of poly-

morphisms. To specifically report the relationships among

human variations and phenotypes with supporting evidence,

the ClinVar database has been established and tightly

coupled to dbSNP (18). In parallel, coexisting with these

large genomic databases, many locus specific databases

(LSDBs) are maintained by experts of the given field and

these are usually manually annotated. Therefore some of

these LSDBs contain rich data on variations, sometimes

including detailed clinical data, thus are the primary infor-

mation sources. LSDB installations are listed at several web-

sites including the Human Variome Project site (http://

www.hgvs.org/locus-specific-mutation-databases) and the

LOVD (Leiden Open Variation Database) site (http://gre

nada.lumc.nl/LSDB_list/lsdbs) (19).

For diagnosis and personalized treatment, the level

of deleteriousness of a variation might be sufficient.

However, for rational drug development, to understand

the mechanism of alteration is necessary, as stability, local-

ization, or function of the protein may be variably altered

by a variation. Information on these phenomena may not

be available or difficult to gather from experimental stud-

ies. In silico tools can be exploited for example to predict

changes in stability (DDG values) or cellular localization of

the target protein. Both variation databases and tools for

effect predictions are summarized in the recent review of

Niroula and Vihinen (20, 21).

There are relatively few data sources with exhaustive

number of variations with sufficient details on ABC pro-

teins to support clinical or basic research projects. These

include the well-known CFTR, CFTR2 and LOVD

ABCC6 LSDBs. To facilitate structure/function studies of

the ABC protein superfamily, we have set up a protein-

centered database that contains mutations retrieved from

the literature using semi-automatic methods (22). Missense

and nonsense mutations altering protein sequence could

have been investigated in detail in the context of sequence

alignments and structural environment. Although the mu-

tations have been extracted from full text papers and the

environment of the mutation mentions were listed in the
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database, facilitating to explore the effects of the alter-

ations, it is still a challenging task to assess the conse-

quences of a variation if studying the effect was not an aim

in the original publication. Therefore we supplemented our

database with predictions for the effect of the variation, as

well as with genomic information including gene se-

quences, promoters, exon/intron boundaries and experi-

mentally determined transcription factor binding sites. We

have confidence that our web application and database

will become a central toolset for ABC protein research.

Materials and methods

Databases and sequences

Records, which contained the ‘single nucleotide variant’

annotation in the field of ‘variant_type’, were collected

from ClinVar as of January 2016. Variants were set to

deleterious, neutral and unspecified, when the significance/

description field contained ‘pathogenic’ or ‘likely patho-

genic’, ‘benign’ or ‘likely benign’ and other (‘uncertain sig-

nificance’, ‘conflicting interpretations of pathogenicity’

and ‘not provided’) annotations, respectively.

ABCB11 variations were collected from two reviews

(23, 24). A variant was set to deleterious when it was

annotated as PFIC (progressive familial intrahepatic cho-

lestasis) or BRIC (Benign recurrent intrahepatic cholesta-

sis) or ICP (Intrahepatic cholestasis of pregnancy), to

benign when ‘no association’ expression or no annotation

and unspecified in all other cases.

Tab delimited file of ABCC6 variants were downloaded

from LOVD/ABCC6 (http://www.ncbi.nlm.nih.gov/lovd/

home.php?select_db¼ABCC6) as February of 2016. Since

the LOVD sites at NIH were closed on 30th of September,

2016, we link the downloaded MS Excel file containing

the analyzed. All listed ABCC6 variations in LOVD were

disease associated.

Data on mutations of CFTR were collected from the

CFTR1 (http://www.genet.sickkids.on.ca/) and CFTR2

(http://cftr2.org/) databases. A mutation was set to dele-

terious when CF or CF with PI (Pancreatic Insufficiency)

annotation was found in CFTR2, or when we could iden-

tify the disease association based on clinical notes in

CFTR1. A variant was marked in our database as neutral,

when no CF associated annotation was found in CFTR2. It

was set to unspecified when the ‘variant consequence’ field

in CFTR2 contained the ‘unknown significance’ expression

and disease association could not be concluded based on

CFTR1 database annotations.

Annotations of gene level features, including boundaries

of genes, mRNAs and exons, were collected based on the

human genome assembly GRCh38.p2 (Genome Reference

Consortium Human Build 38 patch release 2). Reference

mRNA sequences were gathered from the NCBI gene/nu-

cleotide database. Since protein sequences in our database

are from UniProt, mRNA after translation and protein se-

quences were compared. All ABC sequences matched, ex-

cept two ABCA members. In the case of the ABCA2

protein sequence, EA amino acids at the positions 53–54

were replaced by EVS, which is annotated as a natural

variant in UniProt. In the case of ABCA13 we use the vari-

ant K4446V corresponding to the reference mRNA se-

quence, which is annotated as a sequence conflict in

UniProt.

Software, scripts and analysis

Most of the data collection and analysis were performed

using in house scripts written in Python or R. Python libra-

ries BioPython (25), numpy (http://www.numpy.org) and

matplotlib (http://matplotlib.org) were extensively used.

Conservativeness of an amino acid replacement was deter-

mined based on the BLOSUM62 substitution matrix.

Sequence alignments were generated by ClustalW and

manually adjusted when needed (e.g. at the N-terminus of

the nucleotide binding domains in the ABCC subfamily).

Effects of mutations were predicted by SNAP2 (26) and

PROVEAN (27).

Results and discussion

Integration of data on the effects of variations

Although it would be essential to know the detailed effect

of a missense mutation, whether it alters the function, fold-

ing, or targeting of a protein, current predictors, data min-

ing applications and databases cannot deliver such fine

grade answers. Therefore we aimed to collect and integrate

annotations on the deleterious and neutral effects of vari-

ations from the widely used and curated ClinVar database.

We especially looked for variations resulting in missense or

nonsense mutations. Although ABC proteins play roles in

rare diseases (10, 28), there is a surprisingly low number of

ABC mutations deposited in this central database (see on-

line supplementary material for Table S1). Moreover, a

large fraction of the data is unspecific about the effect of

the mutations.

In order to compare different resources extensively, we

have analyzed in detail and set as examples three well

known disease causing ABC proteins ABCB11 (Bile Salt

Export Pump, BSEP) (12, 23, 24), ABCC6 (MRP6) (13, 29)

and CFTR (ABCC7) (8) mutated in progressive famil-

ial intrahepatic cholestasis, pseudoxanthoma elasticum

and cystic fibrosis, respectively (10). ClinVar contained
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only 14 SNPs for the coding region of ABCB11 and 21 for

ABCC6 (see online supplementary material for Table S1,

Figure S1) in January 2016. In contrast, for CFTR ClinVar

contained not only a high number of reported mutations

(731), but covers most of the clinically relevant alterations

of this gene (see below).

Other large resources were found insufficient for our

studies. The ExAC browser (http://exac.broadinstitute.org)

provides data of sequenced individuals, but the disease sta-

tus and the effects of the variations is not annotated.

Results of the 1000 Genomes sequencing project (http://

www.1000genomes.org) also cannot be employed, because

ABC proteins play a role mainly in rare diseases, thus dis-

ease causing mutations are not expected to be detectable in

the set of 3775 processed genomes (as of June 2016).

Since the above data sources contain limited amount of

information on ABC protein variations, we also investi-

gated locus specific databases (LSDBs). To identify LSDBs

specific for ABC proteins we turned to the Leiden Open

Variation Database server that also hosts a list of registered

gene specific databases (http://www.lovd.nl/LSDBs) (19).

Unfortunately, databases and data on ABC genes seem to

be underrepresented. For most ABC genes only a few regis-

tered databases exist with the following types: (1) LOVD

installations with curator vacancy (these are empty data-

bases), (2) gene-specific links to large public databases

including ClinVar and PharmKGB and (3) country initia-

tives for collecting region specific variants (e.g. Brazilian

Initiative on Precision Medicine). Moreover, these installa-

tions also contain a low number of variants and low

amount of information e.g. on the effect and clinical rele-

vance of ABC gene mutations. For example, LOVD instal-

lations at the University of Melbourne (http://proteomics.

bio21.unimelb.edu.au/lovd/genes/ABCB11) and Cincinnati

Children’s Hospital Medical Center (https://research.

cchmc.org/LOVD2/home.php?select_db¼ABCB11) list 13

and 114 unique variants of the ABCB11 gene, respectively.

In spite of the considerably large number of records in the

latter database, there is no detailed evidence for the effects

provided.

To increase the number of ABCB11 variants in our

study, we also analyzed two major reviews on ABCB11

variations and recorded 215 missense and nonsense muta-

tions of ABCB11 (23, 24). With relatively small efforts,

153 and 48 out of these 215 records could be identified as

deleterious and neutral, respectively (Figure 1). The effects

of the remaining 14 variations have not been determined.

There are extensively curated databases for ABCC6 (http://

abcm2.hegelab.org/ABCC6_LOVD_20160217.xlsx) and

CFTR (http://cftr2.org) (30). While CFTR is the first dis-

ease associated gene, which has been studied in great detail

supported by a community of researchers and patients’

relatives, ABCC6 has been linked more recently to pseu-

doxanthoma elasticum that affects a smaller population as

compared to cystic fibrosis. However, the collection and

long term maintenance of ABCC6 variation data are also

Figure 1. Variations in coding regions of ABCB11, ABCC6 and CFTR from ClinVar (top row), locus specific databases and reviews (bottom row).
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supported by an enthusiastic patient Group (31). The over-

lap between these resources and data in ClinVar varies

greatly (Figure 2). One of the reasons may be technical,

associated with challenges of merging a full database into

ClinVar as in the case of LOVD ABCC6, which is being

migrated to ClinVar. Figure 2 also indicates that we were

able to identify a high number of mutations, which are not

present in ClinVar or these locus-specific databases, since

they most likely have been generated for experimental

studies.

In summary, in spite of the available platforms to inte-

grate data on variants, there is a general lack of annotated

data on the variations of ABC proteins in public databases.

Therefore we extended our database to contain not only

semiautomatically identified mutations for ABC genes, but

also curated datasets from other databases including indi-

cations for the effect of the listed variations. At this mo-

ment our ABCM2 database includes data only from

ClinVar for all ABC proteins and from the above men-

tioned LSDBs and reviews for the three selected proteins.

According to our opinion, the ABCM2 database with its

limitations still may serve as a central data source for re-

searchers in the ABC field.

Predicting the effects of variations using in silico

methods

As seen above, many variations have unspecified effects re-

garding not only the protein structure and function, but

also clinical consequences. This lack of information causes

serious difficulties when designing experiments or provid-

ing clinical diagnosis, while this problem may be circum-

vented by using in silico methods to predict the effects of

variations. There have been a few trials to employ compu-

tational methods to assess the effects of SNPs of ABC pro-

teins. Variations in the ABCC1 protein (MRP1) have been

evaluated by SIFT and PolyPhen in the laboratory of S.P.

Cole (32). Dorfman et al. tested PANTHER (33), SIFT

(34) and PolyPhen (35) whether these tools can aid

CF-associated clinical diagnosis (36). The conclusion of all

of these studies was that current in silico methods are not

sufficient to provide guidance either in planning mutage-

netic experiments or achieving clinical diagnosis. As

claimed by the original papers describing these tools, the

applied algorithms exhibit higher sensitivity (�80%) to

identify deleterious mutations. However, their specificity is

low, thus a large portion of neutral predictions is false.

Nevertheless, because of the high sensitivity, those pre-

dictions, which indicate a variation deleterious, could pro-

vide valuable information for amino acid changes with

unknown effects. Importantly, many of the above in silico

tools employ information on amino acid conservation, but

most parts of the ABC membrane transporters, except the

nucleotide binding domains exhibit very low sequence

similarity (<20% in many cases). Therefore, we investi-

gated the applicability of two predictors, SNAP2 (26) and

PROVEAN (27) employing different algorithms, to con-

firm if the high sensitivity of the methods is preserved and

could be exploited in the case of these membrane proteins.

We collected the deleterious and neutral variations in

curated datasets of ABCB11, ABCC6 and CFTR, and

performed the predictions on these amino acid changes

(Table 1). Both PROVEAN and SNAP2 exhibited low sen-

sitivity (60–70% of positive hits were true) for deleterious

mutations in ABCB11 and ABCC6. Predictions of neutral

changes were mostly at the expected low level of confi-

dence, but SNAP2 predictions varied greatly and

PROVEAN showed stable values between 40 and 50% of

true positive hits. These tools also do not exhibit conse-

quent higher sensitivity in the case of conserved regions

such as NBDs (see online supplementary material for Table

S2). Although we inserted both SNAP2 and PROVEAN

predictions into our database, these observations clearly in-

dicate the need of further development of these tools for

ABC (membrane) proteins and we emphasize the careful

utilization of in silico tools in designing experiments and

discourage their usage for clinical applications as also

pointed out by the above mentioned studies. These SNAP2

and PROVEAN predictions may be beneficial for those

amino acid positions, for which there is a mutation with a

Figure 2. Distribution of ABCB11, ABCC6 and CFTR variants between ClinVar, ABCM2, and other resources.
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known effect and the corresponding prediction shows the

same effect. It is also important to note that combination

of predictors does not perform better than the best pre-

dictor alone and the performance of each predictor is sig-

nificantly gene dependent (37).

Deducing the effect of mutations based on

sequence alignments

One of the key concepts in the development of our web ap-

plication has been to facilitate the classical way of

sequence-based comparative analysis of homologous pro-

teins. Users can assess the conservation level of a given pos-

ition in two or more proteins in a sequence alignment and

also the conservative nature of the amino acid change.

These assessments could help deducing the effect of a mu-

tation in a given protein based on the known effect of a

homologous mutation in other proteins. This is a kind of

‘low throughput’ version of in silico predictors, but also in-

cludes knowledge from sentences extracted from publica-

tions. However, when we aimed to compare the efficiency

of our low throughput method to those of in silico algo-

rithms, we noticed that a surprisingly high number of con-

servative changes, according to BLOSUM62 matrix, result

in deleterious mutations (see online supplementary mater-

ial for Table S3). In contrast, several non-conservative mu-

tations are neutral. Still, these results are not unexpected,

since an amino acid contributes to the protein function in a

structural environment. A simple example, when an amino

acid is located on the protein surface, its mutation to an-

other amino acid with different physicochemical properties

(e.g. size, charge) may not alter the folding or the function

of a protein, while it would be most likely deleterious, if

the change happens inside the protein or in a region partici-

pating in protein-protein interactions. It would be also

plausible to include DDG (the free energy difference be-

tween a wild-type and mutant protein) predictions based

on structures, but there is only limited information on the

structure of human ABC proteins, which is a requirement

for this type of stability prediction. In addition, the per-

formance of these methods is also limited (38, 39).

Moreover, in many cases a deleterious mutation does not

necessarily affect protein stability but influences the fold-

ing and routes the mutant protein to an off-pathway inter-

mediate state, such as in the case of CFTR (40). In spite of

these problems, we and users of our database are quite en-

thusiastic about the help provided by the application of the

homology models provided by our ABCM2 framework,

and their integration with knowledge from publications

and sequence alignments, in deducing the effect of an

amino acid change.

We evaluated the performance of a simple homology-

based inference of mutations’ effects. ABCB11 and

ABCC6 variations with known effects that are in loca-

tions homologous to CFTR mutations with known effects

were collected (Table 2). 93% of these ABCC6 variations

exhibited the same effect when compared to variations in

CFTR. Even in the distant family member, ABCB11, the

effects of 86% of mutations coincided with those in

CFTR. This suggests that a simple predictor utilizing only

sequence alignments to map locations to a protein, whose

variants have been well annotated, would already exhibit

high sensitivity. Interestingly, mutations in regions with

lower level of conservation (e.g. transmembrane helices)

could also be predicted (see next section). It is important

to note that, because of the issues discussed in the previ-

ous paragraph, we did not consider whether an amino

acid replacement was conservative or not. A position in

the sequence was regarded generally susceptible to muta-

tions when there was at least one deleterious variant re-

ported for that given position. Nevertheless, this type of

predictions exhibits significantly better performance than

previous in silico methods above, which do not use exist-

ing knowledge on the effects of mutations in homologous

proteins.

Table 1. Performance of in silico tools SNAP2 and PROVEAN

in predicting the effect of mutations in ABC proteins as com-

pared to curated mutations from databases

Gene Effect Curated SNAP2 PROVEAN

ABCB11/BSEP Deleterious 153 98 (64%)a 100 (65%)

Neutral 52 29 (56%) 22 (42%)

Unspecified 15

ABCC6/MRP6 Deleterious 182 123 (68%) 117 (64%)

Neutral 2 1 (50%) 1 (50%)

Unspecified 0

ABCC7/CFTR Deleterious 349 182 (52%) 161 (46%)

Neutral 31 6 (19%) 14 (45%)

Unspecified 629

aThe number of correctly predicted mutation effects (true positive hits).

Table 2. Simple homology-based inference can be used

to predict the effect of variations even in distant family

members

CFTR

ABCC6 ABCB11

Mutations at homologous positions 85 75

Mutations with known effect 45 (100%) 35 (100%)

Matching effects 43 (96%) 30 (86%)
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Distribution of variations over different domains

Protein–protein interaction interfaces have been shown to

be prone to mutations, and this can also be expected in the

case of intramolecular domain-domain interactions. It has

been demonstrated that disease causing mutations in

ABCC6 are clustered at the domain-domain interfaces be-

tween NBD1 (nucleotide binding domain 1) and NBD2,

and between NBDs and the coupling helices (41).

Moreover, this phenomenon is also observable in the case

of other membrane proteins. Many disease-causing muta-

tions in members of the human CLC family of chloride

channels reside at the interface of the cytoplasmic cysta-

thionine beta-synthase and the transmembrane domains

(42). Therefore we investigated the distribution of muta-

tions for ABCB11, ABCC6 and CFTR (Table 3), in this

paper with a larger number of collected deleterious muta-

tions as compared to earlier studies.

The disease causing mutations were found to be distrib-

uted relatively evenly over the sequence of the ABCB11

protein. There is one exception, namely a slight enrichment

can be observed for mutations in NBD1. In ABCC6, the

extracellular loops and also the helices in the second trans-

membrane domain (TMD) are also depleted in deleterious

mutations. However, the N-terminal transmembrane heli-

ces, the C-terminal intracellular loops and the nucleotide

binding domains are overrepresented by variations with

serious effects. Intriguingly, in CFTR, for which the most

disease causing mutations among ABC proteins are known,

deleterious mutations are overrepresented in the extracellu-

lar loops and the transmembrane helices of TMD1, and in

the intracellular loops of TMD2. Moreover, NBD1 is en-

riched in CF-causing mutations as compared to NBD2.

Although based on these data and our current knowledge

on structure/function relationship of ABC proteins, it is

difficult to draw solid conclusions, sensible notes can be

made based on the hypothesis that a region susceptible to

mutations is of high importance, e.g. for function or fold-

ing. The observation, that there is no enrichment of mu-

tations in ABCB11 transmembrane regions may be

attributed to the absence of a classical, well-defined sub-

strate binding pocket because of the wider spectrum of

hydrophobic substrates. In contrast, in the two ABCC sub-

family members disease causing mutations are enriched in

the N-terminal TMD1, which may be attributed to either

the asymmetric function of NBDs or to a sensitive folding

process. It is characteristic for ABCC proteins that ATP is

bound to NBD1 but the hydrolysis is diminished, in con-

trast to the hydrolysis of ATP at the NBD2 site. This asym-

metry most likely also causes asymmetry in the

transmembrane domains. In addition, these ABCC proteins

transport or conduct charged molecules, thus they possess

charged residues in their transmembrane helices. For ex-

ample, many arginine residues are present in the sixth

transmembrane helix (TH6) in CFTR TMD1 known to

take part in forming the chloride channel. The presence of

charged residues, which are located in the hydrophobic re-

gion of the membrane bilayer, may exert a delicate balance

during the folding process of TMD1 which accordingly be-

comes more prone to mutations. In addition, the N-ter-

minal half may also be important serving as a scaffold for

the folding of the C-terminal half of these proteins.

Interestingly, the removal of the full NBD2 in the C-ter-

minal part maintains CFTR folding and maturation, while

many point mutations in the N-terminal half abrogate

CFTR (43, 44).

Sparse information on non-coding regions

Since variations in non-coding regions may also exhibit

deleterious effects on functional protein expression, we

aimed to include mutations located in non-coding regions

Table 3. Distribution of deleterious mutations in different re-

gions of ABC proteins

Gene Region Ratio of mutated positionsa

ABCB11 TMD1_EL 10% (8/83)

ABCB11 TMD2_EL 8% (3/40)

ABCB11 TMD1_TH 9% (12/133)

ABCB11 TMD2_TH 7% (10/137)

ABCB11 TMD1_CL 11% (12/106)

ABCB11 TMD2_CL 7% (7/107)

ABCB11 NBD1 16% (39/237)

ABCB11 NBD2 11% (26/239)

ABCB11 CL 8% (20/239)

ABCC6 TMD1_EL 3% (1/29)

ABCC6 TMD2_EL 4% (1/23)

ABCC6 TMD1_TH 10% (12/121)

ABCC6 TMD2_TH 5% (6/117)

ABCC6 TMD1_CL 15% (18/121)

ABCC6 TMD2_CL 13% (16/126)

ABCC6 NBD1 15% (34/225)

ABCC6 NBD2 16% (38/235)

ABCC6 CL 9% (29/320)

CFTR TMD1_EL 39% (11/28)

CFTR TMD2_EL 14% (5/35)

CFTR TMD1_TH 30% (36/121)

CFTR TMD2_TH 15% (18/117)

CFTR TMD1_CL 15% (18/121)

CFTR TMD2_CL 25% (32/126)

CFTR NBD1 25% (55/224)

CFTR NBD2 18% (43/234)

CFTR CL 14% (66/474)

aNumber of positions with mutations/length of region.

TMD: transmembrane domain, EL: extracellular loop, CL: cytoplasmic

loop, NBD: nucleotide binding domain, TH: transmembrane helix.
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of ABC genes into our database. We identified 1 SNP for

ABCB11 (BSEP) in ClinVar, 2 SNPs in ClinVar and 25 in

LOVD for ABCC6 (MRP6) and 154 SNPs for CFTR in

non-coding regions (Clinvar, CFTR and CFTR2). Most of

these are alterations in introns and a fraction of them are

splice site mutations and data are sparse on single nucleo-

tide variants located in well-defined regulatory regions or

with transcriptional regulatory effects. For example, only

one variation has been reported for the ABCC6 promoter

region decreasing PLAG transcription factor binding (45,

46). Six and one alterations in the promoter region were

found for CFTR from ClinVar and CFTR2, respectively.

In order to facilitate the understanding of variations in

cis-regulatory regions, we also started to collect informa-

tion on transcription regulatory sites. In order to assess the

associated resources, as a first step we collected transcrip-

tion factors and their binding locations influencing the

transcription of ABCB11, ABCC6 and CFTR. Data mining

of the papers with experiments using human systems and

reporting direct regulation resulted in only a few exact lo-

cations for transcription factor binding sites. These include

FXR, LRH-1 and Nrf2 binding sites in the ABCB11 pro-

moter (47–50) and NF-jB, Sp1/Sp3 and PLAG1/PLAGL1

responsive elements in the ABCC6 promoter (51, 52).

There are several characterized cis-regulatory regions of

CFTR, such as in introns 1 and 11, recruiting transcription

factors including forkhead box A1/A2 (FOXA1/A2),

hepatocyte nuclear factor 1 (HNF1) and caudal-type

homeobox 2 (CDX2) (53, 54). In addition, distant CFTR

regulatory regions are also described in detail (55).

However, we decided not to include this information into

the current version of our database because of their low

resolution. Other publicly available resources do not con-

tain related data for insertion into ABCM2. For example,

the DECODE (DECipherment Of DNA Elements) data-

base, which combines ABiosciences’ proprietary database,

QIAGEN’s Text Mining Application, and also data from

the UCSC Genome Browser, does not list any of the tran-

scription factors we collected from publications (http://

www.sabiosciences.com/chipqpcrsearch.php). Moreover,

it lists transcription factors for these ABC proteins that we

could not confirm with publications.

Updated database and web interface

Since we have inserted data reflecting the genomic level

into our protein-centered database, new tables and rela-

tions had to be introduced. New tables were also inserted

for curated mutations (e.g. from ClinVar, ABCC6 LOVD,

CFTR2 and reviews) and also for the effects of all possible

mutations predicted by SNAP2 and PROVEAN. At this

moment this level of data isolation, namely storing

different types of mutations in different tables, seems to be

sufficient. However, in the future with more data with dif-

ferent types, the database may be split into several special-

ized databases (e.g. into separate databases for genomic

and protein level data).

The new data types required slight changes in the web

application interface. One set includes the presentation of

novel data (e.g. the predicted effects of mutations, muta-

tions in non-coding regions; see online supplementary ma-

terial for Figure S1), which is listed on the web page in

detail. We also aimed to supplement the mutations and

sentences identified by text mining earlier with information

on their effects on phenotype, from other databases and

in silico predictions (see online supplementary material for

Figure S2). An important set of changes includes novel

search possibilities, such as querying variations at the

DNA level and submitting a list of genomic and amino

acid positions for batch queries (see online supplementary

material for Figure S3).

Further data were also deposited in our database. First,

a structure of the ABCG5-ABCG8 heterodimer has been

published recently (56). We included this structure and our

ABCG2 homology model (57) into our web application.

This new transmembrane fold of the ABCG subfamily

members now can be employed to visualize spatial loca-

tions of amino acids in ABCG proteins and interpret their

effects in a 3 D context. Second, a refined classification

of CF mutations was linked to variations of CFTR.

Traditional categories have been numbered from I to VI,

including mutations resulting in premature termination

codons (PTC), misfolding, impaired regulation, altered

channel conductance, decreased abundance and destabil-

ization in post-ER compartments, respectively. Since many

mutations exhibit several of these listed effects and could

not be included clearly into a category, thus combinatorial

categories have been created by Veit et al. (58). We

included these information rich annotations from their

publication.

Conclusion

Although many ABC proteins are responsible for diseases

and widely studied, there is a significant lack of data on

the effects of sequence variations even in large disease

focused databases. Importantly, the effects of a significant

portion of the mutations are not annotated. This can be

attributed most likely both to the attitude of researchers

(59) and to the lack of knowledge on the connection of

mutations to disease phenotypes and. For example, a large

number of CFTR mutations is identified in patients in the

presence of other mutations with unknown effects on the

same or on the other chromosome, making impossible to
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dissect the contribution of these variations to the pheno-

type. Whilst the curated information in LSDBs is related

mostly to the phenotypic effects and the predictions can in-

dicate only deleteriousness, it would be important to de-

cipher the effects at the cellular level (such as folding,

trafficking and function) of the variations. At present, it

does not seem feasible to predict these effects in silico with

high confidence.

There is a trend to store data on variations in large and

centralized databases (e.g. ClinVar), which has several ad-

vantages. For example, if a central site contains all known

variations for a gene, querying only this database is suffi-

cient instead of visiting several LSDB sites. In addition, de-

positors do not need to create and maintain an own LSDB,

the data on variations and tools for querying and analysis.

However, we faced the retirement of LOVD databases

hosted by the NIH and data were not available in ClinVar

a month after stopping the service, at the time of this

manuscript submission. This warns about the possibility

that the maintainer of a central database can decide any

time to close a site temporarily or even permanently. This

phenomenon could effectively be prevented by a federated

approach such as Cafe Variome (60), containing a central

server for efficient querying and several independently ac-

cessible locus-specific data stores. This type of approaches

can fulfill the roles expected from a central site, and also

maintain the distribution of data with higher persistency

and help in avoiding even temporary inaccessibility.

Importantly, for this setup, standards, such as in the case

of Cafe Variome, should be defined accurately to allow the

communication between the nodes for query, access con-

trol and data exchange management (60). In addition, the

web application on each node could be tuned according to

the field of the given gene, similarly to how our web appli-

cation includes sequence alignments and structures of ABC

proteins. Since implementation of such extra features spe-

cific for a subset of genes is not rational at a central data-

base, we will surly witness the development and emergence

of LDBDs in the next decades (59).

Our current results indicate that combining available in-

formation on the effects of mutations with sequence align-

ments is still an important and useful approach in

predicting the outcome of variations with unknown effects

in homologous proteins (Table 2). Our web application

can significantly aid this prediction process. In addition,

we initiated the inclusion of DNA level information on

ABC proteins and implemented batch query possibility

that also promote further developments for personalized

medicine.

Supplementary data

Supplementary data are available at Database Online.
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