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Abstract
Background: The third, or wobble, position in a codon provides a high degree of possible degeneracy and is an 
elegant fault-tolerance mechanism. Nucleotide biases between organisms at the wobble position have been 
documented and correlated with the abundances of the complementary tRNAs. We and others have noticed a bias for 
cytosine and guanine at the third position in a subset of transcripts within a single organism. The bias is present in 
some plant species and warm-blooded vertebrates but not in all plants, or in invertebrates or cold-blooded 
vertebrates.

Results: Here we demonstrate that in certain organisms the amount of GC at the wobble position (GC3) can be used to 
distinguish two classes of genes. We highlight the following features of genes with high GC3 content: they (1) provide 
more targets for methylation, (2) exhibit more variable expression, (3) more frequently possess upstream TATA boxes, 
(4) are predominant in certain classes of genes (e.g., stress responsive genes) and (5) have a GC3 content that increases 
from 5'to 3'. These observations led us to formulate a hypothesis to explain GC3 bimodality in grasses.

Conclusions: Our findings suggest that high levels of GC3 typify a class of genes whose expression is regulated 
through DNA methylation or are a legacy of accelerated evolution through gene conversion. We discuss the three 
most probable explanations for GC3 bimodality: biased gene conversion, transcriptional and translational advantage 
and gene methylation.

Background
Examination of the nucleotide content of various tran-
scriptomes has revealed classes of genes distinguished by
their G and C content [1]. In particular, the wobble posi-
tion of coding sequences, which is relatively independent
of the coding potential of the protein, serves as a marker
for GC richness. The frequency of G+C nucleotides at the
3rd position is referred to as GC3. In several earlier studies
[2-5], two types of organisms were identified on the basis
of their GC3 distributions: unimodal and bimodal. Warm-
blooded animals and several plant families (Poaceae,
Musaceae and Zingiberaceae) demonstrate a clear
bimodal distribution of GC3 while cold-blooded animals
and other plants (including dicots) show a predominantly
unimodal distribution (Figure 1).

Since bimodality has been detected in only some plant
families, we suggest that this feature has developed inde-
pendently in warm-blooded animals and in certain mem-
bers of the commelinids clade. The GC3 bias could
possibly be explained as a consequence of some larger
genomic bias. For example, over three decades ago,
Macaya et al. [6] observed that some genomes contain
isochores, megabase-long regions with either high or low
GC contents. Isochores have been reported in warm-
blooded vertebrates and in some reptiles [7-9]. Composi-
tionally homogenous DNA regions of at least 50-100 kb
have been found in several dicot and monocot genomes
(pea, sunflower, tobacco, barley, rice, maize, oat and
wheat), supporting the existence of isochores in plants
[10-12]. It is not yet known whether all eukaryotic
genomes are characterised by an isochore structure [9].

Press and Robins [13] reported that high GC isochores
contain a mixture of GC- and AT-rich genes, whereas
high AT (low GC) isochores contain mostly AT-rich
genes. Genes found within high and low GC isochores are
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functionally distinguishable by statistical analysis of their
gene ontology categories [13]. The authors suggested that
some genes require AT-richness, while others, contained
within large coherent blocks, have a strong bias towards
mutations to GC.

The neutral theory of evolution states that for a change
to come about in the population as a whole, the new char-
acteristic must be as good as or better than the old one.
Under the assumption of neutrality, genes would acquire
characteristics of the surrounding isochores. Therefore,
noncritical elements such as synonymous bases in 3rd

codon positions and 5' and 3' UTRs should be GC-rich in
high GC isochores. In fact, several groups have found a
positive correlation between the GC3 levels of a gene and
of its surrounding genomic area [2,13,14]. Mouchiroud et
al. [15] found an 8-fold enrichment for high-GC3 genes
within the top 3% of the GC-richest isochores in humans.
These observations support the neutrality assumption.
Elhaik et al. [16], however, found little correlation

between GC3 and isochores within a species and none
between species. Furthermore, the correlation with gen-
erally GC-rich areas is only modest (R2 = 0.43) [17], sug-
gesting that a more complex explanation must be sought.
Moreover, isochores have been reported in both GC3 uni-
modal and bimodal organisms and therefore cannot pro-
vide an exclusive explanation for GC3 bimodality.

Campbell and Gowri [1] described differences in codon
usage in different plant genomes, algae and cyanobacte-
ria, and showed that bimodality existed only in mono-
cots. In a series of publications [10,11], GC3 levels were
analyzed for five Poaceae and three dicot species. It was
found that compositional patterns in the dicot species
resembled those of cold-blooded vertebrates, while the
grasses resembled warm-blooded vertebrates. Bimodality
of GC3 distribution in grasses, and specifically in rice, was
reported by Carels and Bernardi [3], Wang and Hickey
[18] and Salinas et al. [12]. These authors explained the
differences in codon usage among some rice genes by a

Figure 1 GC3 distributions. Distribution of GC3 is bimodal for Z. mays, O. sativa, C. reinhardtii and H. sapiens. Other organisms are either AT-rich, A. cepa, 

A. thaliana, G. max, S. cerevisiae and C. elegans, or located between the two groups, B. napus, D. rerio and M. musculus.
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rapid evolutionary increase in GC content. They gave two
possible explanations for the observed bi-modality: (1)
positive Darwinian selection, acting at the level of trans-
lational efficiency; and (2) neutral mutational bias.

Several characteristics related to high GC3 genes have
been observed to date. Duret et al. [2] examined verte-
brate sequences and described two properties of high-
GC3 genes: the proteins are generally shorter, and introns
are either absent or short in comparison to low-GC3
genes. Carels and Bernardi [3] compared genes in plants
with generally high GC content to those with generally
lower GC content. Although the differences were most
prominent in Gramineae, they observed that other fami-
lies of plants including dicots (e.g. Brassicaceae and
Fabaceae) could be segregated by GC distribution. They
also observed the tendency towards short or no introns in
GC-rich genes and identified a correlation between GC
content, intron size and location among homologs across
species. Duret et al. [17] reported a small correlation
between GC3 and the general GC richness of the sur-
rounding >10 kb of genomic sequence. The relationship
between gene length and GC3 for many organisms has
been analyzed in a number of publications during the last
decade [18-21]. Gene lengths in C. elegans, D. melano-
gaster, A. thaliana [19] and O. sativa [18] are negatively
associated with GC3. Shorter genes in bacteria tend to
have more variable expression levels, and selective pres-
sure on codon usage is also higher in shorter genes [22]. It
was recently demostrated that corn genes with high GC3
tend to be mono-exonic [23]. It has been reported that
shorter and intron-poor genes have either stronger [24-
26] or more variable [27,28] expression levels because
introns can delay regulatory responses and are selected
against in genes whose transcripts require rapid adjust-
ment for survival of environmental challenges [28]. Ren et
al. [25] showed opposite trends in plant and animal
genomes; highly expressed genes tend to be longer in
plants and shorter in animals. A recent paper by Jeffares
et al. [28] proposed a reconciliation of these observations:
both plants and animals show consistent inverse relation-
ships between intron density (defined as intron number/
unspliced transcript length) and rapid regulation (mea-
sured as the fastest rate of change of gene expression
intensity in a time course experiment).

An influence of translation on codon bias has been pro-
posed on the basis of increased hydrogen bonding and
hence strength of G-C pairing in contrast to A-T pairing.
This increased pairing may improve transcript stability at
the mRNA level or improve the speed or fidelity of trans-
lation, thereby improving protein production, as has been
shown in a number of species including bacteria and
some eukaryotes [29]. This is supported by the analysis of
Campbell and Gowri [1], who studied codon usage in

plants and found two groups of genes that had prefer-
ences for GC-ending codons in monocots but not dicots.
Additionally, Jabbari et al. [30] found a correlation
between high-GC genes and amino acid hydropathy.
However, Wang and Hickey [18] used concordance analy-
sis of synonymous and non-synonymous differences to
show that the primary effect is not at the codon or pro-
tein level.

Several groups [3,14,18,22,31] have suggested that the
effect of high or low GC3 may be at the level of transcrip-
tion. The generally shorter introns and coding sequences
of high-GC3 genes led Carels and Bernardi [3] to suggest
that selective pressure has driven housekeeping and non-
regulated genes to higher GC contents while the longer
AT-rich genes have been maintained to provide more
opportunity for regulation and alternative splicing. Clay
et al. [14] looked at CpG islands upstream of GC-rich and
GC-poor transcripts and found little correlation. Never-
theless, the observation of higher GC within the introns
of GC3 transcripts as well as the 5' region, and the weak
correlation between general genomic GC content and
GC3 level, suggests that the transcriptional machinery
may be involved.

Conflicting ideas about codon usage bias and expres-
sion levels have been published. Wang and Hickey [18]
reported that codon bias is not correlated with gene
expression. Using S. cerevisiae expression and sequence
data, Dekker [32] showed that on average, GC-rich genes
are significantly more transcriptionally active than AT-
rich genes. A recent paper by Roymondal et al. [22] pre-
sented an expression measure of a gene, devised to pre-
dict the level of gene expression from relative codon bias.
They suggested that since the bias is caused by the pres-
ence of optimal codons that are recognized by the most
abundant tRNA species, the high-GC3 peak appears as a
manifestation of natural selection acting in grasses and
warm-blooded vertebrates. This process shapes the
codon usage patterns for selected genes to gain optimal
expression levels in response to changing environments.
Roymondal et al. [22] mentioned that within any genome,
codon bias tends to be much stronger in highly expressed
genes.

Attempts have been made to discover an association
between functional classes of genes and GC3. Carels and
Bernardi [3] characterized the high GC-containing tran-
scripts as housekeeping and photosynthetic. D'Onofrio et
al. [33] found GC3 to be higher in genes involved with cel-
lular metabolism and lower in those involved with infor-
mation storage processing. These observations are
consistent with previous studies of general GC contents
of genes in arabidopsis [34].

The existence of a codon usage gradient along the cod-
ing regions was previously discussed by Hooper et al.
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[21], who outlined the possible advantages of a positive
GC3 gradient. Based on an analysis of E. coli genes, the
authors suggested that G3-containing codons may be
translated more quickly and with lower error rate than
other codons, thus avoiding congestion at the ribosomes
because of a gradual increase of speed of translation
along the gene. Wong et al. [35] discovered that in the
plant kingdom, O. sativa genes are richer in GC at the 5'
end than at the 3' end. This gradient and imbalance in
nucleotide strand composition extends beyond the cod-
ing region; transcription start sites are characterized by a
pronounced peak in CG-skew [36,37], and mRNAs tend
to be purine-rich (A for low GC organisms and G for high
GC organisms) [38,39]. Avoidance of unnecessary 'kissing
interactions' between and within mRNAs was mentioned
by Lao et al. [40] as a possible explanation for purine
loading. Species adapted to hotter environments have
stronger selection pressure towards purine loading since
nucleic acids are "stickier" at high temperatures [40]. This
effect is the most pronounced at the wobble position of
codons.

Aside from transcriptional and translational influences,
it is possible that the driver for differences in GC3 oper-
ates at a recombinational level. Gene duplication in the
Poaceae has been mentioned as one possible explanation
of GC3 bimodality [41]. The authors suggested that dupli-
cated genes in O. sativa can be partitioned into 10 blocks
by chromosomal location; these blocks have significantly
different synonymous substitution rates (Ks). Wang et al.
[41] found that Ks was negatively correlated with the GC
content at the third position of codons (correlation coeffi-
cient -0.455) and that the bimodal distribution of Ks was
split into two unimodal distributions corresponding to
high- and low-GC3 genes. Related to this idea are
advances in understanding of the accelerated evolution-
ary rates of some genes. Holmquist [42] described a
model in which hybridization of similar genes during
recombination resulted in a bias toward higher GC con-
tent in the recombined areas. Birdsell [43] demonstrated
that recombination significantly increases GC3 in a selec-
tively neutral manner; the GC-biased mismatch repair
system evolved in various organisms as a response to AT
mutational bias. Birdsell [43] suggested that unimodal
low-GC3 species may have prevailing AT mutational bias,
random fixation of the most common types, or mutation
or absence of GC-biased gene conversion [44]. The
authors hypothesized that recombination is more likely
to occur within conserved and regulatory regions of the
genome; therefore, introns, intergenic regions and
pseudogenes tend to have lower GC contents than ORFs.
Galtier et al. [45] noticed that GC-biased gene conver-
sion, frequently accompanied by an increase in GC3,
influenced the evolutionary trajectory of human proteins

by promoting the fixation of deleterious ATTGC muta-
tions. These observations raise the possibility that the
high-GC3 class of genes might have appeared as a conse-
quence of accelerated evolution.

With the increasing amount of genomic and transcript
information available within the public databases as well
as the improved understanding of gene conversion and
gene regulatory mechanisms, we returned to the puzzle
of GC3 bimodality in grasses in an effort to understand
the significance of this phenomenon. We concentrate our
discussion around Oryza sativa as it is one of the best-
studied grass species at the genomic level.

Results
Gene classes in several organisms are readily identified by 
GC3 plots
We revisited the extent of variation of GC3 found in vari-
ous species. In Figure 1 we have plotted the distributions
of GC3 for 12 plant and animal species. Distributions of
GC3 in H. sapiens, O. sativa, C. reinhardtii, and Z. mays
are clearly bi-modal, A. cepa, A. thaliana, G. max, S. cere-
visiae and C. elegans are unimodal, and B. napus, D. rerio
and M. musculus have intermediate distributions. Uni-
and bi-modality of GC3 distributions in various organ-
isms have been reported previously [3,18,46] and our
results are consistent with the earlier observations on the
species tested.

Isochores may not explain the presence of GC3-rich genes 
in grasses
Previous reports on GC3-rich genes have suggested that
these are present in GC-rich regions of the genome, aka
isochores [10,12,47]. The authors suggested that GC3
bimodality in grasses came about because these genes are
located in regions of their respective genomes that differ
in G+C content. Two decades of full genome sequencing
and annotation of numerous plant genomes make it
worthwhile to revisit the issue of codon usage in plants
and plant isochore organization. In order to answer the
question of isochores in grasses, we analyzed the GC con-
tents of coding and non-coding sequences in O. sativa.
Overall, the correlation of GC3 values between adjacent
genes is 0.05, indicating that there is no significant clus-
tering of these genes. We separated all mRNA-validated
rice genes into two groups on the basis of GC3 content:
the "low" group, where GC3<0.8, contains 11,608 genes;
and the "high" group, where GC3 ≥ 0.8, contains 4,889
genes. The choice of cut-off point between the two
groups was based on the position of the lowest GC3 value
between the two peaks. (This approach is different from
the one outlined in [3] and [47], where the two classes
were distinguished by overall GC content. In those two
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studies, the average GC3 contents were 0.89 in the high
group and 0.69 in the low group). We analyzed the spatial
distribution of genes with high GC3 values. Of the 4,889
genes in the high group, 3,661 are evenly distributed
across the genome; 485 genes (out of for the remaining
1,228) occur in 36 clumps of 10 or more genes (Addi-
tional file 1: Supplementary Figure SF1 and Additional
file 2: Supplementary Table ST1). Five of these clumps are
likely to result from relatively recent gene duplication,
since they consist of genes with identical PFAM annota-
tions. From the analysis of seven animal species, Elhaik et
al. [16] inferred that GC3 can only explain a very small
proportion of the variation in GC content of long
genomic sequences flanking the genes, and correlations
between GC3 and GC in the flanking region decayed rap-
idly with distance from the gene. Accordingly, we exam-
ined 1,000 nucleotides upstream of the 16,497 rice genes
and also found no significant correlation in GC content
between the open reading frames and flanking regions.
The GC contents of the high and low groups gave nearly
identical unimodal bell-shaped frequency distributions
centered at GC = 0.4. These results suggest an absence of
isochore organization in the rice genome and indicate
that the high-GC3 genes are not closely associated with
GC-rich regions in rice.

GC3 correlates with variability of gene expression
Previous reports have concluded that high-GC3 genes are
associated with highly expressed transcripts [34]. We
revisited this observation in rice by examining the expres-
sion levels of O. sativa genes. In order to dissect the pat-
tern, we computed GC3 and the standard deviations of
expression levels for 15,625 O. sativa genes across 106
series of gene expression measurements (see Methods).
The standard deviations of gene expression and GC3 val-
ues were converted to standardized z-scores and plotted
(Figure 2A). There is a strong positive correlation
between the two measures: if we group genes by GC3 and
compute the average z-score of standard deviation of
expression for each group, the relationship can be inter-
polated using the linear regression equation y = 0.228x +
0.0294, R2 = 0.7437. This shows that genes with higher
values of GC3 have more variable expression profiles than
genes with low GC3 values. We also plotted GC3 as a
function of gene expression (Figure 2B). The relationship
between average gene expression and GC3 is not as
straightforward as between GC3 and variability of expres-
sion. It appears that for the majority (10,514) of genes
with expression z-scores between -1 and 1, average
expression level and GC3 are negatively correlated; for a
subset of strongly expressed genes (2,224 genes with aver-
age standardized expression > 1), the relationship is posi-

tive; genes that are weakly expressed (2,887 genes with z-
scores < -1) tend to have high GC3 and show no signifi-
cant correlation between GC3 and expression. This obser-
vation may explain why conflicting results have been
reported: weak, positive or negative correlations between
codon usage and expression level [18,48,49]. The
observed saddle-like pattern (Figure 2B) and the linear
relationship between standard deviation of gene expres-
sion and GC3 (Figure 2A) may indicate the presence of
distinct functional classes of genes in which the two
quantities are differently related to each other. The dis-
covery of relationships between expression levels and
GC3 motivated us to analyze the promoters of well-anno-
tated O. sativa genes.

GC3 correlates with the presence of an upstream TATA box
For decades, it was believed that genes whose promoters
contain TATA boxes (TATA+) are more highly expressed
than those that do not (TATA-) [50]. Yang et al. [51] dem-
onstrated that TATA- genes are frequently involved in
"houskeeping" activities in the cell while TATA+ genes

Figure 2 Variability of gene expression in rice as a function of GC3 

content in the CDS. A: Rice expression variability as a function of GC3 

frequency. X-axis: Standardized GC3, Y-axis: Standardized Expression 
Variability. B: GC3 content in rice genes as a function of gene expres-
sion. X-axis: Standardized Gene Expression, Y-axis: Standardized GC3. 
Number of genes per each data point for both plots is ~200, resulting 
in a standard error less than 0.05 for each data point in the graphs.
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are often highly regulated by biotic or stress stimuli. In
2008, Moshonov et al. [52] reported that TATA+ genes
are generally shorter than TATA- genes, and gene expres-
sion is influenced by a combination of core promoter
type, presence of introns and gene size. It was recently
shown by Troukhan et al. [53] that TATA+ promoters
belong to genes with higher standard deviations of
microarray intensity than TATA- promoters. Addition-
ally, a saddle-like pattern similar to that in Figure 2B was
observed when the frequency of TATA-boxes was plotted
as a function of expression level. We have previously
demonstrated [53] that different GO categories have dif-
ferent frequencies of TATA+ genes. For example, almost
60% of oxidative stress-related genes have TATA boxes, in
sharp contrast to 20% of protein folding-related genes.
Since expression variability and gene class appear to be
correlated with codon usage, we decided to "complete the
triangle" and calculate the frequency of TATA boxes in
relation to the GC3 levels of genes. Approximately 30% of
rice promoters in Osiris database contain a canonical
TATA-box in the 50 nucleotides upstream of the tran-
scription start site. Only 18% of rice genes with GC3 <
0.45 are equipped with TATA+ promoters as compared to
52% of those with GC3 > 0.95 (Figure 3, Additional File 1:
Supplementary Figure SF2). We hypothesize that the
presence of TATA in the promoter establishes a confor-
mational framework for transcription factors that facili-
tates reliable and timely transcription initiation.
Therefore, stress-response genes tend to have a higher
frequency of TATA-boxes. An additional GC pair makes
translation more efficient and better coordinated with
transcription [21]. A stress-related protein has to be pro-
duced quickly and reliably at the onset of a stress condi-
tion. Therefore, insertion of a TATA box in the promoter
sequence and elevated GC3 frequency ensure rapid pro-
duction without altering the amino acid sequence.

Number of expressed paralogs and orthologs is negatively 
associated with GC3

Using the same logic, it is easy to explain why the number
of gene paralogs is negatively correlated with GC3 (Figure
4). If a genome has multiple copies of a gene (ideally
equipped with the same promoter machinery), any one of
these copies may be transcribed and translated to obtain
the required protein. On the other hand, unique copies of
genes have to be optimized transcriptionally and transla-
tionally to ensure protein production. These ideas were
first formulated almost a decade ago, when Hooper et al.
[21] suggested that there is positive selection on codons
that are translated more efficiently, either more quickly or
more accurately. Similarly, considering the specificity of a
gene in an organism, highly species-specific genes (those
lacking orthologs in other species) tend to possess high

GC3: 44% of O. sativa-specific genes have GC3 ≥ 0.8 as
compared to 29% for all genes. This is consistent with the
assumption that equilibrium is reached at the high AT
end of the spectrum, and unless there is evolutionary
pressure to maintain high GC content, a gene will
become AT-rich. The requirement for protein sequence
conservation explains why the effect is most pronounced
at the third position of a codon. We have to point out that
our earlier observation [23], that horizontal gene transfer
may explain GC3 richness in a certain fraction of grass
genes, is not applicable to all genes in the high-GC3 class.
We found that among the expressed genes (defined by
presence of mRNA) in rice, 46% of those in the high-GC3
class have orthologs in A. thaliana, as compared to 60%
of the low-GC3 genes. However, if we consider all rice
genes regardless of expression level (41,129 excluding
transposons), we find that 65% of the high-GC3 class and
57% of the low-GC3 class have orthologs in A. thaliana.
This means that GC3 content affects the expression pat-
tern. Many high-GC3 genes with homologs in arabidopsis
are not expressed in rice, probably because they have
been silenced by methylation and will be activated only
under extremely rare stress conditions.

GC3 is negatively correlated with gene length and intron 
density
Genes in the middle of the GC3 spectrum (0.4<GC3<0.7)
have a negative correlation with ORF length (Pearson's
correlation coefficient = -0.3), whereas for genes in the
high GC3 class and for those with GC3<0.4, it is approxi-
mately 0. As was previously observed [28], variability of
gene expression is negatively correlated with intron den-
sity. We computed Pearson's correlation coefficient
between GC3 and intron density for O. sativa and S.
bicolor: for both grass species it is approximately -0.3
(Additional File 1: Supplementary Figure SF3). Genes
with high GC3 tend to be mono-exonic [23]. This is con-
sistent with our observation of a positive relationship
between gene expression variability and GC3. On the
basis of this evidence, we suggest that rapidly evolving
genes are shorter, have more variable expression and are
GC3-rich. More "evolutionarily stable" genes tend to
accumulate introns and increase the ORF length.

Gradient of codon usage along the gene
Analysis of coding sequences in several organisms has
indicated a gradient in codon usage from the 5' to 3' ends
of genes [4,21,35]. Based on analysis of E. coli genes,
Hooper et al. [21] suggested that G3-containing codons
may be translated with lower error rate and more quickly
than other codons, thus avoiding congestion of ribo-
somes owing to a gradual increase of speed of translation
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along the gene. According to Wong et al. [35], O. sativa
genes are richer in GC at the 5' end than at the 3' end. A.
thaliana shows no such trend in GC usage. Lescot et al.
[4] reported that there are two distinct classes of genes in
the Musa acuminata (banana) genome: those with arabi-
dopsis-like and those with rice-like gradients. M. acumi-
nata is a monocot plant that belongs to the same order of
commelinids as Poaceae. Analysis of GC3 distribution in
the members of the Zingiberales order, banana, ginger
and turmeric, indicates the possibility of bimodality (see
[4] and Figure 5 in this work). Unfortunately, the number
of currently sequenced CDSs for the Zingiberales order is
too small for conclusive statistical analysis. For O. sativa
genes from the high and low GC3 classes, we computed

the  and found that genes in the

high-GC3 class have a slight preference for C3 (therefore,
more G3 in mRNA) and the low-GC3 class have a slight

preference for G3. The overall correlation coefficient
between GC3 skew and GC3 content is approximately
0.45. We plotted GC3 skew as a function of the number of
codons from ATG (Figure 6). Genes from the high-GC3
peak in rice, sorghum and, probably, banana have a pref-
erence for C3 over G3. This preference initially increases
from 5' to 3' and then peaks and levels off at CG3 skew ≈
0.05. Genes in the low-GC3 class have a similar tendency
in the first 50 or so codons but then show a strong prefer-
ence for G3 over C3, CG3 skew ≈ -0.1. Since the low-GC3
class is approximately twice as abundant, when genes
from the high- and low-GC3 classes are considered
together, the prevailing tendency is for GC to decrease
toward the 3' end, as observed by Lescot et al. [4]. If the
translation efficiency explanation for genes [21] carries
over to eukaryotes, genes with positive GC3 skew have
more G3 in mRNA and therefore more optimal codons.
Following this explanation, we hypothesize that genes in

CG C G
C G3

3 3
3 3

skew = −
+

Figure 3 Frequency of TATA+ promoters in rice as a function of GC3 content in the CDS. GC3 is positively correlated with the presence of up-
stream TATA boxes. Each data point on this plot contains information from at least 700 genes.
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the high-GC3 class must be more important for the well-
being of an organism than genes from the low-GC3 class.

Codon usage and gene classes
The first two nucleotides in a codon are more reflective

of gene function than the third one. Using coding
sequences of O. sativa, we computed average GC3 and
GC12 for GO and FPAM annotations. The coefficient of
variation for GC12 is approximately three times smaller
than the coefficient of variation for GC3. However, the
third position in the codon also affects gene function. Liu
et al. [54] demonstrated that synonymous codon usage
and gene function are strongly correlated in O. sativa;
they found that genes involved in metabolic processes
have a preference for C or G in the third position of a
codon. Different PFAM families show affinity for high- or
low-GC3 classes. For example, O. sativa genes annotated
as "expressed proteins" are more prevalent in the low
class (22% vs. 33%) and alpha-expansins are more preva-
lent in the high group (relative abundance is 46). Details

are given in the Supplementary data (Additional File 2:
Supplementary Table ST2). It appears that GC3 increase
tends to co-evolve in some PFAM families of grass genes
across multiple organisms. The distribution of GC3 in
histone, ribosomal and chrolophyll a-b binding protein
coding genes are very similar for rice and corn. In both
organisms, 80% of chrolophyll a-b binding proteins have
GC3>0.85, ribosomal proteins are approximately nor-
mally distributed around GC3 = 0.65, and 60% of all his-
tones have GC3>0.75. Another way to look at the
relationship between gene category and GC3 is by consid-
ering GO annotation (see Additional File 2: Supplemen-
tary Tables ST3-ST7). D. rerio, M. musculus, H. sapiens,
C. reinhardtii, O. sativa and Z. mays have higher GC3 val-
ues than A. thaliana and we were curious to see if GC3 is
consistent between these organisms and GO categories.
The high-GC3 species also have consistently higher GC3
values for genes from the following GO classes: electron
transport or energy pathways, response to abiotic or

Figure 4 Number of expressed paralogs and GC3. Number of expressed paralogs in the rice genome is negatively associated with GC3.
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biotic stimuli, response to stress, transcription and signal
transduction. Therefore, we conclude that certain classes
of genes are characterized by high GC3 values across
kingdoms.

GC3 in CDS and GC genomic context are not correlated
Using the genome of O. sativa, we computed the proba-
bility of a rice gene belonging to the high-GC3 peak on the
basis of the GC content of its promoter, coding GC12 and
introns (Figure 7). The MSU collection of rice upstream
sequences contained 66,710 1-kb long sequences, of
which we retained 16,497 corresponding to our curated
set of ORFs. MSU's collection of introns contained
252,431 sequences. We eliminated introns containing
blast hits to O. sativa ESTs. The resulting set contained
12,571 loci with introns. The dividing line between high
and low GC3 was set at 0.8. We observed that of these
three gene parts, the GC content of introns seems to have
the most striking effect on GC3 content in coding regions.
The reduced influence of GC12 can be explained by con-
straints imposed by protein sequence conservation.
There is also no dependency between GC3 and the GC
content of 1000 nucleotides taken from the 3' flanking

region (it has a negligible correlation coefficient of -0.02;
data not shown). Introns are generally AT-rich, with only
a small fraction having high GC values. To test the statis-
tical significance of this effect, we used our curated set of
12,571 genes that have introns and performed a chi-
squared test. The resulting p-value was 8.8 × 10-12, so the
effect is highly significant. Similar results were obtained
for another grass, S. bicolor (data not shown). The sharp
increase in probability of being in the high-GC3 class for
genes with GC-rich introns suggests that the appearance
of high-GC3 genes in grasses is unlikely to be linked to a
translational mechanism.

High-GC3 genes have more targets for methylation
Kalisz and Purugganan [55] proposed that GC content
may affect gene transcription. They observed that natu-
rally-occurring variations of gene methylation (termed
epialleles) can influence the level of gene expression and
produce novel phenotypes. The authors found that meth-
ylated epialleles in plants are associated with organ speci-
ficity and stress response. Salinas et al. [12] reported that
GC-rich genes provide more targets for methylation. The
estimates were made using 5mC quantification by HPLC
and methylation over available di- and tri-nucleotide tar-
gets of methyltransferases. A recent paper by Stayssman
et al. [56] points out that housekeeping genes are not
methylated and are therefore constantly available for
transcription, whereas tissue-specific genes are methy-
lated and generally inactivated. Stayssman et al. [56]
observed a relatively large number of CpG islands that
seem to be fully methylated in most cell types but unm-
ethylated in a single tissue. These regions are initially
unmethylated, and then they undergo de novo methyla-
tion in all somatic cells during development. Methylation
may be involved in repression of the genes in these
islands. These observations are consistent with our find-
ings that genes in the high-GC3 peak tend to have a
higher frequency of methylatable CG dinucleotides (dis-
cussed below, Figure 8) and are more differentially
expressed under various stresses, among tissue types and
among developmental stages. In order to illustrate this
fact better, we selected 2,300 genes from the high-GC3
peak in rice and compared them to 2,300 genes with the
lowest GC3 contents. For these genes, we computed CG
and GC frequencies in CDSs (relative frequencies CG/
GC are shown in Figure 8 and raw frequencies are in
Additional File 1: Supplementary Figure SF4). Apparently,
a high-GC3 peak is characterized by an increased prefer-
ence for CG over GC and a low-GC3 class favors GC over
CG (the peak is centered at ~0.5). We suggest that a regu-
latory mechanism acts differentially on high- and low-
GC3 genes. One may wonder whether these pronounced
differences are purely statistical rather than biological, as

Figure 5 GC3 gradient from 5' to 3' ends of coding regions. At the 
5' end of the open reading frame, high GC3 genes of rice, sorghum, and 
banana have a slight positive gradient, whereas low GC3 genes in ara-
bidopsis, rice, sorghum, and banana become more AT3-rich towards 
the 3' end.
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dinucleotide frequencies depend on overall nucleotide
composition. Therefore, we examined the differences
using relative abundance values (defined in Methods)
that account for background nucleotide distribution.
Additional analysis was needed to establish the extent of
this effect. We computed di- and tri-nucleotide frequen-
cies and relative abundance values (Figure 9) for coding
regions of A. thaliana, S. bicolor and O. sativa. Frequen-
cies and relative abundance values of CG in rice and sor-
ghum have bimodal distributions, while tri-nucleotide
frequencies and relative abundance values are unimodal.
Although the frequencies of trinucleotides of the type
CWG, where W stands for A or T, differ among the
organisms studied, the distribution of relative abundance
of CWG is nearly identical for S. bicolor, O. sativa and A.
thaliana.

The bimodality of genome signature distribution indi-
cates the presence of hidden covariates. Tran et al. [57]

reported that cytosine DNA methylation in plants is
found predominantly in transposable elements and repet-
itive DNA, where methylcytosines are typically found in
CG and CWG. Methylation of CG and CWG sites is
maintained by different mechanisms: CG sites are main-
tained by a plant homolog of mammalian Dnmt1 acting
on hemi-methylated DNA after replication [57] whereas
methylation of CNG sites (N is any nucleotide) is main-
tained by other mechanisms. Methylation of Cs that are
followed by Gs is a regulatory strategy employed by some
eukaryotes [58]. Figure 10 shows that the high-GC3 class
has a significantly greater proportion of the dinucleotide
CG than the low-GC3 class and that there is no significant
difference in the relative abundance of CWG between the
two classes of genes. Since there is evolutionary pressure
to keep the first and second nucleotides in the codon
intact, we analyzed position-specific genomic signatures
ρC3G1 and ρC2G3 (Figure 11) and position-specific fre-

Figure 6 CG3 skew in plant coding regions.  stratified by GC3 classes (High (H): GC3 ≥ 0.8 and Low (L): GC3<0.8) for coding 

regions of arabidopsis, rice, sorghum, and banana. Genes are aligned by ATG, and frequencies of nucleotides are computed in a sliding window of 50 
nucleotides.
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quencies of nucleotides in the third position, conditional
on having cytosine in the second position. For the high-
GC3 class of genes there is a slight preference for G in the
third position: P(G3|C2)/P(C3|C2) = 1.12. For the low-GC3
genes, there is a more pronounced difference between
conditional probabilities, and the CG combination was
the least favored for rice: P(G3|C2)/P(C3|C2) = 0.6.
Another possibility for obtaining CG dinucleotides with-
out altering the amino acid sequence is to place C in the
third position of a codon that is immediately followed by
a codon starting with guanine. Genes from the low GC3-
peak have cytosine in the third position of the previous
codon less frequently than high GC3 genes. For the high-
GC3 genes, there is a preference for C in the third posi-
tion: P(C3|G1)/P(G3|G1) = 1.52. For the low GC3 genes,
there is an opposite trend: P(C3|G1)/P(G3|G1) = 0.45. A
similar pattern was found when we examined sequences
of S. bicolor. For comparison, we computed position-spe-

cific enrichments for A. thaliana. Since GC3 has a uni-
modal distribution, we observe no significant differences
between high-GC3 and low-GC3 genes in arabidopsis (see
Additional File 1: Supplementary Figure SF5).

We analyzed protein families containing genes of O.
sativa that are either enriched in CG and depleted in
CWG or enriched in CWG and depleted in CG. Figure 12
shows the distribution of position-specific relative abun-
dance for αβ-hydrolase-3 proteins of O. sativa; αβ-hydro-
lase-3 represents a family of proteins that is enriched in
CG and depleted in CWG. On the other side of the
enrichment spectrum are genes containing HEAT repeats
(Additional File 1: Supplementary Figure SF6); they are
depleted in CG and the relative tri-nucleotide abundance
is ~1. These proteins function as protein-protein interac-
tion surfaces; many HEAT repeat-containing proteins are
involved in intracellular transport processes. Protein
kinases (Additional file 1, Supplementary Figure SF7)
participate in many processes such as cell division, prolif-

Figure 7 Probability of being in the high GC3 peak as a function of GC content of introns, coding GC12 and promoters (O. sativa). GC content 
of introns seems to have the most striking effect on GC3 content in coding regions.
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eration, apoptosis and differentiation. This diversity may
explain the wide bimodal distribution of dinucleotide
abundance values for protein kinases. In analyzing the
relative abundances of the dinucleotide CG in O. sativa
and S. bicolor we noticed that different Gene Ontology

categories and Protein Families have preferences for cer-
tain nucleotide compositions, and these preferences are
consistent between the two organisms. Conservation is
higher for certain gene categories than for others: for
example, genes that belong to the "transcription regula-
tion activity" GO function category have a correlation
coefficient of 0.91 between rice and sorghum, and 0.46
between rice and arabidopsis. Genes that have "motor
activity" function have a correlation coefficient of 0.36
between rice and sorghum, and 0.13 between rice and
arabidopsis. These observations support the earlier sug-
gestion of Pradhan et al. [59] that the action and control
of CG and CWG methyltransferases might be different
and that CG and CWG methylation may serve different
biological functions.

High-GC3 genes and GC-biased gene conversion
Many previous studies have demonstrated a significant
association between GC3 and recombination rate across
different plant and animal species [41,42,44,45,60-62].
The conclusion is that high GC3 content in an organism
indicates a recombining genome. Similarly, the presence
of two distinct GC classes of genes may suggest the exis-
tence of recombining and non-recombining regions
within that genome. To support this hypothesis, we com-

Figure 8 Distribution of ratio of di-nucleotide frequencies CG to 
GC in O. sativa CDSs. High-GC3 genes provide more targets for meth-
ylation than low-GC3 genes.
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of CG for A. thaliana, O. sativa and S. bicolor.
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puted the mutation rates of rice genes (see Methods). For
our curated dataset of 16 K rice genes, we found a posi-
tive correlation between the density of SNPs per 1000
nucleotides and GC3 (R2 = 0.71, SNP = 1.114+0.583GC3).
Association with overall GC content is much weaker, R2 =
0.32. Therefore, we conclude that high-GC3 genes accu-
mulate more mutations and are located in the highly
recombining regions of the rice genome.

Importance of GC3

Analysis of gene-specific codon usage bias shows that
GC3 is the major characteristic of codon utilization in
Poaceae. In order to demonstrate this, we used Principal
Component Analysis (PCA) to find a basis for the space
of codon vectors. Approximately 50% of the variance in
codon usage is explained by the first principal compo-
nent; this component has an almost perfect negative cor-
relation (-0.98) with GC3. The remaining components
contribute at most 4% each to the variance; the second
principal component is weakly correlated to GC3 skew.

Discussion
Deviations from unimodal bell-shaped distributions of
GC3 appear in many species, but grasses have very pro-

nounced bimodal distributions (Figure 1, Additional File
1: Supplementary SF8 and SF9). Bimodality in warm-
blooded vertebrates can be explained by the presence of
isochores. Although there are many similarities between
genes in high-GC human isochores and high-GC3 genes
in grasses, the isochore hypothesis does not fully explain
the existence of high-GC3 genes in grasses: first, there is
no correlation between ORFs and the flanking regions;
second, most species with isochores do not have a high-
GC3 peak. Possible causes of bimodality may be eluci-
dated by comparing genes in the high- and low-GC3
classes. These classes differ in nucleotide composition
and composition gradients along coding regions. High-
GC3 class genes have a significantly higher frequency of
CG dinucleotides (potential targets for methylation);
therefore, there is an additional regulatory mechanism
for high-GC3 genes. Springer et al. [63] reported that out
of eight classes of methyl-CpG-binding domain proteins
present in dicots, only six exist in monocots, suggesting a
difference between dicots and monocots in silencing of
methylated genes.

Two competing processes may affect the frequency of
methylation targets: the GC-based mismatch repair
mechanism and AT-biased mutational pressure. In
recombining organisms (e.g., grasses and warm-blooded
vertebrates), the GC content of coding and regulatory
regions is enhanced because of the action of the GC-
based mismatch repair mechanism; this effect is espe-
cially pronounced for GC3 [43]. Recombination has been
shown to be a driving force for the increase in GC3 in
many organisms [64]. Repair (recombination) happens all
over the genome with a certain precision, leading to an
increase in GC. If repair did not occur in defence-related
genes, the organism may fail to survive or to reproduce. If
repair did not happen in less important genes (and, con-
sequently, their GC content remained the same), it may
not be detrimental to the organism. AT-biased muta-
tional pressure, resulting from cytosine deamination [65]
or oxidative damage to C and G bases [66], counteracts
the influence of recombination; and in most asexually-
reproducing species and self-pollinating plants, AT bias is
the winning process. Our analysis from aligning indica
and japonica, as well as earlier publications [43], indicate
that genomic regions under higher selective pressure are
more frequently recombining and therefore increase their
GC3 content. This mechanism may explain the pro-
nounced differences in GC3 between A. thaliana and its
closest relatives. Comparison of the nucleotide composi-
tions of coding regions in A. thaliana, R. sativus, B. rapa,
and B. napus reveals that the GC3 values of R. sativus, B.
rapa, and B. napus genes are on average 0.05 higher than
those of the corresponding A. thaliana orthologs [67]. An
important difference between A. thaliana and Brassica

Figure 11 Distribution of relative abundance ρC2 G3 (A) and ρC3 

G1(B) at the wobble position for O. sativa.
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and Raphanus is that the latter two genera are self-
incompatible, whereas A. thaliana is self-pollinating.
Self-pollination in arabidopsis keeps its recombination
rates low and thus reduces the GC3 content of its genes.
Self-pollination is also reported in some grasses such as
wheat, barley and oats. Analysis of recombination in
wheat [68] showed that the genome contains areas of
high and low recombination. Grasses have an efficient
reproductive mechanism and high genetic variability that
enables them to adapt to different climates and soil types
[69,70]. We hypothesize that since self-pollination gener-
ally lowers recombination rates, evolutionary pressure
will selectively maintain high recombination rates for
some genes. Analysis of highly recombinogenic genomic
regions of wheat, barley, maize and oat identified several
genes of agronomic importance in these regions (includ-
ing resistance genes against obligate biotrophs and genes
encoding seed storage proteins) [69]. In addition to the
methylation-driven growth of high-GC3, we hypothesize
that developing GC3 richness in some genes may, if it is

not balanced by AT-bias, work as a feed-forward mecha-
nism. Once it appears in genes under selective pressure, it
provides additional transcriptional advantage. GC pairs
differ from AT pairs since guanine binds to cytosine with
three hydrogen bonds, while adenine forms only two
bonds with thymine. This additional hydrogen bond
makes GC pairs more stable and GC-rich genes will have
different biochemical properties from AT-rich genes.
When an AT pair is replaced by a GC pair in the third
position of a codon, the protein sequence remains
unchanged but an additional hydrogen bond is intro-
duced. This additional bond can make transcription more
efficient and reliable, change the array of RNA binding
proteins, or significantly alter the three-dimensional fold-
ing of the messenger RNA. In this case, those plant spe-
cies that thrive and adapt successfully to harsh
environments demonstrate a strong preference for GC3 in
the third position of the codon.

High GC3 content provides more targets for methyla-
tion. The correlation between methylation and GC3 is

Figure 12 Distribution of position-specific relative abundance for αβ-hydrolase, O. sativa.
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supported by Stayssman et al. [56], who reported a posi-
tive correlation between methylation of internal unmeth-
ylated regions and expression of the host gene. In this
paper we have demonstrated a positive correlation
between GC3 and variability of gene expression; we also
found that high-GC3 genes are more enriched in CG than
the low-GC3 class. Therefore, GC3 classes provide more
targets for de novo methylation, which can serve as an
additional mechanism of transcriptional regulation and
affect the variability of gene expression. Additional tran-
scriptional regulation makes species more adaptable to
external stresses.

Grasses have undergone several genome duplications.
Genomic regions varied in their recombination rates and
GC3 contents. Since high GC3 content in a gene provided
an evolutionary advantage, this was frequently the sole
copy retained in grasses. This may explain why genes in
the high-GC3 class frequently lack paralogs. High-GC3
genes provide an evolutionary advantage owing to their
optimized codon usage and to the existence of methyla-
tion targets allowing for an additional mechanism of
transcriptional regulation. Therefore, the high-GC3 class
of genes has been maintained in grasses for generations.

Conclusions
In this paper we combine a variety of prior observations
and insights on GC3 biology with new observations using
larger genome data sets to establish a unifying framework
of hypotheses to explain all the available data fully. This
framework consists of evolutionary forces and sexual
reproduction patterns to justify a wide variety of
observed codon usage patterns in plants and animals.
These evolutionary forces are realized through introduc-
ing new mutations during meiotic recombination and fix-
ation with the help of DNA methylation and
transcriptional mechanisms. The presence of GC3-rich
genes is not likely to be a consequence of chromosomal
isochores or horizontal gene transfer. Regardless of their
initial origin, high-GC3 genes in recombining species
possessed a self-maintaining mechanism that over time
could only increase their drift towards even higher GC3
values. This uncompensated drift may explain the pro-
nounced bimodality of some rapidly-evolving species.
Competing forces acting in grasses make GC3 distribu-
tion distinctly bimodal; genes in the high-GC3 class are
more transcriptionally regulated, provide more targets
for methylation and accumulate more mutations than
genes in the low-GC3 class.

Methods
Data sources
In our analysis, we concentrated on those plant species
that benefit from complete sets of full-length cDNAs and

sequenced (complete or nearly complete) genomic data.
We used the following species: O. sativa, S. bicolor, A.
thaliana, C. reinhardtii, Z. mays, D. rerio, M. musculus
and H. sapiens. O. sativa genes and genomic sequences
were downloaded from the Rice Genome Annotation
project[71]; after exclusion of all transposon-like genes
and genes without full-length cDNA support we obtained
a final set of 16,497 genes. Rice promoter sequences were
downloaded from the Osiris database [72]; positions of
Transcription Start Sites were refined using the TSSer
algorithm [53]. Rice microarray data were obtained from
NCBI, Gene Expression Omnibus, platform GPL2025.
We used two measures of expression: average intensity
and standard deviation across 106 series of gene expres-
sion measurements. We used the recently published
sequence and annotation data from the Joint Genome
Institute for C. reinhardtii and S. bicolor (27,640),
released 08/28/2008 [73] and 10/28/2008 [74] respec-
tively. A. thaliana genes (27,741) were downloaded from
The Arabidopsis Information Resource. Collections of D.
rerio, M. musculus and H. sapiens sequences were taken
from NCBI. Z. mays sequences were obtained from J.
Craig Venter Institute. The remainder of the plant tran-
scripts for the Poaceae family (aka grasses) were down-
loaded from TIGR Plant Transcript Assemblies[75]. We
used the frequency of single nucleotide polymorphisms
per 1-kb gene length, obtained from the Plant Genome
Mapping Laboratory, University of Georgia [76], as a
crude proxy for the local recombination rate in rice. Sup-
plementary figures and tables are available at http://
model.research.glam.ac.uk/projects/glacombio/GC3/.

Calculation of z-scores
For each gene, GC3 values and the standard deviation of
log-transformed gene expression values were computed
across all experiments. Genome-wide distributions of
both GC3 and gene expression are approximately normal.
For each of these measures, the parameters μ (mean) and
σ (standard deviation) of the corresponding normal dis-
tributions were determined. The standard deviations of
gene expression and GC3 values were converted to z-

scores, , and the standardized scores were plot-
ted.

Calculation of relative abundance
Relative abundance was calculated according to [77], in
which it was observed that the profiles of relative dinucle-
otide abundance values (genome signatures) are equiva-
lent to the "general design" of organisms, and closely-
related species have similar genome signatures. The com-
putational formulae for di- and tri-nucleotide relative
abundance values are

, where N stands

z x= −m
s

r rCG CWG
fCG
fC fG

fCWG fC fW fG
fCW fWG fCNG

= =,
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for any nucleotide and W denotes A or T. As demon-
strated by [78], the ratio of observed to expected CpG fre-
quency underestimates the real CpG deficiency in GC-
rich sequences: because the formula is non-linear, an
identical fraction of mutated CpG in high- and low-GC
classes of genes results in artificially higher values of ρCG
for the former than the latter. The authors suggested the
use of a threshold of ρCG as a function of G+C frequency
to assess the presence of unmethylated sites, which can
be calculated using the following formula:

. In order to take the influ-
ence of this mathematical artifact into account in addi-
tion to the original relative abundance values, we also
considered GC-corrected values defined as

.

Principal Component Analysis
Principal Component Analysis (PCA) involves a mathe-
matical procedure that transforms a number of possibly
correlated variables into a smaller number of uncorre-
lated variables called principal components. The data are
represented in a new coordinate system such that the
greatest variance of the data lies on the first principal
component, the second greatest variance on the second
coordinate, and so on [79]. Our approach was generally
similar to that of Chen et al. [80]: for each gene i of O.
sativa we calculated codon frequency ci, m(w), where m(w)
stands for wth codon for amino acid m, and applied PCA
(using the princomp function in R).
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