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In the present study, we combine linguistic annotation of oral texts in Russian with the registration of BOLD signal in functional MRI 
experiments to determine how and where semantic categories are represented in the human brain. Using the same stimuli material, we also 
analyze the differences in cortical activation in three thematic domains: description of nature, description of working principles of technical 
devices and more self-referential texts, addressing the question of human identity in conflict situations. We discuss methodological problems 
within the two approaches (microanalysis and macroanalysis) to study brain activation in natural conditions, i.e. under a continuous speech 
flow. Within the thematic domain studies, only minimally significant differences in brain activation were registered during the listening to texts 
from the three thematic groups. This outcome leads to the conclusion that the approach of thematic group contrasts (cognitive subtraction 
methodology) is not sufficient to study the mechanisms of text comprehension, and should be replaced by the modeling of multidimensional 
representations of semantic categories in time. Within the semantic category approach, we describe the neurolinguistic process of text 
understanding as the activation of 15 clusters responsible for semantic categories (e.g. “Conflict”, “Mental”, “Social”). Our data demonstrate 
that the clusters are widely distributed across the human brain. In contrast to the previous studies, we suggest that deep subcortical 
structures are involved in the processing of certain categories as well. The observed lateralization of category processing underlines the 
involvement of the right hemisphere in the processing of meaning.
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  Ask not what is inside of your head,
  but what your head is inside of.

James J. Gibson

Non-invasive brain imaging techniques such as 
functional magnetic resonance imaging (fMRI) have 
established an impressive link between psychological 
investigation of cognitive functions and neuroscience. 
However, the ecological validity of these new converging 
studies usually is rather low. This can be the major 
weakness of cognitive neuroscience as the findings 
may change dramatically when, for instance, in memory 
research simple alpha-numerical stimuli are replaced 
with complex natural material [1–3].

Similarly, the bulk of results from psycholinguistic and 
neurolinguistic studies could be artifacts of the artificial 
character of tasks and stimulus material, because 
the majority of these studies have been conducted 
with isolated words or, at best, with single sentences. 
Although semantic selectivity of some brain areas has 
been known from clinical observations for decades [4], it 
was owing to the seminal work by Huth and colleagues 
[5] that the problem of brain’s semantic selectivity was 
attempted to be solved in a general way. These authors 
systematically identified semantic selectivity for English 
in 7 native speakers across the cortex using voxel-
wise modeling of fMRI data collected during subjects 
listening to hours of meaningful narrative stories. Due 
to complex multidimensional computations with several 
rather arbitrary steps of reducing uncertainty used in the 
modeling, many questions remained even years after 
the study. Until now there is no replication of Huth’s 
et al. results from other research groups, or for other 
languages.

We recently started a similar line of research with 
continuous fragments of Russian spoken language using 
a more traditional cognitive subtraction methodology 
[6]; however, we were unable to demonstrate a 
stable semantic mapping. Several reasons may have 
contributed to this failure, both conceptual and technical. 
First of all, it could be the general limitations of Donders 
cognitive subtraction methodology in neurocognitive 
research [7, 8]. Secondly, there have been flaws in our 
stimulus material selection: in difference to that of Huth 
et al. [5], it was not self-referential and not emotional. 
Finally, we used in these earlier experiments the 
standard fMRI scanning protocol with repetition time 
(RT) of 2000 ms, which may have been too slow for 
measuring the speech flow. 

In the present study, we have attempted to correct 
the limitations of our earlier experiments. We also 
attempted to replicate and expand the approach 
used by Huth et al. [5]. Accordingly, we employed 
two data-processing approaches. The first approach 
(macroanalysis) consisted of contrasting general brain 
activation effects of three radically different groups of 
texts, one of which now described personal episodes 

of life with elements of threat and its resolution, while 
two other were descriptions of nature and the working 
principles of technical devices. In the second, more in-
depth approach (microanalyses), we moved closer to the 
original Huth’s methodology. In this microanalyses, we 
took into account the typical multidimensional contexts 
of a particular word use in the Russian language. We 
also generally improved the temporal resolution of our 
BOLD signal measurement by introducing new protocol 
of ultrafast multiband scanning.

Materials and Methods
Text material and its markup annotation. As 

a stimulus material, we have selected and partially 
produced anew 15 short texts (about 150 words) in 
Russian, divided into three thematic groups. The first 
theme was the beauty of nature: five fragments from the 
works of famous Russian writers (Konstantin Paustovsky, 
Ivan Turgenev, and others) with description of nature. 
These highly literary texts describe forests, the sky, 
plants, and birds without mentioning actions or events. 
The second theme was the working of technical devices: 
five texts, each of which describes the working principle 
of a technical device such as steam engine or cylinder 
door lock. Texts of this group were rather instructional, 
written in simple language and not containing technical 
subtleties. Finally, the third group of texts was about 
partially dramatic circumstances of contemporary life: 
five stories were first-person narratives describing a 
short emotional story experienced by one of the authors 
of this study. 

All the texts were audio recorded by a professional 
broadcasting speaker (male). We also provided 
the texts with linguistic markup according to the 
following sequential algorithm: (a) time annotation, 
(b) lemmatization, (c) vectorization, (d) feature words 
annotation. We describe each step of the markup 
production below.

(a) Time annotation has been assigned in ELAN 
annotation software: for each word, its temporal 
boundaries in audio recording were manually defined. 
The annotation has been double-checked by two 
experts. 

(b) Each word has been annotated by its lexeme 
(written — write, things — thing) in order to reduce 
the rich morphological inflections in Russian. This was 
performed with the help of pymorphy2 software [9]. 
Pymorphy does not take into account word contexts and 
therefore cannot guarantee an automatic selection of a 
correct variant in case of homonymy: it suggests a list of 
possible variants ordered by the decreasing probability. 

In order to select the correct lexeme, the automatic 
lemmatization was checked by an expert-linguist, who 
has corrected the errors.

(c) At the next step of semantic markup, each word 
was annotated by a semantic vector (word embedding), 
produced by word2vec method [10], automatically 
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0 0 0 год_NOUN человек_NOUN время_NOUN дело_NOUN
фрагмент 00:00.7 00:01.2 0.1328190325780939 0.11861247487522375 0.19820582332505354 -0.005950817967533606
номер 00:01.2 00:01.5 0.20096777926788945 0.1098714356539846 0.1625228053384632 0.14986479297567268
погода 00:03.3 00:03.7 0.10855503527139632 0.1756754253004562 0.2354419469616913 0.13155267699851247
прекрасный 00:03.7 00:04.5 0.1181102934703333 0.18693504656779736 0.19092035271832086 0.18550002163989554
кротко 00:04.8 00:05.1 0.08547306201009564 0.23637058401137523 0.13855906921187044 0.23094816766937054
синеть 00:05.1 00:05.5 0.06550760254245436 0.12605742279988286 0.20414586000302626 0.17294080806225187
майский 00:05.5 00:06.0 0.1866071701558042 0.1321050267349999 0.13487410762369878 0.09455410487650595
небо 00:06.0 00:06.5 0.1331551314405427 0.171750708886239 0.20698841068805285 0.13987553879275083
гладкий 00:07.0 00:07.3 0.0667621308256342 0.14617505963931876 0.17527466033743988 0.13102371193783324
молодой 00:07.3 00:07.7 0.18418924040744622 0.27442796326297647 0.1818189877825005 0.18680062641221995
лист 00:07.7 00:08.0 0.12557060322306124 0.18779267023834567 0.15755408719163222 0.18701390470205315
ракита 00:08.0 00:08.3 0.05574846372403708 0.19466976119073354 0.1256331034429421 0.09493372199985683
блестеть 00:08.3 00:08.7 0.07084179921122535 0.15655404041179888 0.16804858159695157 0.19249045789358232
словно 00:08.7 00:09.1 0.10020265118045335 0.249745808986634 0.2580370715046957 0.15806505957008254
вымыть 00:09.1 00:09.7 0.0815241510217537 0.1263775686837575 0.15492160307081937 0.19508176524147502
широкий 00:10.2 00:10.9 0.10594916942367805 0.1647916042932266 0.16168563359950794 0.14226334380690453
ровный 00:10.9 00:11.3 0.06370461145739958 0.18019710669925748 0.16052564764078503 0.0824265335978116
дорога 00:11.3 00:11.8 0.1723350719087533 0.1891235575333431 0.20619689618486192 0.21206327719861784
весь 00:11.8 00:11.9 0.21871635557442393 0.3731199177299982 0.24923202609127804 0.19078694950456665
покрыть 00:11.9 00:12.3 0.09496991547271749 0.16545026063787427 0.20967727663911617 0.1335365078566172
мелкий 00:12.5 00:12.9 0.0893103058755439 0.19950106144050417 0.14477340509622483 0.20068427248019705
трава 00:12.9 00:13.2 0.11609895995336628 0.14081091753789865 0.16129889207645776 0.20799573436402585
красноватый 00:13.3 00:13.8 0.09567010898411621 0.12653559279953142 0.18299517039386115 0.10372799988421944
стебелек 00:13.8 00:14.5 0.055361991552227874 0.1722707234799712 0.13959579904104202 0.16968889318893443

T a b l e  1
An example of stimuli matrix for the group of texts on beauty of nature
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Figure 1. An example of similarity 
function between words of stimuli 
texts with the feature word peace 
(мир_NOUN feature)
The word2vec similarity value 
reaches 1 at some time point, where 
the actual word peace appears in text

extracted based on the joint occurrence of words in the 
Russian National Corpus and Russian Wikipedia within 
the RusVectōrēs project [11]. 

(d) Words were annotated by vectors of feature 
words. Semantic distance of words in word2vec 
space is calculated as a cosine similarity between 
300-dimensional vector representations of the words. 
Since semantically close words have similar contexts, 
the vector parameters characterizing these words must 
be close as well (Figure 1 and Table 1). However, this 
approach to the description of word meanings needs 
to be extended in order to apply to brain semantic 
mapping. Therefore, we have selected a list of feature 
words including 498 most frequent nouns and 499 

most frequent verbs [12], which have formed a markup 
vector1. For each of 2241 input text words we have 
formed a 997-dimensional markup vector, basing on 
the word2vec cosine similarity between the input word 
and each of the feature words. As a result, the markup 
of input words from the texts is a set of 997 numbers, 
each of which describes the similarity of this word to the 
feature word. The annotation scheme for the input texts 
has been combined as a matrix of feature vectors for the 

    1Initially, 500 nouns and 500 verbs were selected but 
then the numbers were reduced by excluding obvious 
synonyms.
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text words in time, i.e. assigned to the time of each word 
appearance in the audio texts.

Subjects. Twenty-five subjects (native speakers of 
Russian, students of linguistics at the Russian State 
University for the Humanities, 21–28 years old, right-
handed and without known history of neurological 
diseases, 17 females among them) participated in 
the study. Informed consent was obtained from each 
participant prior to the experiment. Ethical approval for 
this study was provided by the local Ethics Committee 
of the National Research Center “Kurchatov Institute”. 
All participants were asked to maintain wakefulness with 
closed eyes during the study.

For the purpose of the experiment, it was important 
to be sure that a participant really listens to the stimulus 
material. We controlled this by analyzing corresponding 
activity of auditory areas of subjects’ brains. In addition, 
we have prepared one control question for each 
thematic block of stimulus material. After the test when 
subject listened to all five texts of one of the topics, 
the experimenter asked him/her a control question; the 
subject gave the answer out loud. After the experiment, 
the subjects filled out a questionnaire, which included 
a question about their confidence in the accuracy of 
answers to the questions asked during the experiment. 
Based on the answers about the texts and the self-
confidence assessment, we concluded whether the 
subject was sufficiently immersed in the perception of 
texts. Scanning data of four subjects who gave wrong 
answers to the control questions were excluded from 
further analysis.

Design of experiment. Counter-balanced block-
design was used where the order of presentation 
of each group of thematically different texts was 
systematically changed according to Latin square 
scheme. Within a block the order of stimulus texts was 
randomized. 

Scanning parameters and pre-processing of 
BOLD signal. Each subject was placed to MAGNETOM 
Verio 3T (Siemens, Germany) MRI scanner with 
32-channel MRI head coil. Structural MRI and resting 
state BOLD activity were registered individually with 
closed eyes preceding each experiment. During the 
experiment, we recorded fMRI data by using ultrafast 
Multi-band Accelerated EPI Pulse Sequence protocol2. 
The scanning process had two stages: capturing high-
resolution anatomical data and recording functional 
data by a parallel scanning protocol with ultrafast EPI-
sequence (TR=1010 ms, TE=33 ms, 56 slices, slice 
thickness — 2 mm, spatial resolution in each slice — 
2×2 mm). Functional data were collected for the resting 
state condition first (about 8 min) and then for condition 
of stimulus texts presentation (about 20 min).

BOLD data for each subject were preprocessed 
using SPM8 software (Wellcome Trust Centre for 
Neuroimaging, London, UK) in MATLAB R2018a 
(Mathworks, Natick, USA). Preprocessing consisted 
of realignment to correct for subject movements, co-
registration to align all functional data to subject’s 
anatomical volume, normalization to convert all images 
to Montreal Neurological Institute (MNI) space and 
spatial smoothing with a Gaussian kernel of 8 mm (full 
width at half maximum). 

Differences in the BOLD responses evoked by 
each thematic group of texts were investigated by 
modeling their associated haemodynamic responses. 
At the single-subject level, a model was defined using 
both the onsets and the durations of texts of three 
categories corrected for a typical delay of the BOLD 
haemodynamic response function (HRF) shown in 
Figure 2. These models were estimated in SPM8 
(Restricted Maximum Likelihood estimation) using the 
informed basis set represented by HRF amplitude, 
derivative and dispersion [12, 13]. 

In the final reconstruction of brain structures involved 
in semantic processing, we used individual resting-
state data as baseline. For microanalysis of semantic 
brain mapping for continuous texts several additional 
processing steps were required. These steps are 
described below.

Pre-processing of word representations. The 
stimuli were represented as words, aligned to time 
of their presentation with the annotation vectors: 
each word from the text corresponds to a 997 feature 
vector (see Table 1). Thus, we formed the stimuli 
matrix [Features  ×  Time samples (Words)], where 
stimuli are represented as a variation of each feature 
value over time. An array of time samples was also 
generated. The Start Time and End Time columns 
values were converted to seconds and the average 
values were found. The standard scores (z-scores) for 
the stimuli matrix rows were calculated. These scores 
are dimensionless quantities allowing us to compare 
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Figure 2. Haemodynamic response function (HRF)

Model HRF

   2Release 016a from December 19, 2017 (courtesy 
Center for Magnetic Resonance Research, University of 
Minnesota).
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them with the BOLD signal (for which z-scores were 
also found). The standard score calculation formula: 
z=(x–X

_
)/Sx, where X

_
 is the mean value, Sx is the 

standard deviation.

For further calculations, it was necessary to bring the 
time series of semantic vectors in correspondence to 
the fMRI time scale (with a repetition time of TR=1.1 s). 
For such a resampling, the Lánczos filter was used 
(Figure 3) with a cut-off frequency set to the Nyquist 
frequency of the fMRI acquisition. 

Overall 490 samples were received after resampling 
(Figures 4 and 5), which corresponds to the time 
series of fMRI data acquisition and to 16 min of stimuli 
presentation. 

In the final step of this pre-processing, the stimuli 
matrix was considered with respect to typical time delays 
of the fMRI scanning procedure. The BOLD signal 
increases and decreases in accordance with the HRF 
graph. To approximate this curve, 4 point delays were 
used: 2, 4, 6, and 8 s. Accordingly, 4 copies of time 
series of each feature were created with these delays 
and concatenated. As a result, 3988 features were 
received for each time sample.

Estimation of stimulus word to BOLD signal 
correspondence. The next task was to estimate how 
997 features affect the BOLD response in each voxel in 

the cortex and the subcortical structures 
of the brain. In other words, the task was 
to predict voxel-wise activation with the 
highest correlations with the actual data. 
In order to find these voxels, we applied 
a specially prepared atlas mask to all 
the voxels of our data set (Figure 6). The 
mask represents neocortical gray-matter 
voxels of both hemispheres, as well as 
those of some subcortical structures, 
e.g. amygdalae. After applying the mask 
only 100,000 voxels (out of 900,000 
initially) remained. The time series for 
these voxels were linearly detrended and 
z-scored in the same way as this was 
done with the stimuli data.

The following is the description of the 
regularized linear regression procedure 
used for the estimation of the weights of 
each feature for each voxel. Let the j voxel 
time series be Rjt, the i semantic feature 
time series be Sit, and the regression 
weight of the i feature in the j voxel be βji, 
t — temporal segment, then R′jt=ΣibjiSit. 
To estimate β one usually minimizes 
squared errors sum:

���β� ������ � ���� ��
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������ ��β�����
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Figure 3. Lánczos Kornél function — see https://en. 
wikipedia.org/wiki/Lanczos_resampling
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This procedure is called the OLS 
regression, and it does not work directly 
because the features number (3988) 
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Figure 4. The word peace (мир_NOUN) feature time series

Figure 5. The word friend (друг_NOUN) feature time series
This word is more common in the text than the мир_NOUN, hence the 
difference in these graphs to the previous ones (see Figure 4)

B.M. Velichkovsky, V.I. Zabotkina, Z.A. Nosovets, A.A. Kotov, L.Ya. Zaidelman, ..., V.L. Ushakov



СТМ ∫ 2020 ∫ vol. 12 ∫ No.2   19

 ADVANCED RESEARCHES 

is greater than the time samples number (490). This 
problem is solved by regularization procedure when the 
goal is to minimize the following expression:

���β� ������ ��β�����
�

�� � ��β���
��

 
or the same expression in a matrices 
formula:

E=||Y–Xb||2+a||b||2,

where Y is the BOLD signal matrix (t×m), 
X is the stimuli matrix (t×p), α is the 
regularizing coefficient, β is the weight 
matrix; t is time samples, m is the voxel 
number, p is the feature number.

We used the cross-validation method 
to find the coefficient α. For this purpose, 
the data set was divided into two parts: 
in the first part, the weights are estimated 
for a given α, in the second part these 
weights are tested. The procedure is 
repeated for each α of interest. Thereafter 
α with the best prediction is selected and 
weights are calculated using the entire 
dataset and this α. 490-time samples were 
divided as follows: the first 350 samples 
were used to construct the weight matrix; 
the last 140 samples were used to verify 
the obtained weight matrix by finding the 
correlation of the BOLD signal time series 
and the predicted time series obtained 
by multiplying the stimuli matrix and the 
weight matrix. In turn, the first 300 of 350 
samples were used to find the weights 
for each α in each voxel, and the last 50 
samples were used to select the best α 
for a given voxel. This procedure was 
performed for 500 voxels for two sets 
of α (from 1 to 10 and from 10 to 1000). 
Correlations were averaged over all voxels 

for each value of α. The efficiency curves for α from 1 to 
1000 were obtained (Figure 7).

As the best, α=12.7427 was chosen because it 
corresponded to the highest correlation. With this value 
the weights were calculated on the entire data set. 
A comparative analysis of the results of the regression 
with one α for all voxels (obtained by averaging the 
correlations for all voxels) and the regression results, 
where each voxel uses its own α (corresponding to the 
highest correlation of the predicted and presented BOLD 
signal in a particular voxel), was also performed. Two 
histograms were made (Figure 8). The graph tells us 
that one α for all voxels shifts the histogram rightward, 
relative to 0, so it worked for our purpose better. 
Therefore, the weights were calculated using the best 
α=12.7427 for all voxels.

In the next step, predicted (with obtained weights) 
and real time series were visualized (Figure 9). One 
can see that the prediction of BOLD activation for 
correlation coefficient 0.3916 is rather accurate for all 
these voxels.

Projecting models onto a lower dimensional 
subspace. In order to find the best voxels to 
accommodate the semantic features represented by our 

Figure 6. The brain mask representation used in this study

a

C
or

re
la

tio
n 

co
ef

fic
ie

nt

0.035

0.03

0.025

0.02

0.015

0.01

0.005
0        100       200      300     400    500      600     700      800      900    1000

Figure 7. The efficiency curve for α from 1 to 1000

90

80

70

60

50

40

30

20

10

0
–0.3        –0.2        –0.1           0           0.1         0.2        0.3               0.4

Correlation coefficient

N
um

be
r o

f v
ox

el
s

Individual α for each 
voxels
One α for all voxels

Figure 8. The correlation histogram comparison for different selection of a

Semantic Brain Mapping of Russian-Language Texts



20   СТМ ∫ 2020 ∫ vol. 12 ∫ No.2 

 ADVANCED RESEARCHES 

fact that we worked here only with the text from the 
third group, which has fewer words than the stimulus 
material as a whole. To find the clusters with threat 
semantics, we used model vord2vec and build a set of 
words closest to word threat. These were the following 
words: danger, counter-activity, warning, insult, worries, 
reproach, infringement risk, violence. The distance was 
computed as median of each word of a cluster to the 
threatening words. In the end, data were evaluated by 
an expert.

Results
To ensure that subjects listened to the stimulus 

material the activity of auditory brain areas was 
registered; it showed a satisfactory level of reactivity in 
all the subjects. Besides this neurophysiological control, 
we analyzed correctness of subjects’ verbal responses 
about text contents. The most difficult question was on 
the texts about nature: “List any bird that was mentioned 
in the texts you have listened to about nature.” In total, 
7 birds’ names appeared in the nature texts. 4 out of 25 
participants did not remember any of them and were 
excluded from the analysis of brain activity. On the 
question on technical texts, one participant answered 
incorrectly. The simplest was the question on the texts 
about life: all the subjects gave the correct answer and 
only one was not sure of it.

Due to a very high interindividual variability, the 
results of macroanalysis revealed no systematic group 
difference in global brain activation among the three 
groups of texts, either in their direct comparisons or in 
indirect comparisons relative to the subjects’ resting-
state data (t-test Student, SPM). The only significant 
trend was a higher activation of both amygdalae in the 
case of perception of texts on working principles of 
technical devices relative to the other two groups of texts 
(p<0.005, uncorrected).

A more consistent picture emerged from our 
microanalysis data. First of all, this is related to the 
k-means clustering of word features principal component 

stimulus words, we have chosen 10,000 voxels with the 
highest correlation. The principal component analysis 
(PCA) method was applied to the weight matrices 
[Voxels  ×  Features]. Before that, the features were 
averaged over time of haemodynamic responses (that is, 
out of 3988 features, 997 features were again obtained). 
For the resulting 10,000 voxels, matrices of scores and 
loadings were constructed in the principal components 
space, whereby first four factors of the PCA were used 
as respective dimensions. After that, we clustered the 
data with the help of k-means method. To determine 
the required number of clusters, we have executed a 
preliminary clustering of lexical semantic vectors (word 
embeddings) in order to find the clustering depth where 
clusters represent words from thematic areas (semantic 
fields), suitable for further combination with BOLD 
activation data. The number of 15 clusters was selected 
as the best level of word embedding clustering, which 
ensured a co-occurrence consistency of words from one 
semantic field in the same cluster and a minimum of total 
clusters number. 

Following this evaluation, the principal component 
data for feature words were clustered into 15 clusters via 
the k-means method. These clusters were subsequently 
localized in the brain voxels with the MNI coordinates. 
Since the features define the clusters, it was possible 
to determine the corresponding voxels. To that end, we 
utilized the weight matrix, which comprised the features 
relation to the voxels. Only voxels with the highest 
weights were used in the following analysis (see the next 
section).

Can we make this approach more detailed, for 
example, by defining on an individual level representation 
of the notion “threat”? To answer the question, we 
clusterized points in 4D space by method closest neighbor 
into 12 clusters. For clusterization, we used elements 
of the space that were most distant from the center with 
maximal load on the components. This was achieved by 
repeated finding of 80% random set of points. 

The chance of clusterization method and the 
diminishing clusters’ numbers were caused by the 
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Figure 9. Predicted and real BOLD for 
correlation coefficient 0.3916
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into 15 clusters as described above. The resulting 
semantic categories are presented in Table 2 with 
examples of their characteristic key words.

A subsequent voxel-wise localization of these 15 
semantic categories by modeling of fMRI data and 
by projecting them onto a conventional map of brain 
structures also seems to be sufficiently consistent. 
We currently computed this localization for the first 
6 subjects out of 21, whereas only voxels with the 
highest weights were taken into account. A selection of 
group data from such an analysis is shown in Figures 
10 to 13 for distribution of brain activity loci in the case 
of categories “Conflict”, “Mental”, “Measure”, and 
“Construction”, respectively.

Each subject demonstrated individual structure of 

feature words and ipso facto semantic representation 
in form of voxel activity of his/her brain. This is obvious 
in the case of the notion “threat”. Let us demonstrate 
the differences between the two subjects. In subject 1, 
the cluster, which is most close to threatening words, 
includes the following words from the initial stimulus 
material: accusation, trust, respect, effort, victory, to 
free, duty. The expertise showed that words of this 
cluster have semantics not so much of the threat but a 
successful overcoming of the threat. We have also to 
say that words such as threat, to threat, war that were 
present in the stimulus text did not get in the analysis of 
this subject. It means that for this subject these words 
do not lead to sufficient brain activation. At the same 
time, in subject 2 the closest cluster to the threatening 

T a b l e  2
Clusters of the principal component data for the vectors of 997 feature words

Category Example features (key words)
Measure (numeric) Mass, measure, percent, size, thousand, million, evaluation 
Construction (in space) Road, building, window, way, wall, floor, place, space, house
Social organization Government, analysis, attention, data, law, research, method, scientist, error
Conflict (military) War, service, solder, troop, year, period, place, territory, fight, general
State authority (finances) Authority, region, federation, fight, government, state, income, land, population, ruble, republic
Temporal (procedures) Development, solution, participation, method, minute, company, bank, participant, usage, term
Mental (abstract) Knowledge, science, experience, theory, mind, soul, idea
Corporate (professional) Document, boss, employer, director, process, work, telephone, cabinet
Male (medical, spiritual) God, pain, doctor, health, old man, disease, trust, uncle, boy, father, child, parent, body, church
Female (family) Sister, mother, daughter, granny, girl, childhood, wife, family
History (fate) Blood, destiny, fate, history, peace, right, revolution, country, value
Literature Poems, reader, cause, painter, writer, student, captain
Body parts Hair, breast, leg, shoulder, skin, finger, ear, lip, tooth, mouth, heart, tongue
Industry (production) Car, model, technology, factory, production, type, business, order, worker, technology, goods
Location (home, city) Kitchen, room, shop, market, theater, door, hall, corridor, circle, class, stage, frame

Figure 10. Localization of cluster “Conflict” Figure 11. Localization of cluster “Mental”
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words was the cluster, which included the words like 
aggressive, to dominate, confrontation, invasion, enemy, 
to be sure, to threat. Expert evaluation of this cluster 
confirms the presence of threat semantics. Differences 
in character of perception are also confirmed by the 
data from neurosemantic analysis. In both cases, we 
have observed activation of prefrontal brain. However, 
subject 1 shows bilateral activation of frontopolar zones 
(Figure 14), when subject 2 demonstrates activation of 

the right orbitofrontal field (Figure 15) more suitable for 
purely emotional processing [14].

Discussion 
As in several earlier studies [6], our results of the 

global comparison of subjects’ brain activation during 
listening to continuous segments of meaningful 
texts are rather disappointing. The improvement of 

Figure 12. Localization of cluster “Measure” Figure 13. Localization of cluster “Construction”

Figure 14. Brain activity which is semantically connected with the word threat, subject 1

Figure 15. Brain activity which is semantically connected with the word threat, subject 2
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registration technology by using ultrafast multiband 
fMRI protocol, as well as the use of more dramatic 
content in text composition (with elements of self-
reference and overcoming of imminent threat) failed to 
reveal any consistency in the macroanalysis of semantic 
representations. The only significant contrast was found 
in activity of the amygdalae, which can be explained by 
the role of this double structure as a part of emotional 
network of the brain [15], perhaps due to a higher level 
of anxiety in social science students confronted with 
description of technical devices. 

What are reasons for the repeated failure of the 
cognitive subtraction methodology? A criticism of 
cognitive subtraction is as old as the first chronometric 
experiments by Franciscus Donders. Cognitive 
subtraction methodology rests on the assumption of pure 
insertion, i.e. that there are no interactions among the 
cognitive components of a task. In cognitive neuroscience 
this more or less implicit assumption would only work with 
strongly modular architectures. But even with such highly 
uncommon architectures the recent discovery that the 
BOLD response has the character of a travelling wave 
makes the assumption untenable [16–18].

In view of these limitations of cognitive subtraction 
methodology, the second line of our research, which 
we called “microanalysis”, is of particular interest. 
It corresponds to the recent tendency of combining 
brain mapping with ontological studies [19, 20]. Our 
reconstruction of basic clusters of word-embedding 
semantics in spoken Russian language is a good 
example. The significance of this reconstruction may 
extend beyond the framework of a particular imaging 
study. Indeed, from the 15 anchoring categories of our 
analysis, 6 seem to be specific for Russian without any 
obvious counter-part among the 12 clusters found for 
English in the experiments of Huth et al. [5]. As these 
clusters have also been identified on the basis of brain 
activation pattern, one can speculate that our subjects 
are particularly sensitive to all issues related to state 
and government, to history, destiny and national 
values, to literature and art, and to gender differences 
whereas masculine component of this last category has 
a complex composition including aspects of medical 
care and spirituality. Even when some clusters in both 
languages seem to be similar, a closer examination 
shows differences in nuances. For instance, “Conflict” 
in our ontology is related to more large-scale military 
confrontations while in Huth and his colleagues’ 
classification its associated meaning is rather “Street 
violence”. 

Of course, one has to consider these speculations 
with caution, as they reflect data of a limited group 
of subjects listening to a particular set of texts. To the 
best of our knowledge, our results on the brain mapping 
of semantic categories are the first such results for 
a language other than English, and understandably 
the results are loaded with limitations. Still, one 
can see some striking similarities in brain semantic 

representations of both these languages. Firstly, the 
representations are widely distributed. It may be not 
as apparent in English mapping, where the results are 
projected on an artificially constructed surface of the 
neocortex [5], but in a number of our categories one can 
clearly see that deep subcortical structures are involved, 
as is the case with categories such as “Conflict”, 
“Mental”, and “Social”. The first two of these semantic 
categories also demonstrate lateralization towards the 
right hemisphere. This is another similarity with the 
previous data on the English language semantic brain 
mapping. 

There are several shortcomings in the current 
approaches to the microanalysis of the brain mapping 
of semantic representations. In particular, the word 
embedding-based approaches in computational 
linguistics treat each stimulus word independently 
and thus ignore the influence of context on language 
perception. New modelling efforts are directed at 
overcoming this limitation [21]. Next, there are problems 
with the arbitrariness of certain steps in reducing 
uncertainty in semantic mapping. As an option, we now 
consider replacement of the k-means procedure by 
the hierarchical agglomerative clustering. Finally, the 
multidimensional approaches to brain semantic mapping 
have been criticized for being logically circular: one 
incorporates regularities of language organization in the 
construction of the feature words vectors and then finds 
similar correlations in the brain semantic representations 
computed with the help of the feature words vectors. 
Like our North American colleagues [22], we believe that 
this alleged circularity cannot be avoided in ecologically 
valid studies, since the regularities of language (and the 
world that they reflect) shape the processing correlations 
in the brain.

This study demonstrated feasibility of our 
microstructural approach to semantic mapping. The 
new method allowed us to successfully localize brain 
mechanisms of semantic processing. It allowed us also to 
see the individual differences in perception of threat on the 
basis of relatively small texts. Of particular interests are 
voxel-wise date on brain activation, which can be for the 
first time compared with continuous stream of meaningful 
speech. One has to acknowledge finally that the very fact 
of discovered broad representation of semantic categories 
has earlier been noted in experimental works [23] and 
also predicted theoretically [24]. 

Conclusion
This is the first report on semantic brain mapping 

based on the words-embedding approach to 
neurolinguistic computation in the Russian language. In 
comparison to the more traditional cognitive subtraction 
approach, the microanalysis seems to provide more 
stable and promising results, particularly with respect 
to the distribution of semantic categories across the 
human brain. One can see some striking similarities 
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in brain semantic representations of both languages. 
Firstly, the representations are widely distributed. It 
may be not as apparent in English mapping, where 
the results are projected on an artificially constructed 
surface of the neocortex [5], but one can clearly see that 
deep subcortical structures are involved in a number 
of Russian-language categories such as “Conflict”, 
“Mental”, and “Social”. Some of these semantic 
categories also demonstrate lateralization towards the 
right hemisphere. This is another similarity with previous 
data on English-language semantic brain mapping. 
The significance of the latter finding is that it provides 
a further challenge to the established view on the left 
hemisphere’s monopoly in linguistic processing.

All the caveats notwithstanding, our final note and 
the main conclusion is that the methodology for brain 
imaging studies in neurolinguistics and in the emerging 
science of intersubjectivity is growing rapidly [20, 25]. 
At this early stage of research it would be premature 
to completely dismiss even the old-fashioned cognitive 
subtraction approach. Perhaps, in the future studies, 
both microanalysis and macroanalysis can be combined 
into a kind of meso-level approach. Relevant example is 
the temporal evolution of narratives with a pronounced 
self-referential content that changes the emotional 
perception of an initially dangerous situation after a 
resolution of the underlying conflict. In the case of such 
complex texts, contrasts of brain semantic representation 
before, during and after the conflict resolution would be 
of great scientific interest.
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