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Bearing-foreign material deposition onto a femoral head can occur from contact with an acetabular shell due to dislocation,
reduction, or subluxation. The purpose of this study was to comprehensively characterize deposit regions on retrieved cobalt-
chrome femoral heads from metal-on-polyethylene total hip arthroplasties that had experienced such adverse events. The
morphology, topography, and composition of deposition regions were characterized usingmacrophotography, optical profilometry,
scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. The deposit areas were
relatively large, they were much rougher than the surrounding undamaged clean areas, and they displayed several distinct
morphologies. Titanium alloy elements were the predominant constituents. Calcium and phosphorous were also detected within
the deposit areas, in a composition that could nucleate abrasive hydroxyapatite. In addition, tungsten-rich particles, likely present as
tungsten carbide, were observed on top of the titanium deposits.The increased roughness associated with these deposition features
would be expected to accelerate damage and wear of the opposing liner and hence accelerate the development of osteolysis.

1. Introduction

Deposition of titanium or titanium alloy on a femoral head
can roughen the surface and hence accelerate the wear of the
opposing surface [1, 2], especially for metal-on-polyethylene
implants. Titanium deposition on femoral heads has been
reported in many retrieval series [1–4]. Such deposition can
occur from contact of the head with a titanium-alloy acetab-
ular shell, as a result of dislocation, closed reduction of a
dislocation, extreme subluxation, liner wear-through, or liner
dissociation. Titanium alloy transfer from an acetabular shell
to a cobalt-chrome or alumina femoral head can occur with
scraping contact at loads as small as 10 kg, whereas scratching
damage to the head tends to occur only at larger loads [3].
Titanium alloy can also be transferred onto a femoral head

from third-body debris within the bearing couple [4]. How-
ever, despite frequent visually-based qualitative descriptions
in forensic assessments of retrieval femoral heads, the formal
composition and topography of large transfer deposit areas
have not been well characterized.

Thepresence of titanium (andother elements) transferred
to a femoral head has often been identified by energy
dispersive spectroscopy (EDS). Other commonly utilized
techniques to characterize femoral head deposits are pho-
tography,micrography, scanning electronmicroscopy (SEM),
and contact or optical profilometry (OP). The purpose of
this study was to comprehensively and nondestructively
characterize areas on retrieved cobalt-chrome femoral heads
displaying visual and clinical evidence of deposition. Both
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Figure 1: Diffused-light macroscopic images of the five femoral heads showing extensive bearing-foreign material deposits.The circles in the
middle of images of headsA, B, C, and E delimit the reflection of the camera lens, whichwas eliminated by digital combination of photographs.
The cross-mark (+) in each image identifies a corresponding site of SEM-based morphologic characterization in Figure 4, and the asterisks
(∗) designate the sites of EDS evaluation in Figure 5.

qualitative and quantitative techniques were used to charac-
terize these depositions in terms of morphology, topography,
and composition.

2. Materials and Methods

Femoral heads from metal-on-polyethylene revision
retrievals were used for this analysis. Five cobalt-chrome
femoral heads from an International Review Board- (IRB-)

approved retrieval collection of 199 total hip arthroplasty
(THA) heads were selected on the basis of displaying
representatively conspicuous evidence of transfer deposition
(Figure 1). Sites for microscopic-level morphological and
compositional analysis were identified using a diffused-light
photographic technique that minimized ambient room
reflectivity [5]. Purpose-designed fixturing was developed
to allow spatial registration of the polar coordinates of
macroscopically identified sites of interest with desired
positions for microscopic-level scanning.
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Figure 2: Radiographs from patients from whom heads A–D were retrieved. Radiographs of head E were not available.

Clinical contexts for the five retrieved femoral heads were
as follows.

Head A. A 76-year-old male presented with subluxation of
his right hip 16 years after implantation (Figure 2A). He
was noted to have had increasing acetabular liner wear over
the preceding three years, but he had declined revision. He
also had a trochanteric nonunion. After the subluxation was
reduced, he elected to have revision surgery. Intraoperative
findings included soft tissue metallosis. The liner was sub-
stantially worn and had undergone a rim fracture.

Head B. A 91-year-old female presented 18 months postre-
vision THA with a history of three dislocations of her
hip within a three day interval, seven months previous to
presentation. Radiographs (Figure 2B) demonstrated a loose
femoral component and the stem was found to be loose at

the time of revision. The liner had embedded debris and
impingement damage that was less than 1mm deep (Grade
2, Hospital for Special Surgery (HSS) scale) [6].

Head C. An active obese 48-year-old male, a tow truck
operator, was initially revised for instability one month
postprimary THA. Six years later, a second revision was
performed for aseptic loosening and late (5 years post op)
recurrent (six times) dislocation. Radiographs (Figure 2C)
demonstrated loosening of the femoral component and a
stable acetabular component. The femoral component was
grossly loose at the rerevision surgery. The liner had embed-
ded debris and impingement damage that was greater than
2mm deep (Grade 4, HSS scale).

Head D. A 53-year-old female presented 4.5 years postrevi-
sion of a left THA for periprosthetic fracture. Two months
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Figure 3: OP data from a “clean” region and from the deposit regions on retrieved femoral heads A–E.

prior she had suffered a dislocation that had been left
unreduced. Radiographs demonstrated that the implant was
still dislocated at the time of presentation and that there was
shell loosening (Figure 2D). Intraoperative findings included
a grossly loose shell with a 15∘ elevated acetabular liner rim.
The liner had embedded debris and impingement damage
that was less than 1mm deep (Grade 2, HSS scale).

Head E. A 43-year-old male presented five years post THA
with a history of one early postoperative dislocation and four
recent dislocations which had occurred within a four-day
interval. The liner impingement damage was less than 1mm
deep (Grade 2, HSS scale).

Light interferometry optical profilometry (OP) was con-
ducted to capture the topography of the surface features [7].
Smaller-area (1200 × 960𝜇m) images were obtained using
a 5x lens. Larger-area images (∼2 × 2mm) were created by
stitching together multiple smaller-area images captured by
a 20x lens. Uniform hemispherical curvature was removed
from the raw scans using a best-fit sphere calculated using a
least squares fit to the appropriate quadratic fitting algorithm
[7]. The OP data were used to calculate average roughness
(𝑅
𝑎
), the root mean square roughness (𝑅rms), and the average

of the ten highest peaks and ten lowest valleys (𝑅
𝑧
). These

OP data were calculated within eight 2 × 2mm regions of
interest each within both the clean and deposition areas of
each of the five heads. The total percentage of the deposit
regions scanned ranged from approximately 15% (head C) to
68% (head A).

Scanning electron microscopy (SEM) was performed
at an accelerating voltage of 10 kV and a typical working
distance of ∼10mm using FEI/Philips Sirion Field Emission
SEM. Energy dispersive spectroscopy (EDS) was used to
estimate elemental compositions of 5-6 locations within the

deposition areas of each head. Selected distinct particles
observed on the deposit areas of the femoral heads were
also analyzed via EDS mapping, using a resolution of 1024
× 800 pixels (each pixel = 67.8 × 67.8 𝜇m) and a dwell time
of 200𝜇s. True elemental compositional measurements were
performed on a 1 × 1mm area (marked with an asterisk
in Figure 1) of the deposition observed on head A, in an
ultrahigh vacuum environment (1.2 × 10−7 Pa) using X-ray
photoelectron spectroscopy (XPS) with a monochromatic Al
K-alpha source (𝐻V = 1486.6 eV). This scan was performed
from 0 to 1400 eVwith a pass energy of 117.4 eV and an energy
step of 1.0 eV.

3. Results

Each femoral head featured a large, noticeably dark region
(Figure 1). Visually, head A showed a nearly featureless dark
swath located close to the apex (Figure 1A). In head B,
the main dark region was composed of many overlapping
scrapes centered slightly below the equator (Figure 1B). Head
C displayed a large dark zone also consisting of many
overlapping scrapes; this region appearedmuchmore diffuse,
with individual features being difficult to discern (Figure 1C).
Head D displayed a very dark region concentrated in a single
discrete zone in the lower portion of the head (Figure 1D).
Head E also had a dark region of overlapping scrapes
(Figure 1E).

Optical profilometry with roughnessmeasurements illus-
trated the distinctions between the deposit and clean regions
on the femoral heads (Figure 3). The deposit regions were
associated with increased roughness (Table 1) and tended to
involve many isolated peaks. Roughness increases between
the clean and deposit regions on each head were 2.5–12.5,
4.0–11.7, and 5.0–10.8 for 𝑅

𝑎
, 𝑅rms, and 𝑅𝑧, respectively.
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Figure 4: Representative microscopic morphological features observed by SEM on the deposit regions on the femoral head surfaces showing
(a) pronounced scrape with deposits, (b) large, isolated deposits, (c) areas containing many small deposits <10𝜇m in diameter, (d) otherwise
relatively featureless film showing some evidence of fracture, and (e) evidence of more than one compound within the deposit region. Images
(a)–(e) are, respectively, from femoral heads A–E in Figure 1.

Table 1: Comparison of roughness parameters averaged over eight representative OP scans each in both clean and deposition regions of the
femoral heads.

Head “Clean” region Deposition region
𝑅
𝑎

(𝜇m) 𝑅rms (𝜇m) 𝑅
𝑧

(𝜇m) 𝑅
𝑎

(𝜇m) 𝑅rms (𝜇m) 𝑅
𝑧

(𝜇m)
A 0.04 ± 0.00 0.06 ± 0.01 1.33 ± 0.57 0.50 ± 0.20 0.70 ± 0.30 14.40 ± 4.70
B 0.08 ± 0.00 0.10 ± 0.01 6.11 ± 3.00 0.20 ± 0.10 0.40 ± 0.10 53.90 ± 10.40
C 0.09 ± 0.00 0.12 ± 0.01 9.59 ± 5.14 0.30 ± 0.10 0.50 ± 0.10 48.20 ± 6.40
D 0.07 ± 0.00 0.10 ± 0.01 1.64 ± 0.68 0.40 ± 0.10 0.60 ± 0.10 10.40 ± 2.30
E 0.09 ± 0.02 0.13 ± 0.03 8.75 ± 5.45 0.30 ± 0.10 0.70 ± 0.20 56.70 ± 14.00
Average 0.07 ± 0.01 0.10 ± 0.02 5.48 ± 4.89 0.34 ± 0.09 0.58 ± 0.19 36.72 ± 10.96



6 BioMed Research International

CoCr

Cr

Mo

Co

W

1.3 2.3 3.3 4.3 5.3 6.3 7.3

Co

Cr

C
ou

nt
s

Clean area:
head A

2𝜃 (∘)

(a)

Co
Ti

W P

Mo

Ca

Ti

V

Co

1.2 2.1 3.0 3.9 4.8 5.7 6.6 7.5

Cr

Cr

C
ou

nt
s

Deposit area:
head A

Co

2𝜃 (∘)

(b)

Ti

Cr

Cr

Co

Co
Mo

W

Co
Ti VAl

1.0 2.0 3.0 4.0 5.0 6.0 7.0

C
ou

nt
s

Deposit area:
head B

2𝜃 (∘)

(c)

Figure 5: EDS data from a clean area on head A and from the deposit areas on heads A and B.The sites from which these data were collected
are noted by asterisks (∗) in Figure 1. Similar data were collected from deposit areas of all heads (sites marked with ∗ in Figure 1), displaying
peaks indicating the additional presence of bearing-foreign elements Ti, Al, V, Ca, and P.

Although individual𝑅
𝑎
and𝑅rms values in the deposit regions

were mostly at submicron levels, individual 𝑅
𝑧
values were

generally more than 10𝜇m for the deposit region.
Surface irregularities observed by SEM within the dark

regions of the retrieved femoral heads ranged from submi-
cron tomultimicron sizes and exhibited a range ofmorpholo-
gies (Figure 4). These included large areas containing pro-
nounced scrapes with deposits (Figure 4(a)), large deposits
(>10 𝜇m in diameter) (Figure 4(b)), small particle deposits
(<10 𝜇m in diameter) (Figure 4(c)), scaly films with fractures
(Figure 4(d)), and contrast differences that suggested that
more than one compound existed within a deposit region
(Figure 4(e)). Sites with deposits standing proud to the
surrounding topography were frequently observed in the
dark regions. Fine-scale scratches were widely evident, but
had no consistent direction.

The clean areas of the femoral heads had EDS peaks
corresponding to Co, Cr, Mo, and W (Figure 5(a)). In the
deposit areas, Ti, Al, V, Ca, and P also were found (Figures
5(b) and 5(c)).The intensity of the EDS peaks within the dark

areas was highly variable. Compositionally distinct tungsten-
rich particles (Figure 6) were observed on top of the deposits
in all five heads. XPS performed on the deposit area on headA
(Figure 7) confirmed the presence of Ca and P on the surface,
with the deposit having a nominal metals basis composition
of 22.2% Ti, 25.8% Ca, and 29.8% P.

4. Discussion

Retrieved cobalt-chrome femoral heads that had experienced
dislocation or subluxation had deposit regions indicative
of titanium transfer from the acetabular shell. The deposit
areas were much rougher than the surrounding clean areas,
and they displayed several different morphologies. Titanium
alloy elements were the predominant constituents of the
deposits. Calcium and phosphorous were also detected on
top of the deposition surfaces, and tungsten-rich particles
were detected within the deposit areas. The presence of
calcium and phosphorus could indicate the presence of either
stoichiometric or reduced hydroxyapatite. These deposition
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Figure 6: (a) SEM and (b) false-color EDS map of a tungsten-rich particle on the surface of head A. The EDS mapping demonstrates that
these particles were compositionally distinct from the surrounding surface.
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Figure 7: XPS data obtained from a 1 × 1mm area in the deposit
region on head A (site marked with an asterisk (∗) in Figure 1A),
showing presence of impurities corroborating the data observed in
EDS. Nominal surface compositions associated with this scan are
O: 68.75%, Al: 3.07%, P: 9.39%, Ca: 8.13%, Ti: 7.01%, Co: 3.68%, Cr:
0.2%, and W: 0.03%.

features could conceivably accelerate damage and wear of the
opposingUHMWPE liner and thus accelerate the subsequent
development of osteolysis [8–10].

Limitations of this study are the small number of heads
analyzed and the modest numbers of areas analyzed on each
head. These specific femoral heads were chosen on the basis
of striking visual evidence of deposition and clinical histories
indicating a likelihood of head-shell contact. Representative
locations within the deposition areas were chosen for analysis
since it was not feasible to analyze entire deposition areas.

Some of the maximum deposit peak heights found in
the current study (5–60𝜇m) were considerably larger than
those observed previously on dislocated cobalt-chrome heads
having suspected or confirmedmaterial transfer: up to 10 𝜇m
[11], 6.2 and 8.5 𝜇m [12], ∼4.5 and ∼7 𝜇m [13], and 1.6–4.3 𝜇m
[14]. Generally similar average roughness for the deposit

areas was noted in both the current study and in previous
studies involving retrieved metallic femoral heads that had
experienced head-shell contact. 𝑅

𝑎
of the deposit areas was

0.34 ± 0.11 𝜇m in the current study, in line with 𝑅
𝑎
values

reported previously: 0.380 𝜇m [1], ∼0.15–0.28 𝜇m (including
scratches as well as transfer deposits) [14], 0.241𝜇m (metal-
on-metal THA) [15], and 0.338 𝜇m (metal-on-metal THA)
[16]. Donaldson et al. reported a fivefold increase in 𝑅

𝑎

between clean and deposit areas, comparable to the 𝑅
𝑎

increases of 2.5–12.5-fold (an average of 4.6) found presently
[17]. 𝑅

𝑧
of the deposition areas was 36.72 ± 22.46 𝜇m,

considerably higher than the 1.13 𝜇m (maximum) reported in
a previous metal-on-metal THA study [15].

EDS has frequently been used to detect the presence of
titanium [1, 14–17] and aluminum [14, 15] in deposits on
retrieved metallic femoral heads. Such deposits are obviously
undesirable as they could accelerate bearing surface wear,
a fact that has often been remarked upon qualitatively.
However, recent developments in computational tribology
[10] now make it possible to quantitatively link surface
tribological aberrations with accelerated wear in individual
cases. Hence, quantitative characterization of these surface
aberrations and their linkagewith clinical failuremechanisms
has become of increased interest.

Calcium and phosphorus have been previously detected
on retrieved heads from metal-on-metal bearings [18–21],
although these elements were not associated with titanium
deposition as was the case in the current study. Howie et al.
suggested that the debris containing calcium, phosphorous,
and oxygen that was found on the articulating surfaces and
within wear tracks could be either from bone or from pre-
cipitated calcium phosphate [18]. McKellop et al. attributed
surface deposits of calcium phosphate to precipitation from
synovial fluid [19]. For the deposit analyzed with XPS in the
current study, the apparent Ca/P ratio was close to unity,
suggesting that these elements were in the form of brushite,
which has been shown in vitro to act as a precursor to
other calcium-phosphorous molecules [22, 23]. Spontaneous
nucleation of calcium phosphates on titanium alloys in vitro
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is a well-established phenomenon [24–27], culminating in
the formation of carbonated hydroxyapatite. Clinically, such
a mechanism could eventually result in the formation of
de novo abrasive third bodies. EDS has limited sensitivity
to the presence of calcium and phosphorous as they are
relatively lighter elements [28]. That these lighter elements
were detected in this study with EDS at all suggests that
the thickness of these secondary deposits was appreciable.
Importantly, however, calcium and phosphorous were not
detected on clean (nondeposit) areas in this group of spec-
imens; thus, there was no evidence for generalized deposi-
tion of these elements. Build-up of “secondary” deposits of
calcium and phosphorous could potentially increase head
roughness (and hence, exacerbate polyethylene wear) beyond
that occurring by “primary” titanium alloy deposits alone.

Tungsten-rich particles were observed within the depo-
sition areas for all five femoral heads studied. Tungsten
is not a constituent of orthopaedic titanium alloy, but it
is a minor constituent (0.2% maximum) of ASTM F75
cobalt-chrome alloy [29], appearing in the microstructure
as tungsten carbide (WC) particles that block the motion of
lattice discontinuities [30]. To our knowledge, WC particles
have not been previously reported as surface contaminants of
retrieved total joint replacement implants. There have, how-
ever, been similar observations of other minor constituents
of cobalt chrome alloy appearing in particulate deposits
on retrieval surfaces. Raimondi et al. detected silicon and
manganese in spherical particles (5–10 𝜇m diameter) found
on the surface of retrieved cobalt-chrome femoral heads [31].
Silicon and manganese are also minor constituents of ASTM
F75 cobalt-chrome alloy (both 1%maximum) [29]; Raimondi
et al.’s disproportionately high detection of these elements in
those particles was attributed to the particles having been
microsegregated within the cast cobalt-chrome head and
subsequently released [31]. Davidson suggested a mechanism
by which particles such as carbides and nitrides could be
released from the femoral head as the surface metal is worn
[32]. The tungsten-rich particles detected in the present
study were also likely derived from the microstructure of the
femoral component. Such released particles obviously could
contribute to the third-body burden.

5. Conclusions

Femoral heads from metal-on-polyethylene THA implants
with a clinical history indicating contact with the acetabular
shell displayed not only titanium alloy deposition, but also
evidence of calcium, phosphorous, and tungsten. These
deposition features could conceivably accelerate damage and
wear of the opposing UHMWPE liner and thus acceler-
ate the subsequent development of osteolysis. Quantifying
this increased roughness provides useful information for
the robust computational simulation and prediction of the
correspondingly increased wear rate. Besides the inherent
roughness of the deposition material per se, the presence of
particles dominated by minor constituents of the underlying
bearing surface material, and the presence of Ca and P atop
the deposits, is suggestive of increased third body burden
in both the present and the future. This analysis is a good

starting point for further in-depth studies considering XPS
observations reported in this study. Patients with suspected
head-shell contact from any circumstance should therefore
be closely monitored for wear or osteolysis.
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