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Dengue has been recognized as one of the most important vector-borne emerging infectious diseases globally. Though dengue
normally causes a self-limiting infection, some patients may develop a life-threatening illness, dengue hemorrhagic fever
(DHF)/dengue shock syndrome (DSS). The reason why DHF/DSS occurs in certain individuals is unclear. Studies in the endemic
regions suggest that the preexisting antibodies are a risk factor for DHF/DSS. Viremia and thrombocytopenia are the key clinical
features of dengue virus infection in patients. The amounts of virus circulating in patients are highly correlated with severe dengue
disease, DHF/DSS. Also, the disturbance, mainly a transient depression, of hematological cells is a critical clinical finding in acute
dengue patients. However, the cells responsible for the dengue viremia are unresolved in spite of the intensive efforts been made.
Dengue virus appears to replicate and proliferate in many adapted cell lines, but these in vitro properties are extremely difficult
to be reproduced in primary cells or in vivo. This paper summarizes reports on the permissive cells in vitro and in vivo and
suggests a hematological cell lineage for dengue virus infection in vivo, with the hope that a new focus will shed light on further
understanding of the complexities of dengue disease.

1. Introduction

Dengue is one of the most important mosquito-borne viral
diseases affecting humans, with over half of the world’s
population living in areas at risk. Originally, dengue virus
infections occurred mainly as epidemics in tropical and
subtropical countries. But over time, with increasing glob-
alization and the geographic spread of inhabitants of Aedes
aegyti and Aedes albopictus mosquitoes, the dominant vectors
for dengue virus transmission, dengue virus infection has
steadily penetrated every corner of the world [1, 2]. Dengue
virus has four serotypes, and each of them can cause
a spectrum of diseases ranging from asymptomatic, mild
febrile (dengue fever, DF) to a life-threatening illness, dengue
hemorrhagic fever (DHF)/dengue shock syndrome (DSS).
Approximately 50 to 100 million people contract dengue

fever annually, and about 200,000 to 500,000 of these are
DHF/DSS, which has a mortality rate about 1%–5%, mainly
in children under 15 years of age [3].

Clinically, DF and DHF/DSS have several common
features: viremia lasting for 5 to 8 days, fever persisting for
2 to 7 days, headache, myalgia, bone/joint pain, and rash,
often accompanied by leucopenia. Occasionally variable
degrees of thrombocytopenia and cutaneous hemorrhage are
observed. More severe cases with incapacitating bone/joint
pain (“break-bone-fever”) are common among adults. The
pathological hallmarks that determine disease severity and
distinguish DHF from DF and other viral hemorrhagic
fevers are plasma/vascular leakage resulting from increased
vascular permeability and abnormal hemostasis. Factors and
biomarkers that can be used to identify those individuals at
risk for DHF/DSS are not known. Epidemiological evidence
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suggests that preexisting immunity to dengue virus can
enhance disease upon sequential infections [4]. Although
intense efforts have been made to identify the etiology of
DHF/DSS, the potential mechanisms involved in the patho-
genesis of DHF/DSS remain an enigma; in large part due to
the lack of a satisfactory animal model that recapitulates the
clinical sequelae of human dengue virus infection. Currently,
there are no effective vaccines or therapeutic drugs available
to prevent or treat dengue virus infection. The importance of
the dengue, in particular the more severe and potential dire
consequences including death in DHF/DSS, has caught the
attention of public concerns, and the NIAID/NIH has listed
dengue virus as a Category A priority biothreat pathogen
[5]. The recent outbreak in Brazil highlights the possibility
of dengue virus spread to North Americas, thus providing a
potential public health threat to the US as outlined by Dr.
Fauci, NIAID [6].

Dengue is a timing illness, in other words, the progres-
sion to clinical manifestations may differ among infected
individuals, which has caused variation in time points
of specimen sampling. Currently, many of the descriptive
events or associated factors related to dengue or dengue
pathogenesis are predominantly derived from the specimens
obtained at the appearance of clinical signs of dengue.
Because of the lack of early time point in patient samples
and suitable or satisfactory animal models, a comprehensive
picture of the events cumulating in DHF/DSS pathogenesis,
such as the role of enhancing antibodies, the requirement for
specific sequence of infection, the types of cells infected, as
well as the nature and source of the mediators responsible for
increased vascular permeability, is unresolved and constantly
in debate.

In this paper, we summarize or discuss what has been
reported thus far on the permissive cells for dengue virus
infection both in vitro and in vivo and propose a new poten-
tial permissive cell type that has been neglected frequently
and deserves much more attention.

2. Dengue Viruses

Dengue viruses, similar to other flaviviruses, possess a pos-
itive single-stranded RNA genome packaged inside a core
protein, which is surrounded by an icosahedral scaffold
and encapsidated by a lipid envelope. Its 11 kb genome
functions similar to mRNA, encoding a polyprotein which
upon translation is cleaved into three structural proteins
(C, prM/M, and E) and seven nonstructural proteins (NS1,
NS2A, NS2B, NS3, NS4A, NS4B, and NS5) by viral or host
proteases. Since dengue viral genome can function as mRNA,
if the viral RNA can be delivered into a cell’s cytoplasm
through biologically active vesicles, translation and genome
synthesis can occur accordingly [7].

3. Dengue Viremia

Viremia is a common clinical manifestation in several severe
viral infections. However, dengue viremia is unique because
in endemic regions, where majority of the population has

demonstrable neutralizing antibody to all four dengue
serotypes [8], viremia still occurs in some of these popula-
tions upon bitten by mosquitoes carrying infectious dengue
virus. The reasons why certain individuals developed clinical
illness are not known, although an individual’s genetic
background, the interval between reinfection, sequence of
infection by specific serotype, and quality of immune
responses may partially account for the differences [4, 8].
Since identifying the permissive cell lineage(s) in vivo may
uncover the underlying mechanisms leading to DHF/DSS
and aid in vaccine and antiviral drug development, the
source(s) of circulating virus in acute dengue patients has
been the central focus for several decades. In spite of the
efforts made to identify these cell(s), the question remains
elusive.

4. In Vitro Studies

In vitro, numerous primary cell lineages and established
cell lines have been studied for their relative permissive-
ness for dengue virus infection, including endothelial and
fibroblast cells, myeloid-derived cells, and lymphocytes [9–
17]. Although some of the cells defined in vitro could be
permissive cells for dengue virus replication in vivo [18–
21], the actual phenotypes of these cells have not been
delineated or defined in detail. Consequently, conflicting
reports abound in the literature.

Historically, dengue virus has been isolated from poly-
morphonuclear leukocytes (PMNs) [22], adherent cells
presumed to be phagocytic monocytes or macrophages [23],
and nonadherent leukocytes [24, 25] from dengue patients.
Additionally, since this virus is delivered to its host via
mosquito bites to the skin, the human Langerhans cells,
skin cells with a morphology and function similar to that of
dendritic cells, have been suggested to be a potential target
for dengue virus infection [26]. Several in vitro studies utiliz-
ing myeloid-derived dendritic cells have been documented,
which suggest the permissive cells upon contact with dengue
virus are monocytoid-derived DC-SIGN bearing DCs and
mannose receptor bearing macrophages [27–33]. In this
regard, however, other evidence suggests that Langerhans
and/or dendritic cells are probably implementing their
normal immune functions, such as taking up antigens for
processing and presenting them to the adaptive immune
cells, instead of serving as the reservoir cell for dengue
virus [21, 34–36]. In addition, it should be noted that
atypical lymphocytes, which may be cells closely related to
CD19+ B cells, since there is a correlation between these
two cell populations [37], have been regularly reported
to be found in increasing frequency, circulating in the
peripheral blood of naturally dengue-virus-infected human
patients [38, 39]. This uncharacterized cell lineage has been
suggested as a potential host cell for the replication of dengue
virus in infected patients [22]. As a whole, only a small
subpopulation of cells in peripheral blood appears to be
infected by dengue virus [22, 23], but the phenotype of this
subpopulation has yet to be fully characterized. A view on the
selected suggestive permissive cells is elaborated in a bit more
detail.
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5. Skin Innate Immune Cells

Dengue disease is introduced to its hosts by the bite of
mosquitoes carrying infectious virus. The first obstacle that
the mosquito encounters is the physical barrier of the
skin, which is composed of several layers of keratinocytes
interspersed with a network of capillaries (Figure 1). Ker-
atinocytes are on the outermost epidermal layer of the skin,
are endowed with Toll-like-receptors (TLR) [40], and may
be considered a component of the primary innate immune
system. Langerhans cells mainly reside in the thin layer of
the epidermis, which does not contain capillaries, while
dendritic cells are predominantly in the thicker dermis layer,
which is filled with capillaries. Although Langerhans cells,
in general, have the same phenotype as dendritic cells,
and is impossible to distinguish activated Langerhans cells
from dendritic cells by morphological appearance, numerous
studies indicate that biological activities are discernible
between these two cell types [41–44]. Many interesting
questions can be asked. How does dengue virus interact with
skin cells during mosquito probing prior to penetration?
How deep does the mosquito fascicle penetrate into the skin?
How does dengue virus behave upon contacting epidermal
and dermal innate immune cells after the mosquito fascicle
penetrates? And how does dengue virus get deposited and
disseminated during the engorgement period while the
mosquito imbibes the blood? The answers to these questions
can elucidate how the fates of the cells on or in the skin are
orchestrated.

6. Mosquito Imbibing

Gordon and Lumsden, the authors of a historical in vivo
frog’s web paper in 1939, observed that the mosquito’s
proboscis is flexible and predominantly imbibes blood
directly from the capillary and only occasionally from
the pools formed in the tissues by the leakage of blood
from the capillary previously lacerated by the mosquito’s
proboscis [45]. This study is later confirmed in mice ear and
human beings implementing the same experimental designs
[46, 47]. The dimensions of an Aedes aegypti fascicle are
typically 1.8 mm in length with an internal radius of 10 μm
[48] and typically engorge a blood meal of 4.2 μl in 141s
[48]. It is estimated that during imbibing, approximately
50% (∼0.9 mm) of the fascicle penetrates into skin [49],
suggesting that the location of blood drawn from is the
capillary-rich dermis layer, implicating that pathogens may
be directly injected into the blood.

7. Dendritic and Langerhans Cells

Mosquito probing, penetration, and feeding on the surface
of the skin is easily interrupted by the movement of the
host. Unsuccessful imbibing may result in a certain amount
of virus deposited on the outermost layers of skin, where
keratinocytes, Langerhans, and dendritic cells may encounter
the virus. The delicate alarm system of the skin can sense the
probing of the mosquito and the penetration of the fascicle,
potentially initiating a signaling cascade and the activation

of defense mechanism. Thus, if these dendritic cells are
permissive as others suggested [27–33], we would anticipate
quite high incidence of the dengue cases in endemic regions
during the rainy season. The critical role of these antigen
presenting cells (APCs) is to ingest foreign particles including
viruses, process these materials while migrating to the
regional lymph nodes. Here, the APCs can present the
foreign proteins to other immune cells, such as T cells,
to initiate the cascade of the adaptive immune responses,
including antibody production. Dendritic cells, therefore,
may be more important for the induction of the host’s
defense. Importantly, it is of benefit to the host that the virus
be engulfed and processed in order to generate an adequate
immune response against the invading pathogen and protect
the host from further infection. Since such phagocytic cells
are the first line of defense in our body, this may perhaps
explain why a majority of dengue cases are asymptomatic.

Interestingly, apoptotic keratinocytes and dendritic cells
are observed in human skin explants when dengue virus
is directly injected into the epidermis with a fine needle
[35]. Furthermore, others have observed that mosquitoes
can deposit high doses of virus extravascularly as they probe
and feed on the host, while only a small amount of virus
is injected directly into the blood [50]. Considering the fact
that a majority of dengue virus infections are asymptomatic,
this evidence suggests that the role of dendritic cells at the site
of fascicle penetration is to eliminate or temporarily contain
the intruders and thereby prevent or reduce the dissemina-
tion of dengue virus. However, the role of keratinocytes and
dendritic cells in clearance of dengue virus remains to be
further investigated.

8. Monocytes/Macrophages

Since dengue viral antigens are detectable in adherent cells
obtained from the peripheral blood of dengue patients,
monocytes and/or macrophages have been an assumptive
target cell for more than three decades. With the high level
of interest in the pathogenesis of DHF/DSS, intensive efforts
have been made to identify the infected monocytes and/or
macrophages in the peripheral blood of infected patients,
and some suggestive successes have been documented.
However, dengue is a timing disease. Specimens collected
from dengue patients are often after the onset of clinical
manifestations; therefore, the intervals prior to symptoms
developed are different among individuals and are likely
at the peak of dengue viremia, and autopsy samplings are
always at the convalescent stage or later. Within the context,
identifying a cell that is positive for dengue viral antigens in
collected specimens requires meticulous investigations and
cautious interpretations. Although recently researchers are
attempting to address the issue with small animal models,
such as the AG129 mice experimentally infected with dengue
virus, the major pitfall of this model is that mice have
a defective interferon response, which has been shown to
play a very critical role in controlling virus replication and
proliferation. Consequently, dengue viral RNA or antigens
are observed in almost all the cells and organs that have been
investigated [18, 21]. Within the same content, this same
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Figure 1: A schematic diagram of the skin. A cartoon drawing based upon the textbook descriptions of the thickness of outer skin layers.
Only layers relevant to the subject are shown. LC, Langerhans cells; DC, dendritic cells; Capillary, green and red internetworks.

group investigated the autopsy tissues from patients who
died of dengue virus infection. The authors showed that
human tissues and the corresponding mice AG129 tissues
were positive for dengue virus NS3 antigen, concluding
that these cells propagated virus. However, the phenotypic
markers of the cells that were positive for dengue viral
antigen were not confirmed, and thus a conclusion was
drawn based upon the similarities between humans and
mice. Also, a new finding suggests that liver sinusoidal
CD31+ endothelial cells in AG129 mice are positive for
dengue viral antigen and can support the antibody-mediated
infection [21]. However, evidence indicates that there are
many differences in immunological and antiviral responses
between humans and mice [51–53]. Thus, clarifications of
the role of monocytes and macrophages in dengue virus
infection in vivo are urgently needed. This notion is also
applied to the paper published by Jessie et al. [20], in which
the cell phenotype markers in those cells positive staining for
either dengue viral antigens or RNA, were not confirmed.

In addition, Durbin et al. [19] has performed an exten-
sive phenotyping of PBMCs during acute dengue illness,
and the results suggest that quite a few immune cells with
various cell surface markers are positive for viral antigens,
prM or NS3. Recently, in a study with AG129 mice, dengue
antigens are seen in CD31+ liver cells stained with the same
antibody [21]. However, these observations can be explained
by several factors. One of such alternative explanation is
platelet-leukocyte aggregation, which has been documented
to occur in a number of physiological and pathological
states [54–58] and has been implicated in contributing
to inflammation [54, 57, 59]. Another possibility is that
multiple cell types can be stained with the same cell markers;
for example, megakaryocytes and platelets can be stained
with CD31-specific antibody. Whether the virus actively
replicates in these cells was not shown, and thus the dengue
viral antigen detected in these cells may be the result of
engulfed materials or undigested protein residue via in vivo
deposition of virus-antibody complexes rather than direct

infection. However, if stainings included a specific marker
for platelets and/or megakaryocytes, it may help distinguish
the phenotype of the dengue virus infected cells. Although
these studies demonstrated that dengue viral antigens or
RNA were observed in certain cell populations, the definitive
phenotype was not determined. Therefore, in vivo, the
cell(s) accounting for viremia during dengue virus infection
remains an enigma.

9. Historical Observations

Retrospective literature reviews reveal that in bone mar-
rows aspirated during the recovery stage or immediately
after death, phagocytic clasmatocytes contain normoblastic,
lymphocytic, granulocytic, erythrocytic, and platelet-like
remnants in their cytoplasm [60–62]. Infected leukocytes (or
monocytes) are frequently present on the last day, at the end
of viremia, or the day after the disappearance of the virus
from the plasma [63], suggesting that leukocytes may play an
essential phagocytic role in the clearance of circulating virus.
Recently, the phagocytic phenomenon has been confirmed in
dengue hemorrhagic nonhuman primate model [64]. Due to
difficulties and inconsistencies in identifying the cell lineages
responsible for dengue viremia at the acute stage, monocytes
and/or macrophages are gradually being assumed as the
main cells for dengue virus propagation for the following
reasons: (i) like the cells that can propagate the virus, they
can adhere to cell culture flasks [63, 65], (ii) they are capable
of phagocytosis [23, 66], and (iii) infrequently observed
dengue viral antigens in cells with a similar morphology in
tissues obtained postmortem [20, 67, 68]. These observations
then led to the postulated hypothesis of antibody-dependent
enhancement (ADE) [69] in an attempt to explain the
epidemiological observation in which secondary infection
with subsequent heterologous dengue serotypes is a risk
factor for DHF/DSS [70]. The ADE theory is used to
explain the severe dengue virus infection; antibody to the
first infection may not be sufficient enough to neutralize
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a heterologous infection, and this partial cross-reacting anti-
body (or subneutralizing antibody) may promote Fc-bearing
cells such as monocytes and macrophages to opsonize the
virus, leading to increased virus production.

However, studies have shown that some hematopoietic
cells have the adherence and phagocytic property as well
[71], and consequently reports on the ADE hypothesis
are in debate. In support of this view, in the presence of
subneutralizing antibody, a low percentage of dengue virus
infected monocytes and/or macrophages can be observed
in vitro [72–74]. On the contrary, some reports indicate
that monocytes and/or macrophages have a different role—
to protect against dengue virus replication. Evidences in
support of this view include: (i) monocytes/macrophages
undergo apoptosis in contact with dengue virus, (ii) they
are capable of phagocytosis, (iii) they phagocytose infected
apoptotic cells or apoptotic bodies, and (iv) they upregulate
immune responses through autocrine or paracrine cytokine
mechanisms [15, 64, 75–80].

An interesting discrepancy abounds. If monocytes and/or
macrophages are the cells accounting for viremia during
acute infection, why is it so difficult to detect the viral
antigens in peripheral blood cells obtained from acute
dengue patients? The aforementioned scenario—protective
against dengue virus may account for the answer. With the
evidence available in vivo to date, it is more reasonable to
assume that the presence of dengue viral antigens within
monocytes in samples obtained towards the end of the
acute infection period may be the result of phagocytosis and
viral clearance. Interestingly, a recent report also suggests
a prominent role of monocytes and/or macrophages in the
control of dengue virus in infected mice [81]. Unfortunately,
the role of monocytes and/or macrophages in dengue virus
infection has drawn the center attention for more than
three decades, yet the importance they play in the patho-
genesis of DHF/DSS is still unclear. Recently, an immuno-
competent nonhuman primate model recapitulating the
dengue hemorrhagic is available [64], the mystified issue
on the role of monocytes and/or macrophages in dengue
virus infection may be further delineated and hopefully
resolved.

10. Biological Characteristics in
Cells Infected by Dengue Virus

The reason why dengue viruses are capable of infecting
a wide range of immortalized cell lines, such as myeloid-
originated, B, T, fibroblast, and endothelial cells but yet
comparatively poor at replicating in primary cells is currently
unknown. Perhaps, it is likely that cell factors that are altered
in immortalized cell lines contribute to this differential
permissiveness. Immortalized cell lines are normally trans-
formed with viruses, such as SV40 or EBV, which encode viral
gene products that have an effect on interferon-signaling.
Interestingly, among the cell mediator repertoire, interferon
expression appears to be a very crucial element limiting
the propagation of dengue virus [14, 82, 83]. In addition,
defects in interferon signaling pathway has been shown in

cancer cells, such as lymphoma and leukemia and established
immortalized cell lines [84–88]. This line of evidence may, to
some extent, explain why cell lines, such as Vero and K562
cells, which lack a functional interferon system, are highly
permissive to dengue virus infection. In addition, activation
of interferon-stimulated genes are the constant findings in
cells with relatively poor permissive for dengue virus [14,
89, 90] and in specimens obtained in dengue-virus-infected
humans and rhesus monkeys [89, 91, 92]. Within the same
content, it is interesting to review what has been investigated
in paucity of dengue animal models.

11. In Vivo Animal Studies

Currently, no perfect animal model that recapitulates the
cardinal features of human DHF/DSS is available, even
though a recent dengue hemorrhagic monkey model appears
to be promising for dengue hemorrhagic investigation [64].
Since understanding the mechanisms leading to viremia
and disease is necessary for vaccine and antiviral drug
development, efforts have been made to search and/or
generate a suitable dengue animal model. The readers should
refer to recent review articles on the subject in smaller
animals [93, 94]. This paper focuses mainly on why dengue
viremia is seen in these animal models.

The absence of disease symptoms, virus replication, and
viremia in the serum of laboratory immunocompetent mice
strains [95–98] indicates these mice are not suitable to study
the cells permissive for dengue virus infection. In contrast,
in immunocompromised mice, such as AG129, A/J, and
STAT−/−mice [99–102], dengue viremia can be observed,
though to some levels, in serum and in almost all the major
organs studied. Thus, in immunocompromised mice, the
interferon system may have defects that enhance disease
unnaturally. Taking this into account, it is improbable that
identification of the potential permissive cells for dengue
virus replication will result from investigations with this
model. In studies involving human chimeric mice, dengue
virus appears to be detected predominantly in the human
implanted or immortalized cells [103–109], suggesting that
only the cells of human origin are infected and mice tissue
can not support viremia. Nevertheless, as a whole, despite
having a few drawbacks, such as low to undetectable dengue
antibody in serum, and to some extent, lack of typical
characteristics of dengue disease [108], currently a small
animal model with detectable viremia, perhaps would be
ideal for the initial screening of antiviral compounds and/or
vaccine toxicity studies. However, the rhesus macaque animal
model is more appropriate for investigations involving the
cells responsible for dengue viremia.

The only large animal species besides humans that are
known to be naturally infected and can be experimentally
infected by the parenteral route are monkeys [110–115]
and apes [97]. The antibody response and viremia levels
in monkeys are similar to that seen in humans [111], and
therefore they have been viewed as an acceptable animal
model to study virological and immunological aspects in
experimental dengue virus infections [116–119]. In addition,
it has been well documented that in all aspects, the cell
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composition of rhesus macaque bone marrow is very similar
to that of humans [120, 121] and is highlighted by the
fact that the parameters established for blood transfusions
in monkeys has served as an important guide for these
procedures in clinical studies [122]. Furthermore, a recent
report demonstrated a recapitulation of human dengue hem-
orrhagic in rhesus monkeys via intravenous administration
of high doses of dengue virus [64]. Even though the level and
magnitude of dengue viremia is slightly lower than that of
humans, this model displayed disease symptoms and thus is
a better animal to investigate the source of dengue viremia.
However, a systematic investigation to identify the potential
cells for dengue viremia in this model has not been explored
in depth due to limited accessibility of the resources and the
high cost of the model. Thus, this topic will be evaluated with
samples collected from dengue-infected patients.

12. In Vivo Dengue Patients

Studies over the years with specimens collected from the
peripheral blood of dengue patients reveal that virus can be
recovered or detected in a variety of cells. However, a general
consensus concerning which cell lineages are involved in
dengue viremia has never been conclusive, partly due to the
variation of timing in specimen collection. Upon admission
to the hospital with clinical symptoms, patients are always
several days after the infection and frequently at the peak
or downturn in viremia. By that time, a complex network
of immune responses initiated and is in the action of viral
clearance. Perhaps, this may explain why immune cells are
commonly associated with the detection and/or isolation of
virus in dengue patients [24]. Thus, the cells that are infected
early, before the peak in viremia, and accounting for dengue
viremia are still unknown.

12.1. Platelets in Dengue. One of the important clinical
hallmarks in dengue virus infection in patients is platelet
dysfunction, which occurs throughout the acute phase,
and/or thrombocytopenia, which frequently occurs at the
defebrile stage, thus this is a subject of interest, especially
in understanding the possible mechanisms leading to the
observed phenomena. There are a few proposed mechanisms
that may explain platelet dysfunction and/or thrombocy-
topenia: (i) decreased production, (ii) direct infection by
virus, (iii) increased consumption, or (iv) immune-complex
lysis. The first mechanism has been observed. Early in
infection of dengue virus, it exerts a transient depressive
effect on megakaryocytes in the bone marrow [123–126],
which subsequently becomes normocellular or hypercellular
a few days after onset of fever [61, 124, 126]. In vitro
and in vivo, dengue virus has been demonstrated to have
toxic effects on platelets in the presence and absence of
acute and convalescent patient serum, lending some support
for the second mechanism [127–129]. In addition, dengue
viral RNA has been isolated from or detected in platelets
isolated from secondary dengue virus infected patients [130].
However, the precise mechanisms for the development of
dysfunctional platelets and thrombocytopenia in dengue

patients remain unknown. Also, the interactions of dengue
virus with platelets, including entry and possible virus
production, have not been investigated.

We have proposed that platelets may be a critical
element in early dengue virus infection [131–133], which
may partially account for the dysfunction of platelets.
Subsequent systematic investigations, with biological assays
and electron microscopy, reveal that dengue viral RNA,
either the positive stranded genome or negative stranded
template, and the presence of mature virus-like particles,
are consistently observed in platelets isolated from dengue
confirmed patients during the acute phase of infection
[132, 133]. A micrograph of dengue virus-like particles
within platelets isolated from confirmed dengue patients is
depicted (Figure 2). Typical clustering of dengue virus-like
particles surrounded by a vesicle was observed in platelets
(Figure 2(a)), and occasionally single or isolated dengue
virus-like particles were observed [133]. Infrequently, dengue
virus-like particle with a fuzzy morphology were observed
associated with or released from platelets (Figure 2(b)).
However, we could not rule out the possibility that these
dengue virus-like particles containing platelets are in the
category of megakaryocyte-derived microparticles [134]. In
addition, immunofluorescent staining of platelets isolated
from confirmed dengue patients reveals that viral antigens
can be observed not only in platelets, but also in cells with
the similar morphology as proplatelets (Figure 3(a)), while
some dengue viral antigens were observed in presumably
the micromegakaryocytes (Figure 3(b)). This observation
is consistent with early reports by Nelson et al. [61, 126],
who originally observed the presence of immature and
nonplatelet forming megakaryocytes circulating in dengue
patients and by Bhamarapravati and Boonyapaknavik [135],
who noted that positive staining for dengue viral antigen
in human tissues was demonstrated only in the lymphoid-
like cells. Interestingly, the nucleated micromegakaryocytes,
which are similar in size and morphology to lymphocytes,
have been well documented [136, 137]. The presence
of micromegakaryocytes, as opposed to megakaryocytes,
suggests that production of platelets from bone marrow
increases in response to dysfunctional or low numbers of
platelets in the circulation of acute dengue patients.

Although platelets do not have a nucleus, they possess
functional spliceosomes that are able to process pre-mRNAs
into mature mRNA, from which proteins can be translated
and processed [138, 139]. In vitro experiments were set up to
investigate the susceptibility of platelets to support dengue
virus production, which may directly contribute to the
platelet dysfunction. A low level of dengue virus production
could occur in infected platelets with the peak occurring at 18
hours post infection (Figure 4), suggesting that dengue virus
is capable of replicating in platelets and dengue viral antigens
may be expressed on the surface of platelets. Alternatively,
the moderate viremia changes may result from the transient
ability of platelets reproduction in culture conditions [140],
which may have the capacity of capturing and releasing
dengue viruses in later hours. Perhaps, this may account
for the rise of platelet-associated antibodies (PAIgM/IgG)
during acute dengue virus infection [130] and the increased
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Figure 2: Dengue virus-like particles in platelets isolated from confirmed dengue patients. Platelets were isolated from confirmed dengue
patients at the acute stage and subjected to electron microscopy. (a) Dengue virus-like particles were observed inside vesicle compartment
(red arrow) and a particle appeared to be on its way budding out into the vesicle (blue arrow). (b) A single fuzzy virus-like particle was
released from platelet (red arrow head). Red circle indicates the enlarged area. Insert is the platelets.

incidence of phagocytosis of platelets from patients with
secondary infections by human macrophages [78]. In addi-
tion, administration of intravenous immunoglobulin, which
saturates phagocytosis and impedes antibody production,
lacked efficacy when used to treat severe thrombocytopenic
patients with secondary dengue virus infection [141]. As a
whole, these evidences suggest that dengue virus may take
a ride and experience ongoing maturation within platelets
produced from infected progenitor megakaryocytes.

Platelets are anucleate cells that have hemostatic and
inflammatory functions [142, 143] and are composed of
a concentrate of megakaryocyte membrane, cytoplasm,
granules, and organelles [144]. Platelets circulate throughout
blood vessels during which they monitor the integrity of
the vascular system. All functional platelet responses must
be tightly regulated to ensure that the formation of blood
clots is of sufficient size to seal off the damaged area, while
not disrupting blood flow to vital organs by causing vessel
occlusion [145–147]. With the observation that dengue
viral antigens are associated with proplatelets [148, 149]
or micromegakaryocytes [137, 150] in blood during acute
dengue virus infection (Figure 3), it is likely that a platelet
lineage parental cell, megakaryocytes, may be involved in
the production of dengue virus during acute infection. In
addition, platelets contain several key elements related to
dengue virus infection, such as DC-SIGN [151] as well as
complement and Fc receptor, which have been implicated
in virus uptake [152, 153]. It is also possible that a unique
receptor or coreceptor is required for viral binding and entry
into platelets. However, this particular receptor or coreceptor
may not be evenly distributed or allocated in platelets since

platelets are demarcated from the membrane of megakary-
ocytes, which may result in heterogeneous populations of
platelets. This heterogeneity of platelet alloantigen referred
to as human platelet alloantigen (HPA) polymorphism in the
literature, and how it contributes to dengue virus infection
and dengue disease severity warrants further investigation.

12.2. Megakaryocyte-Erythroid Progenitor (MEP) Cells in
Dengue. Hematopoietic progenitor cells (HPCs) normally
reside in bone marrow but can be mobilized to peripheral
blood by stimulation with cytokines/chemokines. During
infection, the microenvironment within the circulation
contains a variety of immune cytokines/chemokines. Some
of these immune cytokines/chemokines have the capacity
to mobilize HPC to peripheral blood in response to the
invading pathogen. CD41+CD61+ cells, such as megakary-
ocytes, normally account for 1% of the bone marrow but
can change dramatically in certain diseases or infections
and mobilize into the peripheral circulation. However, the
presence of megakaryocytes in blood is a normal phys-
iological occurrence [154]. Transport of megakaryocytes
in the blood is halted in the lungs, where the majority
shed their cytoplasm. Upon maturation via differentiation,
the process of releasing platelets is initiated. Cytokines,
such as thrombopoietin, can orchestrate the formation of
platelets, which are held within the internal membranes in
the cytoplasm of megakaryocytes. Platelets are released via
two proposed scenarios [155]; (a) megakaryocytes undergo
apoptosis to break up the platelets from demarcation of
membranes, and (b) formation of platelet pseudopodia
ribbons (proplatelets), which are released into blood vessels



8 Advances in Virology

10 nm 10 nm 10 nm

10 nm10 nm

(a)

10 nm 10 nm 10 nm

10 nm10 nm

(b)

Figure 3: Dengue antigens on platelets and its derivative cells. Isolated platelets were stained with dengue-specific antibody (3H5) and
platelets-specific markers (CD41). (a) Dengue antigen was observed in platelets and proplatelets. (b) Dengue antigen was observed in a
micromegakaryocyte. Green: platelet marker CD41; Red: dengue antigen; and Blue; DAPI for nucleus staining. Red bar, 10 μm.

resulting in continuously release of platelets into the circula-
tion. In either scenario, each megakaryocyte can give rise to
1000–3000 platelets [155], of which 2/3 of newly produced
platelets remain in circulation while 1/3 is sequestered within
the spleen. The remaining cell nucleus of the megakaryocyte,
which is covered with a very thin cytoplasmic membrane
and is morphologically similar to the small lymphocytes
[137, 156], then crosses the bone marrow barrier into the
blood and is consumed in the lung by macrophage-mediated
phagocytosis [156].

Recently, a study profiling the gene expression by
genome-scale transcriptional analysis in human primary
megakaryocytic cell reveals that interferon-response genes
are not induced or responsive to culture conditions or PMA
treatment [157, 158], suggesting that there is a possible
signaling defect in or impairment of interferon signaling in
megakaryocytes. Thus, bone marrow suppression observed
in dengue patients during the acute stage of infection,
including reduction of megakaryocytes [61, 123, 125], may
be due to direct disturbance or infection by dengue virus.
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Figure 4: Transient replication of dengue virus in platelets. Platelets
were isolated from a healthy donor and experimentally infected with
dengue virus serotype 2 (strain 16681) at an MOI of 0.01. RNA
was isolated from supernatants and pellets at indicated time and
subjected to real-time qRT-PCR for dengue viral RNA.

Interestingly, damaged or degenerated megakaryocytes with
homogenous hyalinized or reduced cytoplasms in bone
marrow biopsies from acute patients have been documented
[61, 123, 135, 159, 160]. Additionally, autopsies performed
in patients who died of acute dengue hemorrhagic fever
in the early 1960s revealed an increase in the number of
megakaryocytes in the capillaries of various organs [161] and
the deposition of hyaline materials with large mononuclear
cells of varying maturity in the germinal centers of the spleen
[162].

Furthermore, a unique and previously neglected cell
population, which has ultrastructural and morphological
appearance similar to that of micromegakaryocytes [137,
150] and a possible source of dengue viremia [22, 123],
were seen in circulation during the acute phase of infection
[129, 160], though the likely phenotypes of these neglected
cells are not well defined.

In addition, bone marrow aspiration studies show that
erythroid cells are diminished transiently in all cases of
dengue, some with an arrest of maturation [124, 126].
However, due to the long half-life of red blood cells
in circulation, the transiently halted erythropoiesis does
not cause severe anemia in dengue patients. This line of
evidence suggests a possibility of a transient involvement of
megakaryocyte-erythroid progenitor (MEP) cells in dengue
virus infection. Whether direct infection of MEP cells or
megakaryocytes by dengue virus can induce an aberrational
transcriptional event, such as a disturbance of nucleic acid
synthesis, resulting in the transiently halted erythropoiesis or
increased production of immature megakaryocytes and atyp-
ical lymphocytes circulating in the blood remains unclear
and warrants more exploration.

While dengue virus or its antigens has been found in sev-
eral tissues and cells [15, 18, 20, 67, 162] from postmortem
autopsy specimens and much important information has
been generated; one thing has to be kept mind. By the
time most of the patients are ill enough to be hospitalized,
they are at the end stage of the dengue virus infection,
multiple organ lesions or failures have occurred, and the
virus or viral antigens may be trapped in these tissues and/or
engulfed by phagocytic cells. Furthermore, a large number
of macrophages containing what appears to be incompletely
digested nuclear debris can be observed in autopsy specimens
[62, 67, 161, 162], while the endothelial cells of the blood
vessels look normal [67, 161, 162]. In addition, since dengue
virus causes viremia in infected patients and the timing of the
autopsy specimen collections are very critical, interpretation
of outcomes may be complicated by the constant blood
circulation in the body system when the patients are in
consciousness. As a whole, at present, it is impossible to
decipher the actual meaning of viral antigens or RNA in
cells observed in autopsy specimens. With the recent suitable
animal model, which is capable of recapitulating human
dengue hemorrhages [64], the status of these cells may be
clarified in the near future.

In summary, although many cell types including those
paired with ADE capacity may play a role in dengue
virus infection and in the development of DHF/DSS, this
paper by no means suggests that cells with an impaired
interferon system are the cells accounting for dengue viremia
in vivo. Instead, this current paper addresses the observed
phenomena in the literature and summarizes the possible
scenarios. In addition, a new cell is suggested to have a role in
DHF/DSS pathogenesis and warrants further investigation.

13. Conclusions

A new lineage of cell—MEP or CD41+CD61+ cells, such as
megakaryocytes and/or platelets—is suggested for a potential
cell accounting for dengue viremia in vivo. The objective
of the authors is to draw scientific attention to the highly
fragile cell with unusual biological properties in acute
dengue virus infection. After all, hemostatic defects in DHF
appear to be a major clinical finding. Our aim is to foster
more detailed investigations of the MEP or CD41+CD61+

cells in specimens collected from acute dengue patients,
which conceivably will not only provide a piece of valuable
information of the mechanisms associated with DHF/DSS,
but will also pave a new way on the formulation of effective
candidate vaccines or antiviral drugs development.
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