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Abstract

Significant advancements in the field of protein structure prediction have necessitated the

need for objective and robust evaluation of protein structural models by comparing pre-

dicted models against the experimentally determined native structures to quantitate their

structural similarities. Existing protein model versus native similarity metrics either con-

sider the distances between alpha carbon (Cα) or side-chain atoms for computing the

similarity. However, side-chain orientation of a protein plays a critical role in defining its

conformation at the atomic-level. Despite its importance, inclusion of side-chain orienta-

tion in structural similarity evaluation has not yet been addressed. Here, we present

SPECS, a side-chain-orientation-included protein model-native similarity metric for

improved evaluation of protein structural models. SPECS combines side-chain orientation

and global distance based measures in an integrated framework using the united-residue

model of polypeptide conformation for computing model-native similarity. Experimental

results demonstrate that SPECS is a reliable measure for evaluating structural similarity

at the global level including and beyond the accuracy of Cα positioning. Moreover,

SPECS delivers superior performance in capturing local quality aspect compared to popu-

lar global Cα positioning-based metrics ranging from models at near-experimental accura-

cies to models with correct overall folds—making it a robust measure suitable for both

high- and moderate-resolution models. Finally, SPECS is sensitive to minute variations in

side-chain χ angles even for models with perfect Cα trace, revealing the power of includ-

ing side-chain orientation. Collectively, SPECS is a versatile evaluation metric covering a

wide spectrum of protein modeling scenarios and simultaneously captures complemen-

tary aspects of structural similarities at multiple levels of granularities. SPECS is freely

available at http://watson.cse.eng.auburn.edu/SPECS/.
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Introduction

The biological function of a protein molecule is intimately linked to its three dimensional (3D)

structure. The knowledge of the 3D structure of a protein, therefore, helps us in understanding

its function [1] and enables improved drug design [2]. However, experimental determination

of the 3D structure of a protein is expensive and time consuming. Furthermore, the rapid accu-

mulation of protein sequence data without available structures make it practically impossible to

solve the structures of all the proteins experimentally [3]. Protein structure prediction methods

aim to address these challenges by computationally predicting the 3D structure of proteins in a

time-efficient manner. Computational protein 3D structure prediction, therefore, has become

an integral part of structural bioinformatics [4]. Contemporary protein structure prediction

methods [5–10] typically generate a large number of protein models for a given target protein

and select a finite subset (typically 5 to 10) of chosen models as candidates for the final predic-

tion. The evaluation of the accuracy of these candidate predicted models via 3D structure com-

parison approaches, in which the predicted models are compared against the experimentally

solved native conformation of the protein in order to quantitate their similarities or differences,

is critically important [11] for assessing the success of the structure prediction pipelines.

A number of model vs. native comparison-based accuracy evaluation measures have been

developed over the last decade [12]. Majority of the existing model-native evaluation measures

rely on superposition-based or superposition free distance-based measures [13–17], in which

degrees of similarities or differences are determined based on the corresponding distances

between either the main chain atoms or the side-chain atoms of the model and native. Cα Root

Mean Square Deviation (Cα RMSD) [18] is one of the most commonly used main chain super-

position-based model-native dissimilarity scores. It is the measure of the overall disagreement

between the Cα atoms of the corresponding residues after optimal structural superposition. The

lower the Cα RMSD, the better the model is in agreement with respect to the native. RMSD can

be extended to include all the backbone atoms or even all atoms. However, one major limitation

of RMSD is its dependence on the length of the target protein in that it is easier to obtain lower

RMSD values for smaller proteins compared to larger proteins. Furthermore, RMSD is overly

sensitive to minute modeling errors such as in the flexible loop regions of the structure [12].

LG-score [19] is a popular superposition-based model-native similarity metric proposed

by Levitt and Gerstein. It is measured as the sum of the reciprocated distances between the

aligned Cα atoms minus gap penalties. Siew, Elofsson, Rychlewski and Fischer proposed MaxSub

score [20] by identifying the maximum substructure in which the distances between equivalent

residues of two structures after superposition are below some threshold value, such as 3.5Å. Max-

Sub score lies between 0 and 1 with higher scores indicating better agreement between the model

and the native. Zhang and Skolnick developed TM-score [14] by exploiting a length-dependent

normalizing distance scale to eliminate the inherent protein size dependence. TM-score lies

between 0 and 1, with higher scores indicating better model-native similarity.

Global Distance Test (GDT) [13], a popular structural superposition-based global model-

native similarity metric, on the other hand, uses a distance threshold based approach. It is

defined by the average proportion of model residues having their Cα atom distances from the

corresponding residues in the native structure below a few predefined distance thresholds.

Multiple superpositions of the pair of structures, each including the largest set of superimpos-

able atoms are considered and the maximal residue set for each cutoff is selected, followed by

averaging over several predetermined thresholds. For GDT-TS [13], predetermined thresholds

of 1, 2, 4 and 8Å are considered for calculation of the maximal residue set. The high accuracy

version of the GDT measure, GDT-HA [17], uses lower thresholds of 0.5, 1, 2 and 4Å for the

calculation of the maximal residue set. The range of GDT-TS and GDT-HA measures are from
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0 to 1 with higher scores indicating better agreement of the models compared to the native.

GDT-TS and GDT-HA are widely used assessment metrics in the Critical Assessment of pro-

tein Structure Prediction (CASP) experiments [21,22].

LG-score, MaxSub score, TM-score, GDT-TS or GDT-HA consider only the main chain

Cα atoms for quantitating the structural similarity. However, protein side-chains play a major

role in defining its conformation at the atomic detail. Therefore, quantifying the side-chain

similarities or differences can improve the sensitivities of model-native similarity metrics [23].

Global Distance Calculation for Side-Chains (GDC-SC) [24] is a measure, which determines

the correctness of the side-chain positioning. GDC-SC metric is similar to GDT-TS in that it

uses a characteristic atom for each residue type instead of relying on the Cα atom. Similar to

GDT-TS, GDC-SC computes the optimal structural superposition based on the Cα atoms of

the model vs. native, and subsequently uses the residue-specific side-chain characteristic atom

using a distance threshold based approach to quantitate model-native similarity scores. The

range of GDC-SC is from 0 to 1 with higher scores indicating better model-native similarity.

Although, GDC-SC quantifies the positioning of the side-chain, it only takes into consideration

the distances between the side-chain atoms and not their orientation with respect to the back-

bone–crucial for highly sensitive structural and functional studies based on protein structures

that mandates atomistic resolution [25–27]. While existing model-native similarity measures

such as LG-score, MaxSub score, TM-score, GDT-TS or GDT-HA, and GDC-SC consider

either Cα atom distances or side-chain distances, an integrated structural similarity metric that

can simultaneously capture the distances between the backbone and side-chain atoms as well

as the orientation of side-chain atoms with respect to backbone may offer some advantages.

Here, we integrate side-chain (SC) orientation and global distance based metrics to propose

a new superposition-based model-native similarity metric, Superposition-based Protein

Embedded Cα-SC (SPECS) score. SPECS integrates global Cα positioning based distance and

side-chain distance and orientation in a singular framework using the united-residue represen-

tation [28] for an integrated model-native similarity metric. To the best of our knowledge, this

is the first study to propose a protein model evaluation metric that includes side-chain orienta-

tion. Furthermore, the seamless integration of Cα and SC in the united-residue representation

is novel. Experimental results demonstrate that SPECS is a reliable and sensitive model-native

similarity measure across a wide range of protein modeling scenarios in that SPECS not only is

a reliable measure for evaluating the accuracy of global Cα positioning but also captures other

aspects of model-native accuracy at the global level beyond just the realm of Cα positioning.

Moreover, SPECS captures local quality aspect better than some of the most popular global Cα
positioning-based metrics, for both high-resolution models at near-experimental accuracy and

moderate-resolution models with correct backbone positioning. Finally, SPECS successfully

captures minute variations of side-chain χ angles even for protein models having perfect Cα
trace–revealing the effectiveness of including side-chain orientation. Collectively, SPECS is a

reliable and sensitive evaluation metric for improved assessment of protein models covering a

wide range of modeling scenarios and is highly effective at simultaneously capturing structural

aspects at both global and local levels, thereby being a valuable new measure for comprehensive

evaluation of protein structural models.

Materials and methods

United-residue representation for structural alignment

We use the united-residue representation of polypeptide conformation [28] as shown in Fig 1.

In united-residue representation, the polypeptide chain of the protein is represented by a

sequence of Cα atoms and characteristic side-chain (SC) atoms, which are attached to the Cα
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atoms. The side-chain characteristic atom is obtained by computing the centroid of all the heavy

atoms present in the side-chain of a given residue in its all-atom representation. All atoms of the

polypeptide chain in united-residue representation are connected using virtual bonds. The loca-

tion of the residue i in the polypeptide chain is completely defined by the positioning of Cαi and

positioning of the corresponding side-chain characteristic atom SCi attached to Cαi.

In Fig 2, we show structurally aligned model and native structures in the united residue

representation. We represent the Cα position of the residue i in the model as Cαi and the corre-

sponding aligned residue j in the native as Cαj. Consequently, the corresponding side-chain

characteristic atom i in the model is represented as SCi and the characteristic atom j in the native

is represented as SCj. While the distance between Cαi and Cαj is denoted purely by their Euclid-

ean distance dij, the relative positioning between the side-chain characteristic atoms is repre-

sented by the vector~rij, the magnitude of which is their Euclidean distance rij. ûij
(1), ûij

(2) are the

unit vectors, which represent the direction of the Cα and SC virtual bonds in the model and

native. θij
(1) is the virtual planar angle between ûij

(1) and~rij in the model and θij
(2) is the virtual

planar angle between ûij
(2) and~rij in the native and they are computed as follows [28]:

y
ð1Þ

ij ¼ cos� 1ðûð1Þij :~rijÞ ð1Þ

y
ð2Þ

ij ¼ cos� 1ðûð2Þij :~rijÞ ð2Þ

Fij is the virtual dihedral angle of counterclockwise rotation between ûij
(2) and~rij in the

plane defined by ûij
(1) and~rij and is computed as follows [28]:

;ij ¼ cos � 1
ûð1Þij :û

ð2Þ

ij � cos yð1Þij cos y
ð2Þ

ij

sin yð1Þij sin y
ð2Þ

ij

 !

ð3Þ

Fig 1. United-residue representation of polypeptide conformation. The polypeptide chain of a protein is

represented as a sequence of Cα atoms and SC atoms, which are attached to the Cα atoms. All the atoms in the united-

residue representation are connected using virtual bonds.

https://doi.org/10.1371/journal.pone.0228245.g001
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Structural alignment between model and native in the united residue representation, there-

fore, is fully captured by two distances dij and rij, two planar angles θij
(1) and θij

(2), and one

dihedral angle Fij.

Formulating the side-chain-orientation-included structural similarity

metric: SPECS

We utilize the aforementioned united residue representation to formulate side-chain-orienta-

tion-included structural similarity metric called SPECS, which stands for Superposition-based

Protein Embedded CA SC score. SPECS is a weighted combination of five different compo-

nents consisting of two distance components based on dij and rij, two planar angle components

based on θij
(1) and θij

(2), and one dihedral angle component based on Fij.

For computing the first component of SPECS, the optimal structural superposition between

model and native is determined based on the Cα atom positioning, in order to calculate their

Euclidean distances, dij. Average proportion of model residues having Cα atom distances from

the corresponding residues in the native structure below four different distance thresholds of

0.5, 1, 2 and 4Å are then calculated, followed by averaging the proportion of residues in four

different distance thresholds as:

SPECSdCA ¼
pdCA 05 þ pdCA 1 þ pdCA 2 þ pdCA 4

4:0
ð4Þ

where pdCA_05, pdCA_1, pdCA_2 and pdCA_4 are the proportions of the set of residues for which

dij values are below distance thresholds of 0.5, 1, 2 and 4Å, respectively. Consequently

Fig 2. Parameterization of structurally aligned model and native structures in the united-residue representation.

The structural alignment between the residue i in the model and the corresponding aligned residue j in the native is

fully captured by two distances dij and rij, two planar angles θij
(1) and θij

(2), and one dihedral angleFij.

https://doi.org/10.1371/journal.pone.0228245.g002
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SPECSdCA, ranges from [0, 1] with higher values indicating better model-native similarity in

terms of Cα atom distances.

For computing the remaining four components of SPECS, we rely on the optimal structural

superposition previously determined based on the positioning of the Cα atoms of the model

vs. native to rotate and translate the side-chain atoms using the Cα positioning-based rotation

and translation matrices. For the side-chain distance based component of SPECS, Euclidean

distances between the aligned SC atoms in model and native, rij, are calculated. Subsequently

each rij value is assigned to a distance bin i, with i = 1 corresponding to values < = 0.5Å and

i = 10 corresponding to values< = 5.0Å, followed by averaging the proportion of residues in

ten different distance bins as:

SPECSrSC ¼
2
P10

i¼1
ðk � iþ 1Þprsci
kðkþ 1Þ

ð5Þ

where k = 10 is the number of bins and prSCi is the proportion of reference atoms assigned to

distance bin i. It should be noted here that a reference atom assigned to a lower distance bin

based on its rij value is, by definition, also assigned to higher distance bins. For example, if the

rij value of a reference atom is less than 0.5Å, it would be assigned to all the ten bins. SPECSrSC

also ranges from [0, 1] with higher values indicating better model-native similarity in terms of

SC atom distances.

Next, for computing the side-chain planar angle based components, we divide the θij
(1) and

θij
(2) planar angles into four planar angle bins of< = 30˚,< = 60˚, < = 90˚ and < = 120˚, fol-

lowed by averaging the proportion of residues in four different planar angle bins as:

SPECSyð1Þ ¼
2
P4

i¼1
ðk � iþ 1Þpyð1Þ i
kðkþ 1Þ

ð6Þ

where k = 4 is the number of bins and pθ
(1)

i is the proportion of residues assigned to planar

angle bin i.

SPECSyð2Þ ¼
2
P4

i¼1
ðk � iþ 1Þpyð2Þ i
kðkþ 1Þ

ð7Þ

where k = 4 is the number of bins and pθ
(2)

i is the proportion of residues assigned to planar

angle bin i. Analogous to the distance bins, a residue belonging to a lower planar angle bin

automatically falls in all higher planar angle bins. For example, if a residue’s θij
(1) value is less

than 30˚, the residue would be assigned to all the four bins in Eq 6. Also, if a residue’s θij
(2)

value is less than 30˚, the residue would be assigned to all the four bins in Eq 7.

Once again, SPECSθ
(1) and SPECSθ

(2) also range from [0, 1] with higher values indicating

better model-native similarity in terms of the planar angle components of the side-chain

orientations.

Next, for computing the side-chain dihedral angle based component, we divide the Fij dihe-

dral angle into ten bins of<= 30˚, <= 60˚,<= 90˚, <= 120˚, <= 150˚,<= 180˚, <= 201˚,

<= 240˚,<= 270˚ and<= 300˚, followed by averaging the proportion of residues in ten differ-

ent dihedral angle bins as shown below:

SPECS; ¼
2
P10

i¼1
ðk � iþ 1Þp; i
kðkþ 1Þ

ð8Þ

where k = 10 is the number of bins and pFi is the proportion of residues assigned to dihedral

angle bin i. Of note, the assignment of a residue to a lower dihedral angle bin automatically
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qualifies the residue to be assigned to all higher dihedral angle bins. For instance, if a residues’

Fij value is less than 30˚, the residue would be assigned to all the ten bins. Once again, SPECSF

also ranges from [0, 1] with higher values indicating better model-native similarity in terms of

the dihedral angle component of the side-chain orientations.

Finally, SPECS is calculated as a weighted average of SPECSdCA, SPECSrSC, SPECSθ
(1),

SPECSθ
(2), and SPECSF as:

SPECS ¼
4 � SPECSdCA þ SPECSrSC þ SPECSyð1Þ þ SPECSyð2Þ þ SPECS;

8:0
ð9Þ

In this scoring scheme, equal weights are assigned to both the main chain and the side-

chain based components, to equally emphasize the importance of Cα and SC positioning. The

Cα distance based component, SPECSdCA is given a weight of 4, which makes half of the over-

all score and the four side-chain based components make the other half.

Datasets and similarity metrics used for benchmarking

We benchmark SPECS against four datasets. The first dataset is the CASP12 [29] and CASP13

regular target sets consisting of 55 and 32 regular domains for CASP12 and CASP13, respec-

tively, with publicly available experimental structures. We use this dataset to compare SPECS

against three popular model-native similarity metrics: GDT-TS [13], TM-score [14] and

SphereGrinder [30]. GDT-TS and TM-score are both superposition-based global similarity

scores, which determine the model-native similarity based on the distances between the Cα
atoms. SphereGrinder is based on an all-atom RMSD fit between the model and native struc-

tures, using a sphere constructed by considering the set of atoms within 6Å of the Cα atoms

for each residue in the native structure.

The second dataset is the CASP12 [29] and CASP13 refinement target sets consisting of a

total of 37 refinement target domains with publicly available experimental structures. We

use this set to compare SPECS against four high-resolution model-native similarity metrics:

GDT-HA [17], CAD-AA (all atoms) [31], GDC-SC [24] and lDDT [15]. GDT-HA is a super-

position-based score, which determines the model-native similarity based on the distances

between the Cα atoms. GDC-SC is a superposition-based score, which determines the model-

native similarity based on the distances between the side-chain characteristic atoms. CAD-AA

and lDDT are all-atom based superposition-free scores.

The third dataset is the 3DRobot [32] decoy set, which consists of 200 non-homologous

protein targets each having 300 decoys. 3DRobot generates a well-packed decoy pool with an

even distribution of decoy accuracy over the Root Mean Square Deviation (RMSD) space with

respect to the native. We use this set to evaluate the agreement between SPECS and MolProbity

[33] as a local structure quality estimator and compare with two Cα atom based model-native

similarity metrics GDT-HA score and TM-score. MolProbity is a log-weighted combination of

the clash score, percentage of Ramachandran not favored and the percentage of bad side-chain

rotamers, giving one number that reflects the crystallographic resolution at which those values

would be expected. Thus, lower MolProbity scores indicate enhanced stereochemistry and bet-

ter physical realism. It should be noted here, that unlike the other scores, MolProbity does not

determine the local quality of a model by comparing it with the native. MolProbity score is not

native-dependent and hence significantly distinct from the other scoring functions used in this

work.

The fourth dataset is a monomeric proteins dataset [37], which consists of 229 protein mod-

els and 33,461 residues. These models have perfect Cα positioning with respect to the native,

but possess varying side-chain conformations. We use this set to evaluate the ability of SPECS

SPECS: Superposition-based Protein Embedded CA SC score
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to capture the correctness of side-chain χ angles. Three widely-used side-chain prediction

methods RASP [34], Rosetta-fixbb [35] and SCWRL4 [36] are used to rebuild the side-chain

given the Cα trace [37]. RASP [34] is designed for rapid prediction of side-chain conforma-

tions by efficient elimination of atomic clashes and relaxation. Rosetta-fixbb [35] employs a

Monte Carlo optimization approach to optimize the side-chain placement on a fixed back-

bone. SCWRL4 [36] utilizes a backbone-dependent rotamer library in conjunction with graph

decomposition algorithms to solve the combinatorial side-chain packing problem. The predic-

tion accuracies of these three methods are evaluated in terms of the Angular RMSDs of the χ1

side-chain torsion angles. The χ1 angle is the dihedral angle between the planes defined by the

atoms N, Cα, Cβ, and Cγ. We first calculate χ1 angle for every residue using the PDB module

[38] of the Biopython package [39] to compute the Angular RMSD at the target level, from the

corresponding χ1 angles [40] as:

Angular RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X

i
ðminðjx2i � x1ij; 2p � jx2i � x1ijÞ

2

r

ð10Þ

where x1 is the vector of χ1 angles for n residues in the target and x2 is the vector of corre-

sponding χ1 angles for n residues in the native. Consequently, a lower Angular RMSD indi-

cates better average accuracy in terms of side-chain dihedral angles. To facilitate a head-to-

head comparison between SPECS and the average accuracy of side-chain dihedral angles, we

subsequently normalize the Angular RMSD as:

Normalised Angular RMSD ¼
1

1þ
Angular RMSD

p=4

� �2
ð11Þ

Results and discussion

SPECS is a reliable measure for evaluating the accuracy of global Cα
positioning

To investigate the ability of SPECS to quantitate model-native accuracy at the global level

based on Cα positioning, we benchmark SPECS on the regular target domain from CASP12

[29] and CASP13, and compare it with the existing Cα based model-native similarity metrics.

The CASP12 set consists of 55 target domains and the CASP13 decoy set consists of 32 target

domains. The targets were divided into template-based (TBM), free modeling (FM) and over-

lapped (TBM/FM) categories as defined by the assessors. GDT-TS [13], TM-score [14] and

SphereGrinder [30] are directly taken from the data archive of the Prediction Center (http://

www.predictioncenter.org/), whereas SPECS is calculated by comparing the model with the

native. Fig 3 shows the relationships between SPECS and GDT-TS, TM-score, SphereGrinder.

The average Pearson and Spearman correlation coefficients, as shown in Fig 3, indicate that

SPECS is highly correlated to other scores in that the average Pearson and Spearman correla-

tions with respect to GDT-TS, TM-score and SphereGrinder are always greater than 0.8

in both CASP12 and CASP13 datasets, where SPECS attains the highest correlation with

GDT-TS score. In CASP12 dataset, the average Pearson and Spearman correlation between

SPECS and GDT-TS are 0.95 and 0.94 respectively followed by 0.89 and 0.83 respectively

between SPECS and TM-score, followed by 0.87 and 0.82 respectively between SPECS and

SphereGrinder. We find a similar trend in CASP13 dataset, where the average Pearson and

Spearman correlations between SPECS and GDT-TS are both 0.94 respectively, followed by

0.94 and 0.93 respectively between SPECS and TM-score, followed by 0.89 and 0.85 respec-

tively between SPECS and SphereGrinder. The persistency of strong correlations, therefore,

SPECS: Superposition-based Protein Embedded CA SC score
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demonstrates that SPECS is a reliable measure for evaluating model-native similarity at the

global level, determined purely based on the accuracy of Cα positioning.

Beyond Cα positioning: SPECS captures other aspects of accuracy at the

global level

To examine the ability of SPECS to capture other accuracy aspects at the global level beyond

just the realm of Cα positioning, we next compare SPECS with one high-resolution Cα posi-

tioning metric GDT-HA [17], and three other metrics capturing other aspects of accuracy at

the global level: (i) CAD-AA [31], based on contact area difference; (ii) GDC-SC [24] based on

side-chain placement; and (iii) lDDT [15] based on local distance difference; using refinement

targets from CASP12 [29] and CASP13 refinement experiments. Overall there are 37 targets

(34 from CASP12 and 3 from CASP13) for which the native structures are available. Once

again, GDT-HA, CAD-AA, GDC-SC and lDDT scores are taken directly from the data archive

of the Prediction Center (http://www.predictioncenter.org/), whereas SPECS is calculated by

comparing the model against the native. Fig 4 shows the relationships between SPECS and

superposition-based scores such as GDT-HA and GDC-SC as well as superposition-free scores

such as CAD-AA and lDDT. The average Pearson and Spearman correlation coefficients,

as shown in Fig 4, indicate that SPECS is well-correlated to other scores in that the average

Pearson and Spearman correlations always remain greater than 0.8 with the only exception

between the SPECS and the lDDT having a Spearman correlation of 0.76. Similar to GDT-TS,

SPECS is highly correlated with GDT-HA where the Spearman and Pearson correlations are

0.99 and 0.96 respectively. Thereafter, SPECS achieves the Pearson correlation of 0.91 with

GDC-SC followed by 0.88 with CAD-AA followed by 0.87 with lDDT. Similarly, the Spearman

Fig 3. Comparisons between SPECS (horizontal axis) and GDT-TS, TM-score and SphereGrinder (vertical axis) using models in CASP12 (A-C)

and CASP13 (D-F) regular single domain targets. Average Pearson (P) and Spearman (S) correlation coefficients are shown for each plot. Blue, red,

and green colors represent models assessed in template-based (TBM), free modeling (FM) and overlapped (TBM/FM) categories respectively.

https://doi.org/10.1371/journal.pone.0228245.g003
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correlation between SPECS and lDDT is 0.8 followed by 0.82 between SPECS and GDC-SC,

followed by 0.76 between SPECS and CAD-AA. This strong correlation, therefore, substanti-

ates that SPECS is not only strongly correlated with Cα positioning based accuracy metrics

like GDT-HA, but also side-chain based similarity metrics like GDC-SC, and all-atom based

similarity metrics like CAD-AA and lDDT. Overall, the results demonstrate the ability of the

SPECS to capture other aspects of model-native accuracy at the global level including and

beyond the realm of Cα positioning.

Fig 4. Comparisons between SPECS (horizontal axis) and existing model-native similarity metrics namely GDT-HA (A), GDC-SC (B), lDDT (C)

and CAD-AA (D) (vertical axis) using models in CASP12 and CASP13 refinement targets. Average Pearson (P) and Spearman (S) correlation

coefficients are shown for each plot.

https://doi.org/10.1371/journal.pone.0228245.g004
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SPECS captures local quality aspect better than global Cα based metrics

To assess the effectiveness of SPECS in capturing the local qualities of the models including

stereochemistry and physical reasonableness, we evaluate it on 3DRobot set [32]. 3DRobot

set consists of 200 non-homologous protein targets each with 300 decoys. From the entire

pool consisting of 60,000 protein models, we consider models belonging to three RMSD

bins namely < 2Å, < 4Å and < 6Å based on their Cα RMSD scores with respect to the

natives and one TM-score bin consisting of decoys with TM-score > 0.5. The three Cα
RMSD bins represent near-native accuracy, high accuracy, and medium accuracy protein

models, respectively and TM-score > 0.5 represents protein models with correct overall

fold. Models not belonging to any of these four bins are incorrectly folded and therefore not

suitable for local quality analyses are excluded. To understand the relationship between the

SPECS score assigned to a model and its physical realism, we analyze pairs of models for

which SPECS vs. TM-score [14] and SPECS vs. GDT-HA [17] are in conflict. Between these

conflicting pairs of models, we compare the agreement of the SPECS vs. GDT-HA and TM-

score with MolProbity, which is a local quality estimator [33]. Fig 5A and 5B shows that the

percentage of agreement in the ranking between SPECS and MolProbity score is consistently

better compared to that between GDT-HA and MolProbity score across the < 2Å and <4Å
Cα RMSD bins, indicating that SPECS is a robust measure for capturing local quality com-

pared to GDT-HA for high-resolution protein models. Fig 5C and 5D shows that the per-

centage of agreement in the ranking between SPECS and MolProbity score is better

compared to that between TM-score and MolProbity in < 6Å RMSD bin and when TM-

score > 0.5, indicating that SPECS is a robust measure for capturing local quality compared

to TM-score for moderate-resolution protein models and for those with correct overall

folds. Consistently better agreement between SPECS and MolProbity in all the four bins

indicates that SPECS captures local quality aspect better than global Cα positioning-based

metrics, both for high- and moderate-resolution models.

SPECS is sensitive to minute variations in side-chain χ angles

To analyze the ability of SPECS to capture variations in side-chain χ angles in models having

perfect Cα trace, we analyze the side-chain χ angles of the monomeric proteins predicted by

three widely used side-chain prediction methods RASP [34], Rosetta-fixbb [35], and

SCWRL4 [36]. The Cα atoms of the predicted models in the dataset are perfectly aligned

with respect to the native resulting in 0Å Cα-RMSDs, enabling the assessment of the struc-

tural similarity purely based on the side-chain variations. The average Angular RMSD values

of the side-chain conformation predicted by the three methods are shown in Fig 6, showing

the relative accuracies of the three methods based on their Angular RMSD values, with

RASP ranked as the best, followed by SCWRL4, followed by Rosetta-fixbb. In Table 1, we

report the correlations between SPECS and the normalized Angular RMSD values of the

side-chain conformation predictions for three methods. The results demonstrate that there

is a weak but positive correlation between SPECS and normalized Angular RMSD with the

most accurate side-chain predictor RASP attaining the highest correlation, followed by

SCWRL4, followed by Rosetta-fixbb. It should be noted here that because of the perfect Cα
traces, accuracies of these models appear to be perfect (i.e., having scores of 1.0) when mea-

sured with some of the widely used structural similarity metrics such as GDT-TS, GDT-HA,

and TM-score. In contrast, SPECS offers an added ability to rank these models, albeit based

on the minute variations in the side-chain χ angles, thus making it more sensitive for evalua-

tion of protein structural models.
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Conclusion

We present a side-chain-orientation included model-native similarity score, SPECS, which

seamlessly combines side-chain orientation and the global distance based measures at the

united-residue representation for improved assessment of protein structural models. SPECS is

a weighted combination of five different components comprising of two distance based com-

ponents quantifying the positioning of the Cα and SC atoms and three angle based compo-

nents capturing side-chain orientation. Experimental results demonstrate that SPECS is a

Fig 5. Pairs of 3DRobot models with conflicting ranking by SPECS vs. GDT-HA and TM-score with MolProbity. The 3DRobot models are divided

into three bins< 2Å,< 4Å and< 6Å based on their Cα RMSD scores with respect to the natives and an additional bin consisting of decoys with TM-

score> 0.5. Pie charts represent the percentages of MolProbity score agreement with rankings by SPECS vs. GDT-HA (A-B), SPECS vs. TM-score

(C-D).

https://doi.org/10.1371/journal.pone.0228245.g005
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reliable and robust evaluation measure for protein models covering various structural aspects

at both the global and local levels by being highly correlated with several global model-native

similarity metrics including superposition-based scores such as GDT-TS, GDT-HA, GDC-SC,

SphereGrinder, TM-score, and superposition-free scores such as CAD-AA and lDDT as well

as local quality measures such as MolProbity. Moreover, SPECS offers an added ability to rank

models having only minute variations in the side-chain χ angles but with perfect Cα traces,

which are indistinguishable by various popular global structural similarity metrics. Collec-

tively, these results demonstrate that SPECS is a reliable, robust, and sensitive model-native

similarity metric for improved assessment of protein models that covers a wide range of pro-

tein modeling scenarios and encapsulates various aspects of structural similarity.

Fig 6. Distributions of angular RMSDs of side-chain χ angles. Lower and upper hinges: 1st and 3rd quartile. Whisker length: 1.5 times the

interquartile range.

https://doi.org/10.1371/journal.pone.0228245.g006

Table 1. Spearman correlations between SPECS and normalized Angular RMSDs of side-chain conformation pre-

diction methods.

Prediction Method Spearman Correlation

RASP 0.41

SCWRL4 0.32

ROSETTA 0.30

https://doi.org/10.1371/journal.pone.0228245.t001
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