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Abstract
Background: Current guidelines for lung cancer screening increased a positive scan 
threshold to a 6 mm longest diameter. We extracted radiomic features from baseline 
and follow‐up screens and performed size‐specific analyses to predict lung cancer 
incidence using three nodule size classes (<6 mm [small], 6‐16 mm [intermediate], 
and ≥16 mm [large]).
Methods: We extracted 219 features from baseline (T0) nodules and 219 delta fea-
tures which are the change from T0 to first follow‐up (T1). Nodules were identified 
for 160 incidence cases diagnosed with lung cancer at T1 or second follow‐up screen 
(T2) and for 307 nodule‐positive controls that had three consecutive positive screens 
not diagnosed as lung cancer. The cases and controls were split into training and test 
cohorts; classifier models were used to identify the most predictive features.
Results: The final models revealed modest improvements for baseline and delta fea-
tures when compared to only baseline features. The AUROCs for small‐ and inter-
mediate‐sized nodules were 0.83 (95% CI 0.76‐0.90) and 0.76 (95% CI 0.71‐0.81) for 
baseline‐only radiomic features, respectively, and 0.84 (95% CI 0.77‐0.90) and 0.84 
(95% CI 0.80‐0.88) for baseline and delta features, respectively. When intermediate 
and large nodules were combined, the AUROC for baseline‐only features was 0.80 
(95% CI 0.76‐0.84) compared with 0.86 (95% CI 0.83‐0.89) for baseline and delta 
features.
Conclusions: We found modest improvements in predicting lung cancer incidence 
by combining baseline and delta radiomics. Radiomics could be used to improve cur-
rent size‐based screening guidelines.
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1 |  INTRODUCTION

The National Lung Screening Trial (NLST) compared low‐
dose helical computed tomography (LDCT) vs standard chest 
radiography for three annual screens and revealed a 20% rel-
ative reduction in lung cancer mortality among participants 
screened with LDCT.1-3 In the LDCT arm, screen‐detected 
incident lung cancers were found 2.7‐fold higher associated 
with a stage shift from late stage to more early‐stage lung 
cancers and exhibited improved 5‐year survival compared 
with prevalence cancers diagnosed at baseline.3,4 Despite 
the benefits associated with lung cancer screening, LDCT 
imaging is associated with a high rate of detection of inde-
terminate pulmonary nodules (IPNs) of which only a frac-
tion are diagnosed as lung cancer. In the NLST, 96.4% of 
the positive LDCT screens were false positives/IPNs. Though 
clinical guidelines5-7 provide for the evaluation and follow‐up 
of nodules, there are no validated clinical decision tools to 
predict lung cancer risk and probability of cancer develop-
ment. Ideally, an efficient and accurate noninvasive approach 
should be developed as a clinical decision tool for radiolo-
gists and pulmonologists to better manage nodules, espe-
cially IPNs, in the lung cancer screening setting.

Radiomics is the process of converting standard‐of‐care 
digital medical images into quantitative image‐based feature 
data that can be subsequently analyzed using conventional 
biostatistics and machine learning methods.6 With high‐
throughput computing, it is now possible to rapidly extract 
radiomic features from a region of interest that quantify size, 
shape, intensity, and texture of the region of interest. As ra-
diomic features are likely capturing biological and patho-
physiology information of the region of interest,6 radiomics 
have the potential to provide a rapid and accurate noninvasive 
approach to better manage pulmonary nodules detected by 
LDCT in the lung cancer screening setting.

In this study we conducted a nested case–control analysis 
of the NLST, using training and test sets, to identify radiomic 
features that are predictive of lung cancer incidence. We an-
alyzed robust and reproducible radiomic features8 from base-
line (T0)‐positive screens in the LDCT arm of the NLST to 
identify radiomic models that predict lung cancer incidence in 
the first (T1) and second (T2) follow‐up screening intervals. 
Moreover, we also included delta radiomic features to deter-
mine whether changes in the nodules over time from T0 to T1 
improve predicting lung cancer incidence. Current guideline 
algorithms for managing LDCT‐detected solid and subsolid 
nodules are largely based on size, specifically longest diame-
ter. As recommended by the National Comprehensive Cancer 
Network (NCCN)5 and the American College of Radiology 
(ACR),6,7 the current cutoff size for assessing lung nodules 
increased to 6 mm rather than the 4 mm originally used in the 
NLST.2,3 Although this increase in threshold positivity has 
been reported to decrease false‐positive results,7,9,10 decision 

support tools and lung cancer risk prediction are still lacking 
for IPNs ≥6 mm. As such, we also performed size‐specific 
analysis based on three size classes of the nodules: <6 mm 
[small nodules], 6‐16 mm [intermediate‐sized nodules], and 
≥16 mm [large nodules]. To our knowledge, this is one of 
the first radiomic analyses in lung cancer screening to utilize 
delta radiomic features (changes in radiomics over time) by 
nodule size class to predict lung cancer incidence.

2 |  MATERIALS AND METHODS

2.1 | NLT study population
This research was approved by the Institutional Review 
Board (Advarra, Inc, Columbia, MD, USA). Deidentified 
data and LDCT images were obtained through the National 
Cancer Institute (NCI) Cancer Data Access System 
(CDAS).9 The NLST study design and main findings have 
been described previously.2,3 Briefly, the NLST was a ran-
domized multicenter trial comparing screening with LDCT 
to CXR in high‐risk individuals. Eligibility criteria included 
current or former smokers aged 55‐74 years with a mini-
mum 30 pack‐years smoking history; former smokers had to 
have quit within the past 15 years.

2.2 | NLST CT screening results
The NLST protocol defined a positive screening result as 
one or more noncalcified nodules or masses measuring 
≥4 mm in axial diameter or, less commonly, other abnor-
malities such as adenopathy or pleural effusion.2,3 Positive 
screens were defined in the setting of abnormalities on base-
line screens or abnormalities on follow‐up screens that were 
new, stable, or that evolved with the latter demonstrating an 
increase in nodule size, consistency, or other characteristic 
potentially related to lung cancer. Participants with posi-
tive screening results received follow‐up recommendations; 
trial‐wide guidelines for the management of positive screens 
were developed, but were not mandated by protocol.

Negative screens were defined as CT scans with no abnor-
malities, minor abnormalities not suspicious for lung cancer, 
or significant abnormalities not suspicious for lung cancer. In 
this analysis, we did not include any participants who had a 
negative screening result.

2.3 | Nested case–control study design
We performed a nested case–control study comprised of 
screen‐detected incident lung cancers and matched nodule‐
positive controls from the LDCT arm of the NLST. Based 
on the schema originally described in Schabath et al,4 the 
screen‐detected incident lung cancers and nodule‐positive 
controls are depicted in Figure 1A.
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2.3.1 | Lung cancer cases
We identified 196 screen‐detected incident lung cancers who 
had a baseline‐positive screen (T0) that was not diagnosed as 
lung cancer and then were diagnosed at either the first (T1, 
N = 104) or second follow‐up (T2, N = 92).

2.3.2 | Nodule‐positive controls
Using a 2:1 to nested case–control study design, we identi-
fied 392 LDCT screening participants who had three con-
secutive positive screens (T0 to T2) that were not diagnosed 
as lung cancer. These NLST participants were designated as 
nodule‐positive controls in the current analysis. The nodule‐
positive controls were frequency matched to the lung cancer 
cases’ age at enrollment (±5 years), sex, race/ethnicity, and 
smoking status. This study design minimizes the influence 
of confounders between the cases and the controls. As such, 
radiomic image features that differentiate cases and nodule‐
positive controls are not likely be attributed to external risk 
factors.

2.3.3 | Training and test sets
Based on the availability of complete LDCTs and inability 
to verify the nodule/abnormality, the 192 lung cancer cases 

were reduced to 160. Likewise, the original set of 392 nod-
ule‐positive controls was reduced to 307. The lung cases 
in cohort 1 were diagnosed at T1 and the lung cancer cases 
in cohort 2 were diagnosed at T2. All of the nodule‐posi-
tive controls had a positive scan from T0 to T2 and never 
developed lung cancer through T7 based on the available 
NLST data. Cohort 1 was used as a training set and Cohort 
2 as a test set.

2.4 | Target lung nodule identification
The identification of target lung nodules has been previously 
described.11 Briefly, two radiologists (YL and QL) reviewed 
all LDCT images at both the lung window setting (width, 
1500 HU; level, −600 HU) and the mediastinal window set-
ting (width, 350 HU; level, 40 HU). The identification of 
cancerous nodules among the screen‐detected incident lung 
cancers was based on data provided by the NLST (ie, location 
and size). As nodule location was not always available, the 
senior radiologist (YL)11 identified the nodules and manu-
ally mapped each nodule from T0 to T1. The locations of all 
nodules in this analysis are publically available in the TCIA 
database (www.cancerimagingarchive.net). For NLST par-
ticipants with multiple lung nodules, the largest nodule at 
baseline (T0) and subsequent follow‐up nodule was used for 
radiomic feature extraction.

F I G U R E  1  Schematic representations of the nested case–control study design (A) and the radiomics and analytical workflow (B)

T1 Incidence lung cancers
No. = 83

T1 Nodule [+] controls
N = 172

T0 Screen
nodule [+]

T0 (Baseline) T1 (first follow-up screen) T2 (first follow-up screen)

T2 Screen
nodule [+]

T2 Nodule [+] controls
N = 135

T1 Screen
nodule [+]

T2 Incidence lung cancers
No. = 77

A

B

www.cancerimagingarchive.net
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2.5 | CT segmentation, feature 
extraction, and feature selection
The workflow of our radiomic pipeline12 and analyses is 
depicted in Figure 1B. As previously described,11 a single‐
slick segmentation ensemble and subsequent feature extrac-
tion were performed using Definiens software (Definiens, 
Inc, AG Cambridge, MA, USA). There were 219 features 
extracted to quantify size, shape, location, and texture in-
formation of the pulmonary nodules.6 The complete list 
of features used in our analyses has been previously de-
scribed8 and was reduced to the most consistent features 
based on our previous test/retest analyses. Additionally, we 
used features from the same filter that based on Cohort 1 
were found to be “stable” over time (denoted as C1 sta-
ble). C1 stable features were filtered using an analogous 
approach to that for identifying RIDER stable features. For 
RIDER stable features, two LDCT screenings were per-
formed in a 15‐minute interval. For the C1 stable features 
using the NLST subjects, we utilized T0 and T1 features 
as the test/retest set. For each feature, we computed the 
concordance correlation coefficient13 and dynamic range 
and we selected as C1 stable features those which had val-
ues for both parameters greater than 0.95. Even though we 
used a test/retest filter for initial feature selection, we built 
models which were able to classify data with the most pre-
dictive number of features. For that purpose, we used fea-
ture selectors ReliefF (RfF) and Correlation‐based Feature 
Selector (CFS). In each analysis, we selected the top 5 and 
top 10 ranked features. Tables 2 and 4 present the perfor-
mance statistics based on the models with the best AUROC.

2.6 | Baseline and delta features
For all available cases and controls, we extracted radiomic 
features from the T0 baseline screen and the T1 follow‐up 
screen. To assess changes in nodules after an approximately 
one‐year interval, we subtracted the T0 and T1 features to 
generate delta features. For all patients in our analysis, 
the median time from randomization to the T1 screen was 
375 days (interquartile range = 360‐400 days). As such, the 
time interval to the T1 screen is relatively consistent for all 
subjects and eliminates the need to normalize the delta fea-
tures with respect to time. In Tables 2 and 4, delta features 
are denoted with a “∆” and baseline features are denoted with 
“T0”.

2.7 | Size‐specific analyses: Splitting the 
training and test sets on nodule size
Size‐specific analyses were performed based on the longest di-
ameter (LD) of the T0 nodules. Current recommendations by 
the NCCN and the American College of Radiology (ACR) have 

been increased for a positive scan to have a 6 mm longest diam-
eter nodule5 rather than the 4 mm originally used in the NLST.3 
As such, we performed size‐specific analyses using three nod-
ule size classes: <6 mm [small nodules], 6‐16 mm [intermedi-
ate‐sized nodule], and ≥16 mm [large nodules]. Because there 
were only 16 lung cancer cases and 7 nodule‐positive controls 
in the large size class (≥16 mm), we combined the intermediate 
and large class and repeated the analyses with two size classes: 
<6 mm [small] and ≥6 mm [large].

For computing overall accuracy, sensitivity, and specific-
ity, we summarized confusion matrices of each size group 
and based on the result produce statistical parameters for the 
model. Computation of the area under the receiver operating 
characteristic (AUROC) uses a list of probabilities indicating 
an instance belongs to a class. For computation of the “over-
all” AUROC, we merged probability lists for each size group 
and produced the result on the final list.

2.8 | Classifiers
Of the 219 features, there were 23 RIDER stable features and 
37 C1 stable features. The C1 stable features are provided 
in Table S1. Features marked with asterisk symbol in Table 
S1 are used in RIDER stable feature set. Although we used 
a test/retest filter initial selection, our goal was to identify 
a model that is able to classify data with a small number of 
features. Size‐specific nodules from Cohort 1 were utilized 
to create the training dataset. For each training dataset, we 
applied a feature selector in order to simplify resulting model 
and remove noisy features. Selected features were used to 
train a classifier and after training on a corresponding subset 
of Cohort 2 used for testing. From multiple possible mod-
els, we selected the one which produces the highest AUROC. 
For the feature selectors, we used ReliefF (RfF)14-16 and 
Correlation‐based Feature Selector (CFS). For each feature 
selector, we selected the top 5 and 10 ranked features to 
identify highly predictive parsimonious models. One of the 
benefits we gained from splitting datasets is the independent 
usage of classifiers. For each subset, we applied the follow-
ing classifiers:

• Decision tree—J4817;
• Rule‐based Classifier—JRIP18;
• Naive Bayes19;
• Support Vector Machine (SVM)19;
• Random Forests.20

For the SVM classifier, we utilized a radial basis function as 
a kernel and also a linear kernel. C and Gamma were found on 
the training set using Grid Search. Performance statistics and 
95% confidence intervals (CIs) were calculated for each model 
including AUROC, accuracy, sensitivity, and specificity. All 
the experiments were performed in Weka version 3.6.13.21
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T A B L E  1  Study population characteristics of incident lung cancer cases and nodule‐positive controls by three nodule size classes

Training set (C1)

Lung cancer cases Nodule‐positive controls

Small 
(<6 mm) 
N = 14

Intermediate 
(6‐16 mm) 
N = 53

Large 
(≥16 mm) 
N = 16

Small 
(<6 mm) 
N = 40

Intermediate 
(6‐16 mm) 
N = 125

Large 
(≥16 mm) 
N = 7

Age, mean (SD) 66.4 (4.8) 63.4 (5.1) 66.3 (5.6) 64.1 (5.2) 64.0 (5.3) 62.4 (5.1)

Sex, N (%)

Male 9 (64.3) 27 (50.9) 8 (50.0) 23 (57.5) 76 (60.8) 4 (57.1)

Female 5 (35.7) 26 (49.1) 8 (50.0) 17 (42.5) 49 (39.2) 3 (42.9)

Race, N (%)

White 14 (100.0) 49 (92.5) 16 (100.0) 39 (97.5) 120 (96.0) 6 (85.7)

Non‐White 0 (0.00) 4 (7.6) 0 (0.00) 1 (2.5) 5 (4.0) 1 (14.3)

Smoking status, N (%)

Former 8 (57.1) 24 (45.3) 10 (62.5) 16 (40.0) 63 (50.4) 5 (71.4)

Current 6 (42.9) 29 (54.7) 6 (37.5) 24 (60.0) 62 (49.6) 2 (28.6)

Pack‐years, mean 
(SD)

70.39 (27.8) 63.5 (23.7) 54.8 (13.1) 64.8 (28.3) 65.1 (25.1) 60.5 (19.2)

Family history of lung cancer

No 8 (57.1) 4 (79.3) 11 (68.8) 33 (82.5) 104 (83.2) 5 (71.4)

Yes 6 (42.9) 11 (20.8) 5 (31.3) 7 (17.5) 21 (16.8) 2 (28.6)

Stage

I 6 (42.9) 42 (79.3) 12 (75.0) — — —

II 3 (21.4) 5 (9.4) 0 (0.0) — — —

III 1 (7.1) 2 (3.8) 4 (25.0) — — —

IV 4 (28.6) 3 (5.7) 0 (0.0) — — —

NOS 0 (0.00) 1 (1.9) 0 (0.00) — — —

Histology

Small cell 2 (14.3) 0 (0.0) 0 (0.0) — — —

Adeno/BAC 8 (57.1) 35 (66.0) 14 (87.5) — — —

Squamous cell 1 (7.1) 9 (17.0) 1 (6.3) — — —

Other and NOS 3 (21.4) 9 (17.0) 1 (6.3) — — —

Test set (C2)

Small 
(<6 mm) 
N = 19

Intermediate 
(6‐16 mm) 
N = 40

Large 
(≥16 mm) 
N = 18

Small 
(<6 mm) 
N = 20

Intermediate 
(6‐16 mm) 
N = 108

Large 
(≥16 mm) 
N = 7

Age, mean (SD) 63.4 (5.2) 62.6 (4.4) 63.3 (5.4) 61.2 (4.6) 63.1 (4.8) 63.9 (3.5)

Sex, N (%)

Male 12 (63.2) 21 (52.5) 10 (55.6) 5 (25.0) 67 (62.0) 5 (71.4)

Female 7 (36.8) 19 (47.5) 8 (44.4) 15 (75.0) 41 (38.0) 2 (28.6)

Race, N (%)

White 19 (100.0) 38 (95.0) 17 (94.4) 20 (100.0) 103 (95.4) 7 (100.0)

Non‐White 0 (0.0) 2 (5.0) 1 (5.6) 0 (0.0) 5 (4.6) 0 (0.0)

Smoking status, N (%)

Former 9 (47.4) 19 (47.5) 9 (50.0) 9 (45.0) 47 (43.5) 4 (57.1)

Current 10 (52.6) 21 (52.5) 9 (50.0) 11 (55.0) 61 (56.5) 3 (42.9)

Pack‐years, mean 
(SD)

61.3 (32.4) 62.2 (21.5) 66.9 (24.2) 62.8 (21.9) 60.2 (20.9) 59.4 (21.4)

(Continues)
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2.9 | Synthetic Minority 
Oversampling Technique
Because of the imbalance of case and controls across the 
various size classes, we also applied Synthetic Minority 
Oversampling Technique (SMOTE)22 in the analyses. 
SMOTE is an oversampling approach in which the minority 
class is over‐sampled by creating “synthetic” examples rather 
than by oversampling with replacement. To create a synthetic 
instance, one example (nodule feature vector) is randomly 
picked from minority class. For that example, five nearest 
neighbors in the same class are chosen. Then, one of these 
neighbors is randomly chosen. For each numeric feature, the 
example and its chosen neighbor produce a line segment be-
tween the two features. A new synthetic instance represents a 
randomly chosen point on the line segment for each feature. 
The process repeats with a new example randomly chosen 
until the desired number of instances is produced.

3 |  RESULTS

The study population characteristics for the three size classes 
by the training and test sets of the lung cancer cases and nod-
ule‐positive controls are presented in Table 1. None of the 
study population characteristics were significantly different 
between the training cohort and test cohort (Table S2) and, as 
previously reported (Table 1 in11), none of the study popula-
tion characteristics are significantly different between the lung 

cancer cases and nodule‐positive controls. The final models 
for the three nodule size classes (Table 2 and Figure 2A‐D) 
generally revealed modest improvements in the performance 
statistics for models with baseline and delta radiomic features 
vs. models with only baseline radiomics. The AUROC for 
small‐sized nodules was 0.83 (95% CI 0.76‐0.90) for base-
line‐only radiomic features and 0.84 (95% CI 0.77‐0.90) for 
baseline and delta features. For intermediate‐sized nodules, 
the AUROC was 0.76 (95% CI 0.71‐0.81) for baseline‐only 
radiomic features and 0.84 (95% CI 0.80‐0.88) for baseline 
and delta features. For large‐sized nodules, the AUROC was 
higher for baseline‐only radiomic features (AUROC = 0.86; 
95% CI 0.75‐0.91) compared with baseline and delta features 
(AUROC = 0.83; 95% CI 0.75‐0.91).

We also computed the overall AUROC (Table 2), 
which included all nodule sizes, for baseline‐only features 
(AUROC = 0.83; 95% CI 0.82‐0.86) and baseline and delta 
features (AUROC = 0.86; 95% CI 0.83‐0.89). As such, we 
had a higher AUROC and accuracy for the large‐sized nod-
ule model (0.86) compared with the overall model (0.83). 
When comparing the overall model to the intermediate‐
sized nodule model, the overall model had higher AUROC, 
but the intermediate‐sized model had higher accuracy (0.76 
vs 0.74) and specificity (0.92 vs 0.90). When comparing 
the overall model to the small‐sized nodule model, the 
AUROCs and specificities were identical for small‐sized 
nodules. The overall AUROC for three size classes for 
baseline and delta features was 0.86 (0.83‐0.89), which was 
higher than the AUROCs for the three size‐specific models. 

Test set (C2)

Small 
(<6 mm) 
N = 19

Intermediate 
(6‐16 mm) 
N = 40

Large 
(≥16 mm) 
N = 18

Small 
(<6 mm) 
N = 20

Intermediate 
(6‐16 mm) 
N = 108

Large 
(≥16 mm) 
N = 7

Family history of lung cancer

No 13 (68.4) 34 (85.0) 12 (66.7) 18 (90.0) 91 (84.3) 5 (71.4)

Yes 6 (31.6) 6 (15.0) 6 (33.3) 2 (10.0) 17 (15.7) 2 (28.6)

Stage

I 10 (52.6) 28 (70.0) 16 (88.9) — — —

II 3 (15.8) 1 (2.5) 0 (0.0) — — —

III 3 (15.8) 7 (17.5) 0 (0.0) — — —

IV 3 (15.8) 3 (7.5) 2 (11.1) — — —

NOS 0 (0.0) 1 (2.5) 0 (0.0) — — —

Histology

Small cell 
carcinoma

3 (15.8) 1 (2.5) 0 (0.0) — — —

Adenocarcinoma/
BAC

10 (52.6) 23 (57.5) 13 (72.2) — — —

Squamous cell 
carcinoma

4 (21.1) 6 (15.0) 1 (5.6) — — —

Other and NOS 2 (10.5) 10 (25.0) 4 (22.2) — — —

T A B L E  1  (Continued)
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However, the large‐sized nodule model had a higher accu-
racy than the overall model (0.88 vs 0.78). Likewise, the in-
termediate‐sized nodule model had a higher accuracy than 
the overall model (0.80 vs. 0.78).

We also found when we applied the SMOTE method, 
which over‐samples the minority class creating synthetic 
minority class examples, some of the performance statistics 
improved (Table 2).

Because there were only 16 lung cancer cases and 7 nod-
ule‐positive controls with large nodules (≥16 mm), we com-
bined the intermediate‐ and large groups and repeated the 
analyses (Tables 3 and 4 and Figure 2A‐D). As such, when 
the intermediate‐sized nodules and large nodules were com-
bined into a single group (≥6 mm), the AUROC for baseline‐
only features was 0.80 (95% CI 0.76‐0.84) compared with an 
AUROC of 0.86 (95% CI 0.83‐0.89) for baseline and delta 
features. The AUROC for the overall model was identical for 

the large‐sized nodule model; however, the large‐sized nod-
ule model has higher accuracy and specificity. Figure 2Aa‐C 
presents the AUROC plots for the final models for the small 
nodules and large nodules with and without SMOTE.

4 |  DISCUSSION

While lung cancer screening with LDCT for high‐risk in-
dividuals has unequivocally demonstrated that early detec-
tion saves lives, the current screening strategy comes at the 
identification of large numbers of indeterminate nodules and 
limited clinical decision tools to manage nodules.23 As such, 
we conducted a nested case–control analysis of the NLST 
to identify radiomic‐based models that predict lung can-
cer incidence. We utilized training and test sets of incident 
lung cancer cases and nodule‐positive controls to generate 

F I G U R E  2  AUROC figures for the final models for small nodules without SMOTE (A), small nodules with SMOTE (B), large nodules 
without SMOTE (C), and large nodules with SMOTE (D)
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T A B L E  3  Incident lung cancer cases and nodule‐positive controls by nodule size with by two nodule size classes

Training set (C1)

Lung cancer cases Nodule‐positive controls

Small 
(<6 mm) 
N = 14

Large 
(≥6 mm) 
N = 69

Small 
(<6 mm) 
N = 40

Large 
(≥6 mm) 
N = 132

Age, mean (SD) 66.4 (4.8) 64.1 (5.3) 64.1 (5.2) 63.9 (5.3)

Sex, N (%)

Male 9 (64.3) 35 (50.7) 23 (57.5) 80 (60.6)

Female 5 (35.7) 34 (49.3) 17 (42.5) 52 (39.4)

Race, N (%)

White 14 (100.0) 65 (94.2) 39 (97.5) 126 (95.5)

Non‐White 0 (0.0) 4 (5.8) 1 (2.5) 6 (4.6)

Smoking status, N (%)

Former 8 (57.1) 34 (49.3) 16 (40.0) 68 (51.5)

Current 6 (42.9) 35 (50.7) 24 (60.0) 64 (48.5)

Pack‐years, mean 
(SD)

70.3 (27.8) 61.5 (22.0) 64.8 (28.3) 64.8 (24.8)

Family history of lung cancer

No 8 (57.1) 53 (76.8) 33 (82.5) 109 (82.6)

Yes 6 (42.9) 16 (23.2) 7 (17.5) 23 (17.4)

Stage

I 6 (42.9) 54 (78.3) — —

II 3 (21.4) 5 (7.3) — —

III 1 (7.1) 6 (8.7) — —

IV 4 (28.6) 3 (4.4) — —

NOS 0 (0.00) 1 (1.5) — —

Histology

Small cell 2 (14.3) 0 (0.0) — —

Adeno/BAC 8 (57.1) 49 (71.0) — —

Squamous cell 1 (7.1) 10 (14.5) — —

Other and NOS 3 (21.4) 10 (14.5) — —

Test Set (C2)

Small 
(<6 mm) 
N = 19

Large 
(≥6 mm) 
N = 58

Small 
(<6 mm) 
N = 20

Large 
(≥6 mm) 
N = 115

Age, mean (SD) 63.4 (5.2) 62.8 (4.7) 61.2 (4.6) 63.2 (4.7)

Sex, N (%)

Male 12 (63.2) 31 (53.5) 5 (25.0) 72 (62.6)

Female 7 (36.8) 27 (46.5) 15 (75.0) 43 (37.4)

Race, N (%)

White 19 (100.0) 55 (94.8) 20 (100.0) 110 (95.7)

Non‐White 0 (0.0) 3 (5.2) 0 (0.0) 5 (4.4)

Smoking status, N (%)

Former 9 (47.4) 28 (48.3) 9 (45.0) 51 (44.4)

Current 10 (52.6) 30 (51.7) 11 (55.0) 64 (55.7)

Pack‐years, mean 
(SD)

61.3 (32.4) 63.6 (22.3) 62.8 (21.9) 60.1 (20.9)

(Continues)



   | 6351CHEREZOV Et al.

Test Set (C2)

Small 
(<6 mm) 
N = 19

Large 
(≥6 mm) 
N = 58

Small 
(<6 mm) 
N = 20

Large 
(≥6 mm) 
N = 115

Family history of lung cancer

No 13 (68.4) 46 (79.3) 18 (90.0) 96 (83.5)

Yes 6 (31.6) 12 (20.7) 2 (10.0) 19 (16.5)

Stage

I 10 (52.6) 44 (75.9) — —

II 3 (15.8) 1 (1.7) — —

III 3 (15.8) 7 (12.1) — —

IV 3 (15.8) 5 (8.6) — —

NOS 0 (0.0) 1 (1.7) — —

Histology

Small cell carcinoma 3 (15.8) 1 (1.7) — —

Adenocarcinoma/
BAC

10 (52.6) 36 (62.1) — —

Squamous cell 
carcinoma

4 (21.1) 7 (12.1) — —

Other and NOS 2 (10.5) 14 (24.1) — —

T A B L E  3  (Continued)

performance statistics of baseline‐only radiomic features vs. 
the combination of time‐varying delta radiomic features and 
baseline features. Additionally, analyses were conducted 
across three nodule size classes. Overall, we found that com-
bining delta radiomics with baseline radiomics generally 
improved the performance statistics to predict lung cancer 
incidence when compared to using only baseline radiomic 
features. However, we note inconsistent results in some of 
the performance statistics when comparing the overall mod-
els, which were not size‐specific, to the size‐specific models. 
As such, our findings suggest there is a trade‐off in terms of 
performance using nodule size‐specific models vs. an overall 
model.

Previous studies have shown the utility of delta radiomic 
in lung cancer prognostication and therapy response,24,25 
and to the best of our knowledge, this is the first analysis to 
consider delta radiomics in the lung cancer screening set-
ting. The modest improvements by including delta features 
with the baseline features suggest there were not substantial 
time‐varying differences from the baseline screen (T0) to 
the first follow‐up screen (T1) which occurred 12 months 
later. In our previous work4 that evaluated the screening 
histories and outcomes from T0 to T2 of the entire CT‐arm 
of the NLST, there were 6921 nodule‐positive controls at 
T0, then 4951 positive screens at T1 of which only 104 
were diagnosed as lung cancer. As such, the majority of the 
nodules were either stable at T1 (N = 4951 nodule‐positive 
controls) or they resolved and were scored as a negative 
screen T1 (N = 1488 negative screens). So, the observed 

modest improvements in performance statistics of delta 
radiomics in the NLST warrant their further evaluation in 
other screening settings.

In our previous work using baseline‐only features in the 
NLST,11 a random forest classifier identified a model of 
23 features that could predict nodules that would be diag-
nosed as lung cancer 1 year after baseline with an AUROC 
of 0.83 and 2 years after baseline with an AUROC of 0.75. 
Our current analysis differed from the previous work11 in 
many ways. First, the prior work identified a single model 
based on the best accuracy using only baseline features. In 
the current analysis, we included delta radiomics, generated 
radiomics models by nodule class size, trained our models 
to identify the features that achieved the best AUROCs, and 
we applied a SMOTE approach since there was an imbal-
ance of case and controls across the various size classes. 
Additionally, to identify highly predictive parsimonious 
models with fewer features that were previously identified 
(23 features), we choose to identify models containing the 
top 5 and 10 features. We focused on AUROC because 
prior work demonstrated26 that AUROC is a better measure 
than accuracy in the evaluation of learning algorithms by 
demonstrating that AUROC is statistically consistent and 
more discriminating than accuracy.

A novel and important aspect on our analyses was the ra-
diomic models by nodule size class. Nodule size is a key 
characteristic of malignancy whereby larger nodules have a 
higher probability of being diagnosed as lung cancer.27 As 
such, the management of nodules in current lung cancer 
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screening guidelines is largely based on size and shape of the 
nodule.5-7 Certainly, reductions in false‐positive rates have 
been reported7,9,10 by increasing the size threshold for a pos-
itive scan from 4 to 6 mm. Results from the Dutch‐Belgian 
Lung Cancer Screening (NELSON) trial 28 reported that 
small nodules (<5 mm) have a 0.4% probability of lung can-
cer while intermediate‐sized nodules [5‐10 mm] have nearly 
3 times the probability (1.3%) and require additional risk 
stratification. Large nodules [≥10 mm] have 15.2% lung can-
cer probability and receive an immediate diagnostic workup. 
Because of the distribution of nodule sizes among the cases 
and controls (Figure 3), we selected different nodule size 
cut‐points. Importantly, we note that each size class yielded 
different final models of radiomic features suggesting the 
potential importance of size‐specific biomarkers to improve 
nodule management.

Another novel approach and subsequent finding in our 
analysis were the improvements of sensitivity and specific-
ity when we applied SMOTE.29 Classification analyses using 
class‐imbalanced data are biased in favor of the majority class, 
and the bias is even larger for high‐dimensional data where the 
number of variables greatly exceeds the number of samples.29 
To address potential bias and imbalance, we applied SMOTE 
as this is a popular oversampling method that was originally 
proposed to improve random oversampling. In our analyses, 
we found that SMOTE tended to have marginal influence on 
the AUROCs; however, we observed consistent modest im-
provements in sensitivity and specificity when SMOTE was 
utilized when compared to the same size class where SMOTE 
was not utilized. This suggests SMOTE is not beneficial in im-
proving discrimination classifiers, which has been previously 
reported by Blagus and Lusa,29 but improves the performance 
of the classifier in terms of sensitivity and specificity.

There are some limitations and some strengths of this anal-
ysis. Although Lung‐RADSTM categories10 are commonly 
used in lung cancer screening, we opted to utilize categories 
based on longest diameter size. However, using this nested 
case–control approach, we did not have adequate represen-
tation across Lung‐RADSTM categories10 since the majority 
of the nodules were between 6 and 16 mm. Nonetheless, our 
analyses did demonstrate that nodule size‐specific models 
may have utility in improving some performance statistics 
compared with an overall model. Another potential limita-
tion is the nested case–control design resulting in the modest 
sample size. The nested design was utilized because it is not 
feasible to segment and extract radiomic features on >4,000 
T0‐ and T1‐positive scans. Although our radiomic pipeline is 
well‐established12 and is efficient for studies on lung cancer 
screening, lung cancer outcomes, and radiogenomics,11,30-36 
nodule identification and segmentation is still a time‐con-
suming bottleneck. However, we are actively pursuing ap-
proaches for automated segmentation which will allow us to 
segment and extract radiomic features on large numbers of Fe
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LDCT scans. We acknowledge there were fewer lung cancer 
cases in the training set and there was an imbalance across 
size classes; however, training on a subset improved accuracy 
and area under the AUROC to predict lung cancer incidence. 
Another possible limitation is that unmeasured/unknown 
cofounders may exist between the lung cancer cases and 
nodule‐positive controls. However, we attempted to reduce 
confounding between the lung cancer cases and nodule‐pos-
itive controls by matching on key demographic features. 
Despite the modest aforementioned limitations, we applied a 
rigorous training and testing analyses to identify informative, 
parsimonious models that predict lung cancer incidence in 
the lung cancer screening setting.

In conclusion, we demonstrated that the inclusion of 
delta radiomic features improves the ability to classify 
which lung nodules will be diagnosed as an incident lung 
cancer more accurately than previous reports.37-41 At pres-
ent, adjunct biomarkers are not currently used for lung 
cancer screening, largely attributed to their early stage in 
development.42 Published reports have found that blood‐
based and circulating biomarkers exhibited sensitivity val-
ues ranging from 40% to 91% and specificity values from 
75% to 84%,43-45 with possible cancer detection capability 
as early as 12‐29 months prior to a lung cancer diagnosis.46 
But, a critical goal of biomarker research is to add value 
to existing risk assessment standards, and the biomarker 
should be designed to supplement the current diagnostic/
management tools.47 As such, radiomic‐based biomarkers 
are attractive because they can be incorporated into the 
current radiology workflow, are noninvasive, and can be 
generated from standard‐of‐care images negating the re-
quirement of additional laboratory‐based biomarkers.
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