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Abstract

Extremely high cancer incidence associated with patients with Fanconi anemia (FA) suggests the importance of the FA
signaling pathway in the suppression of non-FA human tumor development. Indeed, we found that an impaired FA
signaling pathway substantially contributes to the development of non-FA human tumors. However, the mechanisms
underlying the function of the FA pathway remain less understood. Using RNA interfering approach in combining with cell
proliferation and reporter assays, we showed that the function of FA signaling pathway is at least partly mediated through
coupling with hRad6/hRad18 signaling (HHR6 pathway). We previously reported that FANCD2 monoubiquitination, a
hallmark of the FA pathway activation, can be regulated by HHR6. Here we found that hRad18 can also regulate activation
of the FA pathway. More importantly, we found that FANCD2 is capable of modulating activity of DNA translesion synthesis
polymerase eta, an effector of HHR6 pathway. These results provide novel insights into how the FA pathway is intertwined
with HHR6 pathway to maintain chromosomal stability and suppress the development of human cancer, representing an
important conceptual advance in the field of FA cancer research.
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Introduction

Our genome is constantly bombarded by both exogenous and

endogenous genotoxic stresses, eventually leading to DNA

damage. Well-orchestrated cellular responses to DNA damage

are absolutely required to maintain genome stability and thus

prevent diseases [1]. The coordinated responses will either

eliminate damaged cells or repair the damage to ensure a normal

cell growth [2]. To date, homologous recombination, non-

homologous end joining, nucleotide excision repair, base excision

repair, translesion synthesis, and DNA-crosslink repair are known

repair responses to DNA damage, among which DNA-crosslink

repair is attributed to all other damage repair processes described

[3]. In response to DNA crosslinks, a mammalian DNA damage

signaling pathway, called Fanconi Anemia (FA) pathway, is

activated [3,4]. This signaling pathway is determined by similar

symptoms displayed from at least 13 or 14 complementation

groups of FA [5–7], which is a rare human genetic disease featured

with severe bone marrow failure, many congenital defects, and an

extremely high cancer incidence [3,4]. Within the FA pathway,

the multi-FA protein complex can act as an E3 ubiquitin ligase to

monoubiquitinate FANCD2 and its paralog FANCI, and the

monoubiquitinated FA proteins then function in concert with

other known or unknown proteins to repair DNA damage and

maintain chromosomal stability [3,8]. FANCD2 monoubiquitina-

tion thus appears to be a measure of the activation of this DNA-

crosslink damage response pathway. Yeast or Bacteria can not

survive through one single DNA-crosslink if not repaired [4]. In

humans, impaired FA signaling was recently identified to be an

important factor in promoting the development of non-FA human

cancer [9]. However, it still remains unknown as to how the FA

signaling pathway or FANCD2 protein functions.

We previously found that HHR6 (human homolog of yeast

rad6), a major player in HHR6 pathway signaling upon DNA

damage, can regulate FANCD2 monoubiquitination [10]. In

HHR6 pathway, also called postreplication repair (PRR), a set of

complex DNA replication recovery/damage tolerance processes

permit DNA synthesis over a damaged template. This damage

response pathway is composed of two subpathways: error-prone

translesion synthesis (TLS) [11] or an error-free system [12],

involving downstream reinitiation followed by gap-filling through

recombinational events. The key components in TLS are low

fidelity DNA polymerases specialized in lesion bypass, which are

evolutionally conserved. In human, there are at least four DNA

polymerases belonging to Y superfamily (pol g, pol k, pol i and

REV1)[12] as well as a few from other polymerase families. The

existence of these DNA polymerases with very low fidelity suggests

that their participation in genome replication needs to be carefully
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regulated. But molecular events that regulate these TLS DNA

polymerases in humans remain unclear. Studies in S. cerevisiae

suggest that post-translational modification of proliferating cell

nuclear antigen (PCNA), an accessory factor of replicative DNA

polymerases, is important for the switch from the replicative

polymerase to a TLS polymerase [11,13–15]. PCNA monoubi-

quitination under the control of Rad6/Rad18 is believed to

provide a platform for both error-prone and error-free TLS events

possibly to occur. Here we found that hRad18 can also regulate

FANCD2 activation, and that human TLS DNA polymerase eta

(pol g) can be regulated by FANCD2, indicating the function of

the FA pathway is at least partly mediated through coupling with

the HHR6 pathway.

Results

Deficient hRad18 Impairs FANCD2 Monoubiquitination/
Activation

The fact that FANCD2 is activated during DNA synthesis or

upon DNA damage suggests the existence of close interplays

between FANCD2 and players in the processes of DNA synthesis

and DNA damage repair. The hypersensitivity to DNA-cross-

linking agents, such as UV-irradiation, inherent to cells derived

from patients with FA or XPV (Xeroderma Pigmentosum Variant)

[16], or to yeast deficient in Rad6 [17,18], further indicates

specific links among FANCD2, pol g, and human homologs of

yeast Rad6 (HHR6). To uncover the mystery of FANCD2

function, we decided to reveal these potential signaling links.

Indeed, we found that HHR6 can regulate FANCD2 activation/

monoubiquitination [10]. Here we questioned whether hRad18

can also regulate FANCD2 monoubiquitination upon DNA

damage, becasue HHR6 cooperates with hRAD18 to modulate

the function of proteins involved in DNA damage responses [19–

21]. Using RNA interfering (RNAi) approach, we found cells

carrying different levels of hRad18 protein displayed altered levels

of monoubiquitinated FANCD2 following exposure to UV

(Fig. 1A) or mitomycin C (MMC) (not shown), suggesting the

involvement of hRad18 in the regulation of FANCD2 mono-

ubiquitination. Moreover, FANCD2 focus formation, an addi-

tional measurement for FANCD2 activation/monoubiquitination

was also found to be compromised in corresponding UV-treated

cells carrying a low level of hRad18 expression (Fig. 1B). Taken

together, upon DNA damage, FANCD2 activation is at least

partly regulated by hRad18.

Downregulation of hRad18 leads to a similar cell
sensitivity to that of FANCL

FANCD2 monoubiquitination is an essential event in the FA

signaling transduction. Cells deficient in FANCD2 monoubiqui-

tination, such as FA cells, are hypersensitive to interstrand DNA

cross-linking (ICL) agents [22]. To further verify hRad18

regulation of FANCD2, we tested whether the deficient mono-

ubiquitination of FANCD2 triggered by a lower level of hRad18

expression also confers similar cell sensitivity to DNA crosslinking

agents as the one triggered by deficient FA genes. Populations of

U2OS or Hela cells, transfected with either non-specific RNAi

Figure 1. Down-regulation of hRad18 leads to compromised FANCD2 monoubiquitionation and focus formation in response to
DNA damage. Populations of U2OS cells either transfected with hRad18 RNAi oligos or non-specific control oligos. 18 hours posttransfection, cells
were split, and followed by 25J/m2 UV treatment. In a population of hRad18 downregulated cells, the ratio of monoubiquitinated FANCD2 over
unmonoubiquitinated FANCD2 was decreased upon UV treatment at both time points examined (A). FANCD2 focus formation was also decreased in
hRad18-silenced cells, and images shown in (B) were taken from these cells at time point of 4 hours [FANCD2 is a nuclear protein and forms foci
(marked with yellow arrows) when monoubiquitinated] [(similar results were found in Hela cells (not shown)].
doi:10.1371/journal.pone.0013313.g001
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oligos, specific RNAi oligos targeting hRad18 or FANCL, were

treated with a series of different mitomycin C (MMC) concentra-

tions (50 ng/ml–200 ng/ml) for 5 days to examine cell survival

ability. Both cell lines showed a similar decline in survival rate with

an exception about 5% more Hela cells survived at each drug dose

tested respectively (Fig. 2A, and data not shown). Images of cell

density for U2OS (Fig. 2B) or Hela cells (not shown) support their

declined cell growth rates. Moreover, cell populations treated with

RNAi oligos against either FANCL or hRad18 exhibited a similar

reduction in cell growth following MMC treatment as compared

to cells treated with control non-specific RNAi oligos. These

results indicate that, although it remains unknown the manner, by

which hRad18 regulates FANCD2 monoubiquitination, hRad18

and FA complex appear to be capable of sharing a common

downstream target, FANCD2, in the responses of cells exposed to

MMC tested here.

Figure 2. Silencing hRad18 and FANCL Lead to a Similar Mitomycin C Sensitivity. Equal populations of U2OS or Hela cells, transfected with
RNAi oligos for non-specific control (Control RNAi), targeting hRad18 (hRad18 RNAi), or targeting FANCL (FANCL RNAi), were treated with MMC at 50,
100, and 200 ng/ml for 5 days. Surviving cells were counted, and plotted for the survival rate curve. Cells, either carrying down-regulated hRad18 or
FANCL, showed a similar survival rate (pink and yellow lines) (A). The images of U2OS cells treated with 100 ng/ml MMC are shown in the right along
with RNAi targeting efficiency (Western blotting). Down-regulated hRad18 or FANCL by corresponding RNAi oligos interfered with FANCD2
monoubiquitination and affected cell survival (Results generated from Hela cells are all similar to ones shown here).
doi:10.1371/journal.pone.0013313.g002

Figure 3. Polymerase Eta Focus Formation Depends on FANCD2. A. FANCD2 foci colocalize with the foci of polymerase eta. U2OS
cells were split at 30% confluence the day before transfection. At 24 hours after transfection, cells transfected with GFP-eta plasmid or empty vector
control were treated with UV (25 J/m2), and were collected 8 hours after UV exposure. Subsequently, these cells were fixed for a standard
immunofluorescent study by using antibodies against human FANCD2. FANCD2 foci can colocalize with the green foci, which result from the
exogenous GFP-fused polymerase eta. (We did not observe any green foci or a clear green signal in the nuclei of the cells transfected with empty
vector control - data not shown.) (The yellow dots show the colocalization.) (B, C) Knocking Down FANCD2 Proteins leads to a Decreased
Percentage of Polymerase Eta Focus Formation, Cells were first transfected with control RNAi oligos or oligos specifically targeting FANCD2.
These cells were then transfected with GFP-pol g at 24 hour point after RNAi oligo transfection. These doubly transfected cells were next treated with
UV (20 J/m2) 24 hours after transfection and were collected 8 hours after UV treatment. Subsequently, a standard immunofluorescence assay was
performed. Total levels of FANCD2 protein were detected in cells with control RNAi oligos and FANCD2 RNAi oligos (B). The ratio of green focus
formation over total green cells was decreased in cells expressing FANCD2 at a lower level (C left). The typical image of two given cells expressing
FANCD2 protein at a high or low level, showed focus formation or non-focus formation of pol g, respectively. (Standard deviation was generated
from three separate experiments.) (The arrows mark the same individual cell for each panel, and the red stain represents FANCD2 protein; green for
pol g; blue for nuclear staining; and yellow for the merge of red and green.).
doi:10.1371/journal.pone.0013313.g003

FANCD2 Regulation and Function

PLoS ONE | www.plosone.org 3 October 2010 | Volume 5 | Issue 10 | e13313



FANCD2 is a Regulator of DNA Translesion Synthesis
Polymerase Eta

In response to DNA damage, the signaling cascade initiated by

HHR6-hRAD18 is known as HHR6 pathway/PRR [23], within

which PCNA is a mediator of HHR6/hRad18 to regulate the

function of DNA-translesion synthesis polymerases including pol

g. We have found that FANCD2 can be regulated by HHR6 [10]

as well as by hRad18 (Fig. 1), suggesting FANCD2 may act as an

additional mediator of HHR6/hRad18 to regulate downstream

events of HHR6 pathway/PRR. Furthermore, the similar DNA

damage sensitivity displayed by cells carrying deficient FANCD2

or pol g indicate a functional link between FANCD2 and pol g.

We thereby anticipated a potential functional relation between

FANCD2 and pol g, specifically between two protein focus

formations given that both proteins are known to form foci in

response to DNA damage [24,25]. Indeed, we found focus

Figure 4. FANCD2 Regulates DNA Translesion Synthesis Activity. (A) Schematic representation of in vitro abasic lesion bypass
reporter assay. The number ratio of colonies grown in a Kan-containing LB plate over those grown in a correspondent Cm plate can be influenced
by the enzymatic activity of pol g. An increased activity of polymerase eta will promote lesion-gap filling; a decreased activity of polymerase eta will
inhibit lesion-gap filling. Therefore, this ratio change will be the readout for the regulation on enzymatic activity of pol g. (B) The bypass activity of
abasic lesion is decreased in FANCD2-/- cells (PD20, derived from FA patient). 50 ng of each gap plasmid (wt or abasic lesion) and 50 mg of
NE with or without FANCD2, prepared from PD20+D2 or PD20 cells 6 hr following 35 J/m2 UV treatment, were used for the assay. Compared to
FANCD2 proficient NE, the lesion gap filling capacity was decreased in FANCD2 deficient NE, from which the extracted plasmids lead to a low ratio of
bacterial colonies containing lesion plasmid over the ones carrying wild type plasmid (28.6%). The relative bypassing activity is downregulated more
than 50% in FANCD2 deficient cells compared to FANCD2 proficient cells, which was plotted with three separated experiments. Images of bacterial
colonies shown were from one of three studies. C. Sequence verification of GP-21 plasmid isolated from bacterial colonies grown on the
LB Kan plate. About 10 colonies were randomly picked up from the Kan plate shown, and the isolated plasmids were checked with a correct size.
Two of them again were randomly picked up and sent for sequencing. The sequence results were the same. D (abasic)-spacer lesion was bypassed
with A inserted in the complementary DNA strand opposite to X lesion position in GP-21 plasmid.
doi:10.1371/journal.pone.0013313.g004
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colocalization between FANCD2 and pol g in cells following UV

exposure (Fig. 3A). To this point, we further asked whether

FANCD2 plays regulatory roles for the formation of pol g foci.

We created a cellular system expressing FANCD2 protein at

different levels by transfecting U2OS cells with RNAi oligos

targeting FANCD2 or non-specific for controls (Fig. 3B). We then

re-transfected these cells with plasmid containing GFP-pol g,

followed by analyzing the effects of FANCD2 protein expression

levels on focus formation of pol g. We found that the percentage

of green focus formation over total green cells is higher in cells

transfected with control RNAi oligos, in which the levels of

FANCD2 are normal, compared to cells with FANCD2 RNAi

oligos leading to a lower level of FANCD2 protein (Fig. 3B and

3C). Therefore, FANCD2 is able to regulate the focus formation of

pol g. Similar results were obtained in FA patient cells PD20

(FANCD2-/-), compared to relevant control cells carrying

functional FANCD2 (data not shown). These results indicate that,

in response to DNA damage, pol g may act as a functional

downstream target of FANCD2 and thus, at least partly, mediate

FANCD2 function in maintaining chromosomal stability.

FANCD2 Can Modulate the Activity of DNA Translesion
Synthesis

HHR6 pathway/PPR is initiated upon the stalled replication

forks resulting from many types of DNA lesions including the

abasic one. Translesion synthesis DNA polymerases can synthesize

DNA through lesion templates to prevent the collapse of the stalled

replication-forks [11,26]. Among these lesion bypassing DNA

polymerases, pol g can synthesize DNA along templates carrying

damages including the abasic lesion by inserting A or G into the

newly synthesized complementary strand [23,27,28]. A well-

defined abasic bypass reporter system [23] thus can provide a

functional readout for FANCD2 regulation of pol g. We expected

that the abasic-bypass reporter activity should be different in cells

carrying different levels of FANCD2 protein expression, as

suggested by data shown in Figure 3. To reveal this potential

effect of FANCD2, we performed reporter assay of abasic

translesion synthesis in vitro by using nuclear extracts (NEs) with

deficient or proficient FANCD2. As illustrated in Figure 4A, the

reporter mixture was mixed with NEs of FA patient cells carrying

FANCD2-/- (PD20 cells) or FANCD2+/+ (complemented PD20

cells), respectively in the DNA synthesis buffer containing dNTPs,

and incubated for 3 hours at room temperature. Subsequently we

extracted plasmids and followed procedures described previously

[23]. We found that abasic bypass activity was dramatically

decreased in NEs without FANCD2, compared to the NE carrying

FANCD2 (Fig 4B). We also performed in vivo reporter assay by

transfecting plasmids into U2OS cells carrying different levels of

FANCD2 expression through RNAi approach, followed by similar

procedures used for in vitro assay with an exception of extracting

plasmids out of cells rather than from the reaction mixtures. The

results were consistent with ones derived from the in vitro assay

(data not shown). Clearly, FANCD2 plays an essential role in the

regulation of, at least, bypassing abasic DNA lesion and appears to

be a novel regulator of DNA translesion synthesis polymerase eta.

Discussion

The similar DNA damage sensitivity between systems carrying

either deficient HHR6 or improper FA signaling prompted us to

explore a possible signaling link between HHR6 and FA pathways.

Indeed, we found that not only HHR6 [10] but also hRad18 are

capable of regulating the activation of FANCD2 (Fig 1). More

importantly, we found FANCD2 can regulate translesion synthesis

(TLS) DNA polymerase eta (Fig. 3, 4), which appears to be a first

protein to be indentified acting as a mediator of FANCD2 function.

This finding is consistent with the concept long-proposed in the field

of FA study that FA proteins may play roles in TLS [3,4,29]. Unlike

many known TLS enzymes, pol g mostly synthesizes DNA

accurately upon the lesion template [12,30], as demonstrated by

XPV resulting from a mutated pol g [16,31]. We believe

chromosomal stability maintained by FANCD2/FA pathways is

at least partly attributed to the function of pol g; pol g may as well

be a potential candidate FA-like or FA-related gene for those

unclassified FA patients. Furthermore, the regulation of pol g by

FANCD2 may indicate a part of FANCD2 broader effects, rather

Figure 5. Schematic Representation of Convergence of the FA
and HHR6 Pathways. Our work (green lines) indicates that HHR6/
HRad18 can regulate FANCD2 monoubiquitination, a hallmark of the
activation of the FA pathway (marked with light blue color); and
FANCD2 can modulate the activity of polymerase eta, an effector of
HHR6 pathway (highlighted with dark blue color). Upon DNA damage,
FANCD2 may partly mediate the function of HHR6/hRad18 in HHR6
pathway/PRR; pol eta can as well mediate a part of FANCD2 function in
maintaining chromosomal stability in the FA signaling. It waits for
future studies to further define the integration of the FA and HHR6
pathways upon genotoxic stresses, such as whether and how the FA
complex and hRad18 depend on each other in terms of regulation of
FANCD2 monoubiquitination?
doi:10.1371/journal.pone.0013313.g005
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than strictly functioning in the FA signaling. The majority of FA

core complex genes are completely absent in many eukaryotic

species that do contain orthologues of FANCD2 [3,4]. This

difference also suggests the additional function that FANCD2

may have. In fact, FANCD2 has been suggested to participate in a

separate signaling pathway that is activated by ATM in response to

ionizing radiation [32], and it was recently also found to induce

apoptosis [33]. Collectively, our study provides a framework for our

understanding of maintaining chromosomal stability through

converging two DNA damage response pathways (Fig. 5), in which

many questions await answers, such as how HHR6/hRad18

regulates the activation of FANCD2/the FA pathway, directly or

indirectly? Or simply, Pol g is regulated by monoubiquitinated

FANCD2, un-monoubiquitinated FANCD2, or both? We believe

our ongoing and future studies, and those of others will provide

refined mechanisms underlying the integration of HHR6 and FA

pathways in maintaining genomic stability (Fig. 5).

Materials and Methods

Cell lines and Chemicals
All cell lines were obtained from the American Type Culture

Collection (ATCC), with an exception of specially engineered

ones. Mitomycin C was purchased from Sigma.

Cell survival assay
Equal numbers of U2OS or Hela cells were seeded in 60 mm

dishes one day prior to transfection with control non-specific

RNAi oligos or RNAi oligos against hRad18, or FANCL. Thirty-

six hours posttransfection, cells were treated with, 50 ng/ml,

100 ng/ml, or 200 ng/ml MMC for 5 days. The number of

surviving cells was scored, and cell numbers were plotted as cell

survival curves (cell numbers of the samples treated with the drug

were normalized to the cell numbers of the untreated control

sample. Each drug dose was tested in triplicate). The shown

images were RNAi oligo-transfected cells, which were treated with

50 ng/ml MMC for 3 days.

Reporter plasmids, Nuclear Extract Preparation, and in
vitro DNA Synthesis

GP21 abasic plasmid (kan-resistance) and GP20-gap plasmid

(cm-resistance) were constructed as described [23]. The GP21

abasic primer: 59-ACCGCAACGAAGTGATTC CCGTCG-

TGACTGXGAAAACCCTGGGCTACTTGAACCAGACCG

-39; GP-20 gap primer: 59- ACCGCAACGAAGTGATTC-

CCGTCGTGACTGGGAAAACCCTGGG CTACTTGAACC-

AGACCG -39; TLS (XmnI) primer: 59- GGA ATC ACT TCG

TTG -39; and TLS (BstXI) primer: 59- CTG GTT CAA GTA

GCC -39 (X is an abasic site). Nuclear Extracts (NE) were

prepared from PD20 and PD20 + DANCD2 cells by using

Kit#78833 (Thermo Scientific). The in vitro assay was set up by

mixing GP20 (50 ng), GP21(50 ng), and NE (50 mg) in Tris-HCl

buffer (40 mM, pH 7.5) including MgCl2 (5 mM), dithiothreitol

(1 mM), bovine serum abumin (100 mg/ml), 10% glycerol, and

dNTP (100 mM). The mixture was incubated at room temperature

for 3 hours, followed by phenol chloroform extraction and

precipitation of plasmid DNA. Subsequently, the extracted

plasmid mixture was transformed into DH5a competent bacteria

and equally spread on cm (chloramphenical) and kan (kanamycin)

containing LB agar plates.

Immunostaining, Western blotting, and siRNA
oligonucleotide transfection

These techniques were performed essentially as described

[9,10,34]. HRad18 antibody was purchased from Santa Cruz

and used at a dilution rate of 1:500 for Western blotting. All RNAi

ologos were purchased from Dhmarcom, targeting hRad18

(cttgctgtg tgactgtcac), FANCL (gacaagagctgtatgcact) [35], or

FANCD2 (ccaggaagcaaccactttc).
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