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Abstract

Zebrafish larvae show a robust behavior called rheotaxis, whereby they use their lateral line system to orient upstream in
the presence of a steady current. At 5 days post fertilization, rheotactic larvae can detect and initiate a swimming burst away
from a continuous point-source of suction. Burst distance and velocity increase when fish initiate bursts closer to the suction
source where flow velocity is higher. We suggest that either the magnitude of the burst reflects the initial flow stimulus, or
fish may continually sense flow during the burst to determine where to stop. By removing specific neuromasts of the
posterior lateral line along the body, we show how the location and number of flow sensors play a role in detecting a
continuous suction source. We show that the burst response critically depends on the presence of neuromasts on the tail.
Flow information relayed by neuromasts appears to be involved in the selection of appropriate behavioral responses. We
hypothesize that caudally located neuromasts may be preferentially connected to fast swimming spinal motor networks
while rostrally located neuromasts are connected to slow swimming motor networks at an early age.
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Introduction

The mechanosensory lateral line system allows fishes to detect

water flow relative to the body. The basis of this sensory system is

an array of receptor units called neuromasts, which contain

clusters of hair cells along with support cells. Upon deflection, hair

cells increase transmitter release and excite afferent neurons [1].

While adult fishes may possess tens of thousands of neuromasts,

larval zebrafish (Danio rerio) contain only about 24 on the surface of

the body [2] at 5 days post fertilization (dpf). Even at this early

developmental stage, zebrafish larvae exhibit several distinct motor

behaviors which are mediated by the lateral line, such as turns,

struggling and escape behaviors [3–8]. Due to its accessibility and

tractability, the larval lateral line is uniquely suited for experi-

mental studies involving selective neuromast ablations. This

provides an attractive opportunity to manipulate neuromast

number and arrangement in order to investigate the functional

consequence of the spatial organization of flow sensors in an

intact, freely-swimming animal.

Several species of predatory fishes and invertebrates prey on

zebrafish using suction feeding, making the ability to detect and

avoid high velocity flows critical for their survival [9]. Zebrafish

are found in moderate flowing streams throughout Southeast Asia

but congregate in slow flowing or stagnant side pools [9,10]. The

innate tendency to orient and swim against a current is called

rheotaxis [11]. This behavior is mediated by the neuromasts of the

lateral line system, and can proceed even in the absence of visual

cues [11]. Although rheotaxis in adult fishes has received much

attention [12–15], very little is known about rheotaxis and related

behaviors in larvae. Here we employ a behavioral assay consisting

of a controlled, continuous suction generator (Fig. 1A) in order to

elicit rheotaxis and swimming bursts in 5 dpf larvae. We selectively

ablated neuromasts to test the hypotheses that in the presence of a

continuous flow, 1) the posterior lateral line is required to avoid a

suction source, and 2) the span of neuromasts along the body is

more important than the absolute number when avoiding a

suction source. We describe a novel, lateral line mediated burst

response and discuss how it may be part of a feedback circuit that

relates burst distance to detected flow strength.

Materials and Methods

Animal Husbandry
Wildtype zebrafish (Danio rerio) were kept in a flow-through

system (Aquatic Habitats, Apopka, FL, USA) at 28uC on a

14h:10h light dark cycle. Similar conditions were maintained for

larvae, which were kept in Petri dishes in an incubator (Tritech

Research, Los Angeles, CA USA). All experiments were

performed on 5 dpf zebrafish larvae in strict accordance with

the recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee of the University of Florida (Permit Number:

200903267 to J.C.L.).
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Experimental Suction Chamber
We constructed a suction chamber consisting of an 8.3 cm

diameter, 7.7 cm tall cylindrical tank with an opening in the center

of a mesh bottom, to which a 5 mm diameter nozzle (modified

Luer Lock) was fitted. A section of 6 mm diameter Tygon tubing

(Saint-Gobain Co., Akron OH USA) connected the nozzle to a

2000 mL Pyrex filter flask, and from there to a model 400–3910,

115 V, 60 Hz vacuum pressure motor (Barnant Company,

Barrington, IL, USA). The vacuum motor was adjusted to remove

1.6660.01 mL s21 of fluid from the experimental chamber, so

once turned on, a moderate suction flow was created at the

location of the nozzle. Larvae which could not avoid the nozzle

suction were captured and deposited into the filter flask.

The suction chamber was submerged in a larger, 3.3 L plastic

container filled with Hank’s solution in order to reduce the rate at

which the water level dropped, while still maintaining a

continuous suction. We empirically determined a flow velocity in

which untreated larvae could routinely escape the suction source,

which we then maintained with a 9 mm Hoffman clamp around

the tubing.

Selective ablation of neuromasts
Zebrafish larvae were anesthetized with tricaine sulfonate

(Finquel, Redmont, WA) and exposed to 0.5 mM 2-(4-dimethy-

laminostyryl)-N-ethylpyridinium iodide (Sigma-Aldrich, St. Louis,

MO, USA) in Hank’s solution for 40 minutes in order to visualize

the neuromasts. We developed a method to selectively ablate

neuromasts by embedding an anesthetized fish in low melting

point agar (Fisher Scientific, Fair Lawn, NJ, USA) and then

carefully dissecting the solidified agar around targeted neuromasts.

The exposed region was then bathed in 250 mM neomycin sulfate

(Fisher Scientific, Fair Lawn, NJ, USA) for one hour. With this

method the diffusion of neomycin through the agar could be

minimized but not completely blocked; therefore our ablations

involved subsets of neuromasts instead of individual neuromasts.

We compared five experimental groups with different treatments:

(1) anterior neuromasts of the posterior lateral line (PLL) ablated,

(2) middle neuromasts of the PLL ablated, (3) caudal neuromasts of

the PLL ablated, (4) complete PLL ablated and (5) a control group.

The control group was embedded in agar and bathed in 10%

Hank’s solution for one hour instead of neomycin. Neuromast

ablation was confirmed using an Olympus MVX10 fluorescent

microscope (Center Valley, Pennsylvania, USA) under a 106
objective. After all treatments and sham procedures, larvae were

placed in 10% Hank’s solution for one hour to recover before

testing in the suction chamber.

Behavioral test
At the beginning of each experiment, a single larva was

introduced into the chamber 1.5 cm away from the suction source.

Larvae were scored as to whether they escaped or were captured

by the suction source within a 10 second time frame. Behavior of

individual larvae were recorded using a high-speed video camera

(60 frames per second, 12006800 pixel resolution, Phantom v12,

Vision Research Inc., Wayne, NJ, USA). Initial experiments took

place in a dark room with the suction chamber illuminated by a

panel of infrared LEDs (BG Micro Garland, Texas). However, we

discovered that performing the experiment in the light with a

homogenous visual background produced the same results, so the

remaining experiments were performed in the light.

Attempts to measure the radial flow velocity profile of the

chamber by tracking small particles proved challenging with our

setup. Therefore, the flow profile was determined by averaging the

velocity of ten euthanized larvae drifting towards the suction

source and smoothing the resulting curve with a cubic spline.

The ability for larvae to orient upstream in response to a current

was analyzed by measuring the angle of the long body axis with

Figure 1. Larvae burst away from a continuous suction source at 5 days post fertilization. A. Schematic of the experimental suction
chamber which is immersed in a large volume bath and connected with tubing to a retention flask and vacuum motor. B. Comparison of two suction
avoidance behaviors. Position of a larva (black line) drifting towards and then bursting away from the suction source (origin at 0 cm), and another
larva continuously holding station instead of bursting (gray line). C. Time series of a rheotactic larva (gray circles) escaping the suction source (arrow)
with a quick burst of swimming. Frames taken every 350 ms.
doi:10.1371/journal.pone.0036661.g001

Zebrafish Use Their Lateral Line to Escape Flow
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respect to the flow direction for actively swimming fish compared

to euthanized, passively drifting fish. Measurements started when

the body axis was parallel with the flow direction (i.e. body

angle = 0u). We then stepped back in ten-frame increments and

measured the deviation between the body angle and this reference

angle for each step. This yielded six body angle measurements that

tracked the fish as it was orienting to the current over the course of

one second.

Data analysis and statistics
Videos were processed using a custom written MatLab program

to track the position of the body over time (v12.1, Mathworks,

Natick MA). Differences in the change in body axis angle were

determined using an unpaired, one-tailed Student’s T-test. Linear

regression analyses revealed correlations between behavior and

distance from the suction source, and their significance was tested

at p,0.05. In the ablation experiments we used a Fisher’s exact

test to look for differences in the number of escaped and captured

larvae between treatment groups.

Results

We first characterized the burst response of 98 untreated larvae

in the suction chamber The most common response was a single

avoidance burst initiated when larvae approached the suction

source. During the burst, a larva would move at least one third of

its body length away from its starting location (Fig. 1B, 1C).

Another, less common response was to maintain position with

small, iterative movements to resist being drawn towards the

suction source (Fig. 1B).

When fish initiated a burst, they actively oriented away from the

suction source. At the end of a burst the body axis was aligned with

the flow direction (Fig. 2A, 2B), thereby demonstrating a robust

rheotaxis response. We also found that euthanized fish will

passively align with the current generated by the suction source

(Fig. 2C). However, the change in body angle is significantly faster

in live, turning fish than in passively aligning fish (Fig. 2D).

To determine the distance from the suction source at which

larvae initiated an avoidance burst, we marked the chamber into

one millimeter radial sections from the center. Figure 3A shows a

frequency distribution of the distances from the suction source at

which larvae initiated a burst. Most larvae initiated a burst

between 0.5 and 1.0 cm from the suction source. Far fewer larvae

initiated a burst when located closer to the suction source, or when

they were more than 1 cm away from the suction source. Larvae

that initiated a burst closer to the suction source tended to travel a

greater distance during the burst than larvae that initiated their

burst further away from the suction. Therefore, the location of

burst initiation and the burst distance traveled is significantly

correlated (Fig. 3B). We assume that larvae located closer to the

suction source experienced faster flows than larvae located further

away from the suction source, based on the velocity values that we

measured with euthanized larvae (Fig. 3C). Larvae that initiated

their burst closer to the suction source had a higher burst velocity

compared to larvae that initiated a burst further away. The result

is that the average burst velocity was also significantly correlated to

the location of the burst initiation (Fig. 3D).

We next asked which neuromasts of the posterior lateral line

system (PLL) are involved in detecting the flow created at the

suction source. Subsets of PLL neuromasts were ablated with

neomycin to create five treatment groups, comprised of fish with

(1) rostral neuromasts of the PLL ablated, (2) middle neuromasts of

the PLL ablated, (3) caudal neuromasts (neuromasts posterior to

and including the L5) of the PLL ablated, (4) the complete PLL

ablated and (5) a control group which went through a sham

ablation procedure but had an intact PLL (Fig. 4A). In all groups

the anterior lateral line system containing the cranial neuromasts

was left intact. Treatments 1–3 were designed to affect

approximately the same number of neuromasts. We found that

significantly fewer larvae escaped the suction source when either

the complete PLL was ablated or the caudal neuromasts were

ablated compared to control larvae (Fig. 4B). There was no

significant difference between control larvae and larvae with either

their rostral or middle PLL neuromasts ablated. We found a

significant difference between larvae with their middle neuromasts

ablated and larvae with their complete PLL ablated. There were

no significant differences between complete PLL ablated larvae

and larvae with only their caudal neuromasts ablated.

The swimming trajectories of larvae under different treatments

differed considerably. A larva with its caudal neuromasts ablated

typically drifts towards and is eventually captured by the suction

source, while a larva with its middle neuromasts ablated can

initiate an avoidance burst to avoid the suction source (Fig. 4C).

Discussion

Rheotaxis in adult fishes is defined as the ability to orient

upstream to current and relies on the neuromasts of the lateral line

system [16]. Larval zebrafish display many well-characterized

locomotor behaviors [4], but surprisingly few studies examine how

larvae behave in moving water [7] despite the fact that in their

natural habitat they are found in streams with flows documented

at 0.0760.05 m s21 [10]. The ability for a flow stimulus to initiate

motor behavior is not unprecedented. In still water, a sufficiently

strong hydrodynamic stimulus from the lateral line activates the

paired Mauthner cells in the hindbrain to generate a robust, all-or-

nothing escape response in the absence of input from other

modalities [6,7]. We demonstrate that larval zebrafish are

rheotactic by showing that they actively orient towards the flow

direction faster than the passive aligning of euthanized fish

(Fig. 2).What makes our results remarkable are that we

demonstrate for the first time that 1) superficial neuromasts of

the posterior lateral line system are used for rheotaxis in fish

larvae, similar to what has been found for Xenopus larvae [17], and

2) even during rheotaxis superficial neuromasts play a fundamen-

tal role in the ability to detect and burst away from accelerating

flows created by a suction source.

Larvae that initiated a burst closer to the suction source, where

flow is faster, swam faster and farther than larvae that initiated a

burst further away from the suction source, where flow is slower

(Fig. 3B and 3D). We can imagine at least two scenarios to explain

this behavior. One possibility is that the distance that larvae burst

is a preprogrammed motor response which is positively correlated

to the magnitude of the flow velocity sensed prior to the burst. This

scenario assumes no feedback during the burst; the stronger the

initial flow, the further the burst distance traveled (Fig. 3B). This

applies to larvae that start their burst closer to the suction source.

The result is that regardless of whether larvae initiate their bursts

closer to, or further away from, the suction source, both can end

up at a similar distance away. Another possibility is that larvae can

continuously detect flow while bursting, and only stop when they

sense low flow. Assuming a homogenous radial flow profile in the

suction chamber, all larvae would then terminate their burst at a

similar distance away from the suction source regardless of where

they initiate the burst. The limitations of our experiment make it

difficult to evaluate if one mechanism is involved or a combination

of the two. This question could be addressed in a future study by

locally introducing higher flow to larvae located farther away from

Zebrafish Use Their Lateral Line to Escape Flow
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Figure 2. Larval zebrafish demonstrate rheotaxis by moving their body to orient upstream in the presence of current. A.
Characteristic example of a larva turning its body upstream to align with a current created by a continuous suction source. The initial body angle
relative to the flow direction (t6) decreases (gray arrows) with time such that at the end of a one second video sequence the body is aligned parallel
to, and facing away from, the flow (t0). B. All body angles decreased over time in the presence of a current, indicating a robust rheotactic response in
freely swimming larvae with an intact lateral line (n = 8 larvae). The data for larva in A are highlighted by white circles and joined by a solid black line.
The solid gray line for the last three data points (highlighted in the black box) represents the average change in body axis between t3 and t0. C.
Euthanized, and therefore passively drifting, larvae show a tendency to slowly self-orient to the current (n = 7 larvae). The solid gray line represents
the average rate of change in body angle between t3 and t0. D. Comparison of the change in body angle between timepoints t3 and t0, when fish
responded robustly to the flow. Live fish turn faster to align themselves with the flow than what is expected for a passively drifting fish (Student’s
unpaired, one-tailed T-test, * p,0.01, 7#N#8).
doi:10.1371/journal.pone.0036661.g002
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the suction source (where flow would be relatively low). If larvae

end their bursts in the same region of the chamber as larvae

located closer to the suction source, then this would support the

interpretation that larvae only stop when they sense low flow.

Our behavioral results lead us to predict that the spatial array of

posterior lateral line neuromasts is functionally integrated with the

topography of spinal cord neurons to take part in initiating and

modulating a range of swimming speeds. Previous work demon-

strates that dorsal, glutamatergic neuropil regions in the hindbrain

are associated with fast swimming networks in the spinal cord,

compared to more ventral neuropil regions [18], and that caudal

neuromasts connect more dorsally in the hindbrain than rostral

neuromasts [19]. According to this hypothesis, during rheotaxis

stimulated neuromasts would inform a class of excitatory spinal

interneurons that are responsible for slow swimming (i.e.

multipolar, commissural descending interneurons, MCoDs).

Higher velocity flows, such as those found closer to the suction

source, would stimulate neuromasts that are connected to fast-

swimming networks involving another class of glutamatergic,

circumferential descending interneurons (CiDs).

By selectively ablating certain neuromasts along the body trunk

while leaving others intact, we discovered that not all neuromasts

are functionally equal (Fig. 4). This makes it challenging to

evaluate our original hypothesis; that neuromast span is more

important than absolute number in order to avoid a suction

source. Instead, our results lead us to conclude that caudal

Figure 3. Characteristics of bursting behavior in the suction chamber for untreated larvae. A. Percentage of fish initiating a burst at a
given radial distance from the suction source, where the origin of the suction source is at 0 cm. Most larvae initiate a swimming burst between 0.5–
1.0 cm (1–2 body lengths) away from the suction source, while far fewer larvae initiate a burst closer or further away (N = 98). B. Relationship between
burst distance and location of burst initiation. The closer to the suction source a burst is initiated the farther the distance traveled during the burst
(N = 98, R2 = 0.09, p = 0.02). C. Velocity of passively drifting euthanized larvae as a function of distance from the suction source. The average drifting
velocity of ten bodies was smoothed using a cubic spine (gray shaded area represents the standard error of the mean, N = 10). D. Average burst
velocity as a function of the location of burst initiation. The closer to the suction source the burst is initiated, the faster the burst velocity (N = 98,
R2 = 0.06, p = 0.01).
doi:10.1371/journal.pone.0036661.g003

Zebrafish Use Their Lateral Line to Escape Flow

PLoS ONE | www.plosone.org 5 May 2012 | Volume 7 | Issue 5 | e36661



neuromasts seem to be disproportionately responsible for initiating

the burst response, such that even the removal of the entire PLL

does not change larval performance significantly beyond the

removal of caudal neuromasts (Fig. 4B). Caudal neuromasts have a

unique development and morphology that reveals important

functional implications. For example, the afferent neurons that

innervate caudal neuromasts are known to have larger and more

complex growth cones than neurons that innervate more anterior

neuromasts [19], and are the first to differentiate [20].

Caudal neuromasts likely play a key role in detecting flow

velocity and direction in order to orchestrate the burst response in

larvae. Interestingly, rostral neuromasts of the posterior lateral line

system may play a more prominent role in escape bursts than

middle neuromasts, given that a significant difference exists

between middle and complete ablation treatments but not between

rostral and complete ablation treatments. More systematic

ablation and recording experiments will advance our understand-

ing of how flow information is processed. We envision that flow

detection could also proceed by a mechanism that calculates the

difference in rostral and caudal neuromast stimulation times. This

has been modeled, but found challenging to attack empirically, in

adult fish due to the enormous numbers of neuromasts present

[21]. Detection of flow could also operate under models applied to

directional sensing in electric fishes [22]. We believe that the

simple and accessible lateral line system in larval zebrafish

provides a strong approach to better understanding how flow is

translated into motor behaviors at the single cell level.
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Figure 4. The effects of selective neuromast ablation on the
ability of larvae to avoid a suction source. A. DASPEI-labeled
neuromasts in 5 day post fertilization larvae with sections of the
posterior lateral line (PLL) ablated with neomycin. Intact neuromasts
labeled with DASPEI are highlighted with white arrowheads, while
white boxes indicate regions where neomycin was applied. Note that
due to the transparency of the larvae, at times labeled neuromasts from
the opposite side of the body are seen. Five different treatments were
tested, from top to bottom: (1) larvae with rostral neuromasts of the PLL
ablated, (2) middle neuromasts of the PLL ablated, (3) caudal
neuromasts of the PLL ablated, (4) complete PLL ablated and (5) sham
treated control group. B. Percent larvae that escape (black bars) and are
captured by (white bars) the suction source. There is a significant
difference between the control (N = 78) and the complete PLL ablated
group (N = 36) as well as between the control and the caudal
neuromasts ablated group (N = 32). We also found a significant
difference between the complete PLL ablated group and middle
neuromasts ablated group (N = 27). No significant effects where found
for the rostral neuromasts ablated group (N = 18). All groups were
tested using a Fisher’s exact test (***p,0.001, **p,0.01, *p,0.05). C.
Time series showing the position of a larva with caudal neuromasts
ablated (white circles) captured by the suction source (located at the
origin of the coordinate system), and a larva with middle neuromasts
ablated (black circles) bursting away from the suction source. Start and
endpoint of each path are indicated.
doi:10.1371/journal.pone.0036661.g004
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