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ABSTRACT

RNA can fold into a topological structure called a
pseudoknot, composed of non-nested double-
stranded stems connected by single-stranded loops.
Our examination of the PseudoBase database of
pseudoknotted RNA structures reveals asymmetries
in the stem and loop lengths and provocative com-
position differences between the loops. By taking
into account differences between major and minor
grooves of the RNA double helix, we explain much
of the asymmetry with a simple polymer physics
model and statistical mechanical theory, with only
one adjustable parameter.

INTRODUCTION

Accurately predicting how biological macromolecules fold is
one of the great challenges of our day because ‘structure is
function’. Encoded in the primary amino acid sequence of
proteins are a-helix and b-sheet secondary structures which
assemble into final native folds through additional tertiary
contacts. The protein folding problem is notoriously difficult
because local secondary and non-local tertiary contacts both
contribute significantly to the stability of the final fold. In
RNA, however, because base-pairing interactions are stronger
and more specific typically than tertiary contacts, it is second-
ary structure which most influences the final fold.

Listing which bases are paired to which other bases
uniquely describes the secondary structure of RNA. Base
pairs can be annotated with left and right parenthesis pairs;
blocks of base pairs, with a letter. In the vast majority of cases,
RNA adopts ‘nested’ secondary structures composed of con-
secutive helices separated by bulges or by hairpin turns, such
as the AABB (((())))[[[]]] or the ABBA ((([[[[]]]]))) base-
pairing patterns. Folding algorithms like MFOLD (1,2) or
VIENNARNA (3) restrict themselves to nested structures
to benefit from the algorithmic efficiency of dynamic

programming. These algorithms ignore the more unusual
non-nested structures of pseudoknot folds, such as the
ABAB ((([[[[[)))]]]]] pattern, depicted in Figure 1.

Pseudoknots have attracted attention as important func-
tional structures of viruses and auto-catalytic RNAs. This
class of structures is more highly constrained by non-local
base pairs and exhibits particular 3D geometries.

The general pseudoknot problem has been proven to be
NP-complete (4) because of non-local contacts. A number
of pseudoknot algorithms have been developed recently
(4–13), which search for only a subset of pseudoknot struc-
tures (14,15). Algorithms which lack such basic biochemical
elements as GU wobble base pairs or basic polymer theory are
of questionable value. Furthermore, none of these approaches
are tested against the ensemble of known pseudoknots.
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Figure 1. (a) An ABAB-pseudoknot is depicted in planar representation. The
structure is composed of two double-helical stems (with s1 and s2 base pairs) and
the three single-stranded loops of lengths L1, L2 and L3 nucleotides. (b) The 3D
fold of the same knot is depicted. The x, y, z axes point left, out, up. Coaxial
stacking interactions between stems 1 and 2 can stabilize the structure,
particularly if L2 = 0. Note that loop 1 lies on the major groove side, while
loop 3 lies on the minor groove side.
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In the following section, we begin by describing the statistics
of the pseudoknots in PseudoBase (16). To our knowledge,
Ref. (16) is the only online database (http://wwwbio.leidenuniv.
nl/~batenburg/pkb.html) focused on pseudoknots. The statistics
illuminate key physical characteristics of pseudoknots: (i) the
simplest pseudoknots are the most abundant, (ii) these pseudo-
knots have asymmetric loop and stem lengths and (iii) their
loop compositions differ. The asymmetries in the ensemble
of pseudoknots have not been characterized previously.

To self-consistently explain the source of these asymmet-
ries, we proceed to develop a polymer physics model and
statistical mechanical theory in Section 3. We argue that
including the asymmetry of the major versus the minor groove
is essential.

CHARACTERIZING PSEUDOBASE AND
PSEUDOKNOT ASYMMETRY

PseudoBase is a gold mine of information, allowing us to dig
deeply into the properties of pseudoknots. As of January 2005,
there are 245 pseudoknots in PseudoBase. After removing
duplicate sequences (PKB6 and 9, 25 and 26 and 29, 39
and 40 and 41, 19 and 27, 33 and 34), there are 238 unique
pseudoknots. Of these, 230 (97%) are the simple ABAB-
pseudoknot variety shown in Figure 1. This most common
type of pseudoknot is involved in a number of essential bio-
logical processes including RNA self-splicing, translation
control and viral frameshifting. It is perhaps not surprising
that as the complexity of the knot increases, its likelihood
of occurring decreases.

In PseudoBase, there are also six ABACBC kissing hairpin
structures (PKB150, 163, 169, 171, 173 and 178), and two
more exotic structures (PKB71 and 75). The pseudoknot loops
occasionally contain an additional self-contained hairpin loop
(e.g. ABACCB) but such nested structures do not change the
degree of non-nestedness (e.g. ABAB-class), and in these
cases PseudoBase only catalogs the A and B stems.

ABAB-pseudoknots are asymmetric. The distribution of
stem lengths s1 and s2 are markedly different, as shown in
Figure 2a. Excessively long stems are not required for pseu-
doknot formation; s1 peaks at 3 bp and s2 favors 5 or 6 bp.

Loop 2 is often very short (172 of the 230 unique ABAB-
pseudoknots, or 75% have L2 = 0; 195 of 230, or 85% have
L2 < 1) resulting in favorable coaxial helix stacking interac-
tions which stabilize the pseudoknot. The Turner rules (17)
permit helix stacking for L2 < 1. In Section 3 we will present a
theory for the ABAB class with stacked stems.

In Figure 2b, we also see differences in the distributions of
L1 and L3 sizes, including multiple peaks. These features may
arise because of differences in tertiary interactions between
loops and stems.

We observe striking composition biases in the loops of
ABAB-pseudoknots. As Table 1 shows, loop 1 is uracil rich
while loop 3 tends to be adenine rich, particularly the end of
loop 3 which is across from stem 1. These observations are
consistent with reports of tertiary contacts (with one to four
hydrogen bonds) between loop adenines and the minor
grooves of helices, known as A-minor interactions (18–23).
Adenine-rich loop 3 is on the minor groove side of stem 1.
On the other hand, uracil-rich loop 1 is a more flexible loop

(24), and interacts less with the major groove of stem 2 (see
Figure 1b).

The asymmetries in the populations of stem and loop
lengths have not been explained by previous pseudoknot
algorithms and models (4–13). The algorithms in Refs
(5–8,13) are all symmetric with respect to stem and
loop lengths (i.e. transforming an ABAB-into a BABA-
pseudoknot by interchanging stems 1 $ 2 and loops 1 $ 3).
The phenomenological estimates of Gultyaev and co-workers
(25) do provide different free energies for loops 1 and 3 but
result from ad hoc assumptions rather than polymer physics.

We assert that the differences in stem and loop sizes arise
primarily from major/minor groove asymmetries and use this
fact to reproduce the population of pseudoknots observed in
PseudoBase.
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Figure 2. The statistics of ABAB-pseudoknots in PseudoBase (obs) with L2 = 0
is compared with our theory (thy). (a) Stems favor different numbers of base
pairs s1 and s2. (b) Loop lengths L1 and L3 are also asymmetric.

Table 1. The overall base composition of loops 1 and 3 differs

A C G U

Loop 1 27.0 15.6 17.9 39.5
Loop 3 46.1 14.3 11.1 28.5
Loop 3 (last) 63.9 11.4 4.4 20.3
Loop 3 (first) 35.1 9.4 11.4 44.1
Stem 1 18.0 27.7 32.1 22.1
Stem 2 19.6 28.2 30.5 21.8

Loop 3 has a high percentage of adenines which makes it prone to A-minor
stacking interactions with stem 1. Loop 1 has a high percentage of uracils,
making it a more flexible loop and more interaction neutral. The adenines in
loop 3 are strongly biased toward the 30 end of the loop. The large fraction of
uracils at the start (50 side) of loop 3 enhances loop flexibility in the turn.
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ABAB PSEUDOKNOT MODEL

The dominant contributions to the free energy of ABAB-
pseudoknots are (i) base-pairing of stems and (ii) entropy
of the loops. The overall free energy of the complex is then

DG ¼ DGs1
þ DGs2

� TS s1‚s2‚L1‚L2‚L3ð Þ‚ 1

where DGsj
is the free energy of helix j and S(s1, s2, L1, L2, L3)

is the entropy of the loops.

Stems, RNA duplex

Step one is to describe the base-paired stems. The cartesian
coordinates of complementary bases in double-helical A-form
RNA are approximately:

rW ¼
�

r cos
2ps

Nt

� �
‚r sin

2ps

Nt

� �
‚hs

�
‚

rC ¼
�

r cos
2ps

Nt

þ f
� �

‚r sin
2ps

Nt

þ f
� �

‚hs þ Hoff

�
:

2

Here s indexes both the nucleotide on the Watson strand and
its complement on the Crick strand. The coordinates of the
40 carbon from the six double-helical RNA structures which
appear in the Protein Data Bank (26) (1AL5, 1RNA, 1RRR,
1RXB, 1SDR and 433D) were incorporated in a least-squares
fit to obtain values for the model parameters: the number of
base pairs per helical turn Nt = 11.2 – 0.3, the radius of the 40

carbon r = 9.9 – 0.2 s, the height per stack is h = 2.7 – 0.2 s,
the phase angle between complementary strands f = 1.6 – 0.1
rad = 93 – 4� and the vertical offset between complementary
strands Hoff = �4.2 – 1.4 s.

Consider the typical ABAB-pseudoknot, with L2 = 0 and
helices 1 and 2 stacked. In this configuration loop 1 must
traverse the distance from the junction between the helices
to the other end of stem 2 across the major groove. This
distance is

DL1
¼ j rW sð Þ � rC s þ s2ð Þ j ‚

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1 � cos qs2
ð Þr2 þ hs2 þ Hoffð Þ2

q
‚

3

where qs2
¼ 2ps2=Nt þ fð Þ‚ is the phase angle between the

strands.
The other loop must traverse the distance from the junction

between the helices to the other end of stem 1 across the
minor groove. This distance is

DL3
¼ j rC sð Þ � rW s þ s1ð Þ j ‚

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1 � cos qs1
ð Þr2 þ hs1 � Hoffð Þ2

q
‚

4

with qs1
¼ 2ps1=Nt � fð Þ: The sign difference in q and in the

Hoff term arises from the major/minor groove asymmetry. In
Figure 3, we show how the distances differ in the two cases.

Loops

Step two is to estimate the loop entropy. In the standard
Gaussian approximation, a chain of N links of length a has

end-to-end separation distance between D and D + d with
probability

pG D‚Nð Þ ¼ 4pD2d
3

2pNa2

� �3=2

exp
�3D2

2Na2

� �
‚ 5

where a = 6.2 s and d = 0.1 s is our model’s one free para-
meter. Other polymer physics models, such as the worm-like
chain, self-avoiding chain (13), freely-jointed chain models,
could also be used in place of Equation (5). The entropic
contribution of loop 1 to Equation (1) can be obtained from
Equation (5), taking D ¼ DL1

and N = (L1 + 1) links for
L1 nucleotides. To be explicit, the total entropy is
S ¼ R ln pG DL1

‚L1 þ 1ð ÞpG DL3
‚L3 þ 1ð Þ½ �.

ABAB probability

The probability of an ABAB-pseudoknot with lengths fs1, s2,
L1, L2 = 0, L3g is the product of a degeneracy factor for the
ABAB pattern and the likelihood of that pattern resulting in a
pseudoknot.

The degeneracy of the ABAB pattern is 4s1þs2þL1þL3 ‚ out of
all patterns 42s1þ2s2þL1þL3 ‚ because of the required comple-
mentarity. For the sake of simplicity, we ignore bulge loops
in stems (which occur in �30% of structures) at this stage.

To estimate the free energy of the stems, we compose ran-
dom strings with s1 + s2 consecutive complementary base pairs
bookended with mismatch pairs, then calculate their binding
free energy using BINDIGO (27), finding:

Gstem s1 þ s2ð Þ ¼ �2:14 kcal=molð Þ s1 þ s2 � 4:88ð Þ:

For the loop entropy, we use the Gaussian approximation,
Equation (5), assuming the loops must traverse the distances
given by Equations (3) and (4). Thus,

pABAB ¼ exp f�bGstem s1 þ s2ð Þg

· pG DL1
‚L1 þ 1ð ÞpG DL3

‚L3 þ 1ð Þ‚
6
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Figure 3. The distances DL1
and DL3

across the major or minor groove as a
function of the number of bases s in the associated stem. The differences are
due to the geometries of major- and minor grooves.
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is the Boltzmann factor for ABAB-pseudoknots, with
b�1 = RT37� = 0.62 kcal/mol.

We estimate the free energy of the optimal nested fold of
an ensemble of N ¼ 2s1 þ 2s2 þ L1 þ L3 randomly selected
nucleotides using MFOLD (2), finding

pnest ¼ exp f�b �0:286 kcal=molð Þ N�17ð Þg‚ 7

for the Boltzmann factor for nested folds.
Combining the degeneracy factors and the Boltzmann

likelihoods, the probability of a pseudoknot is thus

py ¼ 1

4s1þs2

pABAB

pABAB þ pnest þ 1
: 8

The 1 in the denominator includes the Boltzmann factor for
an open polymer configuration (Gopen = 0).

To compare Equation (8) with the histograms of Figure 2,
we simply sum the other degrees of freedom. For example, to
obtain the s1 distribution, we compute

X
s2‚ L1‚ L3

py‚ 9

and analogously for the other sub-ensembles. The agreement
of theory and observation is excellent. Studying the properties
of the ensemble can reveal insights into the folding problem
that individual cases may not.

ABAB-pseudoknots form because of their low energy, with
about three-quarters of nucleotides base paired, versus about
half of bases paired in nested structures. However, because
pseudoknots require many base pairs constrained to the ABAB
pattern, they remain unlikely in sequence space.

CONCLUSIONS

Pseudoknots are rare compared with conventional nested
secondary structures but their structure gives them biological
importance. Of the pseudoknots that appear, the ABAB-
type are by far the most common. The structures of these
ABAB-pseudoknots are asymmetric. We have argued that
this asymmetry is due to structural differences between the
major and minor groove. Our simple model is consistent with
the observed asymmetry of s1 and s2. The statistical mechan-
ical theory Equation (8) provides remarkable agreement with
experiment as seen in Figure 2. This suggests that PseudoBase
is a representative sample of ABAB-pseudoknot characterist-
ics in nature and that we can now compute pseudoknot abund-
ances in aggregate. Using free energies specific to a given
sequence, we can also use the Boltzmann factors to calculate
the likelihood of forming a particular pseudoknot.

Models which ignore major/minor groove asymmetry will
predict the same free energies for an ABAB-pseudoknot and
its BABA counterpart. For example, the symmetry of the
theory in Ref. (8) arises because those authors effectively
take Hoff = 0 and f = p rad = 180�, in disagreement with
the actual A-form structural asymmetry. We predict that the
differences between loops 1 and 3 will destabilize many of the
BABA version pseudoknots due to the differences between
Equations (3) and (4), the decrease in A-minor interactions and
the increased rigidity of the major groove loop.

The rarity of more complicated folds makes comparisons
with observed distributions infeasible. Nevertheless, other
pseudoknot types like kissing hairpins can be treated
with methods similar to those presented. In addition, our
simple theory could be extended to permit the possibility of
secondary strucure within the loops (e.g. an ABACCB
structure) and to permit flexibility between the stems
when L2 > 0.

Our interest in this paper has been to estimate properties of
the ensemble of ABAB-pseudoknots and compare those with
observed pseudoknots. To study a particular pseudoknot,
values specific to its sequence should be used in place of
the general Gstem and Gnest average values given.
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