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A B S T R A C T

We introduce an approach to reconstruction of simultaneous multi-slice (SMS)-fMRI data that improves statistical efficiency. The method incorporates regularization
to adjust temporal smoothness in a spatially varying, encoding-dependent manner, reducing the g-factor noise amplification per temporal degree of freedom. This
results in a net improvement in tSNR and GLM efficiency, where the efficiency gain can be derived analytically as a function of the encoding and reconstruction
parameters. Residual slice leakage and aliasing is limited when fMRI signal energy is dominated by low frequencies. Analytical predictions, simulated and experi-
mental results demonstrate a marked improvement in statistical efficiency in the temporally regularized reconstructions compared to conventional slice-GRAPPA
reconstructions, particularly in central brain regions. Furthermore, experimental results confirm that residual slice leakage and aliasing errors are not noticeably
increased compared to slice-GRAPPA reconstruction. This approach to temporally regularized image reconstruction in SMS-fMRI improves statistical power, and
allows for explicit choice of reconstruction parameters by directly assessing their impact on noise variance per degree of freedom.
1. Introduction

Simultaneous multi-slice (SMS) imaging (Barth et al., 2016; Larkman
et al., 2001; Moeller et al., 2010) has become widely used for functional
MRI (fMRI) data acquisition, particularly since the introduction of the
controlled aliasing in parallel imaging (CAIPI) (Breuer et al., 2005)
blipped EPI acquisition (Setsompop et al., 2012). The blipped CAIPI
scheme significantly reduced noise amplification g-factor penalties
associated with the SMS unaliasing by introducing a 3D k-space sampling
pattern (Zahneisen et al., 2014; Zhu et al., 2012) that manipulates ali-
asing locations to improve conditioning of the encoding matrix.

All SMS reconstruction methods rely on knowledge of the coil sen-
sitivities (Pruessmann et al., 1999) or equivalently, the GRAPPA kernels
(Griswold et al., 2002) for reconstruction. Broadly speaking, SMS re-
constructions have employed either SENSE/GRAPPA (Blaimer et al.,
2013, 2006; Koopmans, 2017; Moeller et al., 2014), Slice-GRAPPA
(Cauley et al., 2014; Hoge et al., 2018; Setsompop et al., 2012), or con-
ventional SENSE (Zahneisen et al., 2014) formulations. In addition to coil
sensitivity information, SMS reconstruction using additional phase
(Blaimer et al., 2013) or low-rank (coil x space) (Kim and Haldar, 2015;
Park and Park, 2017) constraints have also been proposed. Some of these
methods have been specifically designed to minimize reconstruction
spatial bias (Cauley et al., 2014; Park and Park, 2017) that arises from
inter-slice leakage artefacts.

All of the above methods operate in a time-independent manner,
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reconstructing images individually. In the context of functional MRI
(fMRI), methods additionally exploiting temporal structure in the data
have been demonstrated in compressed sensing approaches, (Chavarrías
et al., 2015; Jung et al., 2007; Zong et al., 2014), or by minimizing image
differences (Li et al., 2018). Alternatively, low-rank (space x time)
methods have been proposed for use in fMRI based on the use of
low-dimensionality representations in fMRI analysis methods (Chiew
et al., 2016, 2015). While low-rank approaches do not impose any spe-
cific constraint on the representation of spatial or temporal information,
more recent low-rank plus sparse methods have also been used to addi-
tionally exploit sparsity in the temporal Fourier domain (Aggarwal et al.,
2017; Petrov et al., 2017; Singh et al., 2015; Weizman et al., 2017) which
requires smoothness or periodicity in voxel time-courses.

Here, we introduce an improvement to SMS-EPI for fMRI by intro-
ducing time-varying sampling with a spatially adaptive temporally
regularized reconstruction. Analytical expressions for reconstruction bias
and variance are presented, as well as assessment of the relative statis-
tical efficiencies of a general linear model (GLM) analysis, and temporal
SNR efficiency as a function of the image reconstruction parameters. We
exploit the low-frequency distribution of BOLD signals to ensure that the
proposed reconstruction results in comparable or lower mean squared
error than is produced by conventional SENSE or slice-GRAPPA
unaliasing, while improving statistical power. This paper demonstrates
the utility of this proposed reconstruction in simulations and experi-
ments, and provides a framework for principled analysis of temporal
, United Kingdom.
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regularization factors in fMRI by directly calculating the impact of
unaliasing reconstruction parameters on statistical efficiency.

2. Theory

2.1. Linear reconstruction

By considering SMS unaliasing to be a special case of a 3D under-
sampling problem, a general SENSE-based framework can be used for
reconstruction. The linear reconstruction problem we propose to solve is:

min
x

jj Ax� k jj 2
2 þ λ �RðxÞ [1]

where A is the linear encoding operator, which incorporates point-wise
multiplication of coil sensitivities (assumed to be whitened) and the k-
space sampling transform (which can be Cartesian or non-uniformly
sampled). If the spatio-temporal image vector x is formed by vertically
concatenating the time-series images across time-points (into a
NxNyNzNt � 1 vector, withNx;y;z corresponding to spatial dimensions x, y
and z, and Nt corresponding to the number of time-points), then A is a
block-diagonal matrix where the block corresponding to time-point t ish
FðtÞ
u S1; ⋯; FðtÞ

u Sc
iT
, with FðtÞ

u denoting the under-sampled Fourier

transform at time t, and Si is the sensitivity for the ith coil, for 1� i � c,
where c is the number of coils. In Eq. (1), k is the vectorized noisy k-space
data, R is the L2 penalty that enforces temporal smoothing, and λ is the
parameter that controls the amount of smoothing and effective temporal
resolution.

We choose R to be

RðxÞ ¼ jj rx jj 2
2 ¼ xr’rx [2]

where r is the finite difference operator acting on the time domain
(voxel-by-voxel), andr’ denotes the adjoint ofr: The L2 penalty allows
the consequence of R to be interpreted like a linear smoothing operation,
with the solution to Eq. (1) well known to be:

bx ¼ ðA’Aþ λr’rÞ�1A’k [3]

2.2. Reconstruction bias and variance

To characterize the estimator in Eq. (3), we consider the total mean
squared reconstruction error as MSE ¼ bias2 þ variance, where the bias
term represents signal misallocation error (e.g. leakage or residual ali-
asing) and the variance term related to noise amplification (g-factor). We
first reformulate Eq. (3) in terms of an equivalent, encoding dependent
smoothing operator, Sλ; that is applied following a conventional pseu-
doinverse reconstruction:

Sλ ¼ ðA’Aþ λr’rÞ�1ðA’AÞ [4]

bx ¼ SλðA’AÞ�1A’k ¼ SλAyk [5]

where Ay denotes the Moore-Penrose pseudoinverse of A. Using this
formulation, it is apparent that Sλ is spatially adaptive in that it depends
on A’A (Fessler and Rogers, 1996), unlike conventional shift-invariant
post-hoc kernel smoothing.

With a conventional unbiased pseudoinverse reconstruction,
EðAykÞ ¼ EðxÞ ¼ x, and so the bias expected from this reconstruction can
be described by:

Eðbx� xÞ¼ SλEðAykÞ � x ¼ ½Sλ � I�x [6]

The g-factor at each time-point can be derived from the square root of
the voxel-wise ratio of the variance of the estimator bx and the variance of
a fully sampled, unsmoothed reconstruction (see Eq. (A9), Appendix A):
2

gλðm; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
SλðA’AÞ�1Sλ’

�
m;t
ðA’AÞm;t

q
[7]
where here Mm;t denotes the diagonal element of any matrix M corre-
sponding to the mth voxel and tth time-point, resulting in a g-factor for
every voxel and time-point. The average g-factor for any voxel m is then
given by the root-mean-square across time (Ramb et al., 2015):

gλðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nt

X
t

ðgλðm; tÞ
�2

s
[8]

2.3. GLM efficiency

The benefit of regularization, in the context of general linear model
regression analysis can be quantified by the efficiency of the estimator
produced from the proposed reconstruction. Efficiency is inversely
related to the variance of the estimated GLM regression coefficient, and
an increase in efficiency results in increased statistical power.

A complete derivation of the relative efficiency between a regularized
and un-regularized reconstruction can be found in Appendix B, following
closely from Worsley and Friston (1995). Efficiency is a voxel-wise
measure depending on g-factor, Sλ, and the task design matrix:

eλ ¼
�
g0
gλ

�2�DOFλ

DOF0

� ðD’DÞ�1

ð~D’ ~DÞ�1 ~D
’

SλSλ’~Dð~D’ ~DÞ�1

!
[9]

where

DOFλ ¼ trm
��
I � ~Dð~D’ ~DÞ�1 ~D

’
�
SλSλ’

�
[10]

can be interpreted as an effective degrees of freedom (DOF)measure, ~D ¼
SλD is the smoothed task design matrix D, and trmð �Þ indicates that values
across time for a given voxel m are summed.

Asymptotically, when Nt is sufficiently large, λ is small, and the task
waveform is sufficiently slowly varying, Eq. (9) simplifies to an expres-
sion independent of D:

eλ �
�
g0
gλ

�2�trm�SλS’λ�
Nt

�
¼
�
g02

Nt

�, 
gλ2

trm
�
SλS’λ

�!: [11]

With λ ¼ 0 (no smoothing), trmðSλSλ’Þ ¼ Nt for all voxels, which natu-
rally leads to defining an approximate DOF expression as:

DOFλ � trmðSλSλ’Þ [12]

Then Eq. (11) can be interpreted intuitively as the ratio of the squared
g-factors (g2) normalized by their respective DOF. When regularization
reduces g-factor faster than the loss of effective DOF, efficiency and
statistical power are increased compared to the un-regularized case.
2.4. tSNR efficiency

Empirical temporal SNR (tSNR) efficiency can also be computed from
resting condition data by adjusting the voxel-wise temporal standard
deviation with the normalized DOF using the approximate form in Eq.
(12):

tSNReff ¼ meanðjxjÞ
stdðxÞ

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DOFλ=Nt

p ¼ meanðjxjÞ
stdðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
DOFλ

Nt

r
[13]

with the mean and standard deviation (std) taken across time. When
DOFλ =Nt ¼ 1, this is equivalent to conventional tSNR definitions, but
when DOFλ =Nt < 1, tSNR efficiency decreases to reflect the reduced
degrees of freedom per unit time.



Figure 1. (a) Example CAIPI sampling pattern for a MB8R2 acquisition. In this
example, the Δkz¼ 3, and Δky ¼ 2, leading to a slice-wise CAIPI shift of FOV*3/
16. (b) The sampling pattern can be shifted over time, as shown here by a Δkz/
Δt¼ 3. The time-shifting parameter Δkz/Δt does not need to be constant, and
can be pseudorandom.

M. Chiew, K.L. Miller NeuroImage 203 (2019) 116165
3. Methods

To characterize the proposed method, numerical simulations and
experiments were performed to assess the performance of the proposed
reconstruction method.

First, two sets of numerical simulations were used to separately
characterize noise and signal properties, exploiting the linearity of the
reconstruction approach:

Sim1. A “noise only” Monte Carlo simulation to estimate the spectral
response to regularization and validate the analytical g-factor, DOF
and efficiency expressions
Sim2. A “signal only” numerical simulation to assess signal bias or
leakage in the absence of any noise amplification effects

Next, four experiments were performed on healthy volunteers to
assess the reconstruction performance in vivo, using different acquisition
protocols:

Exp1. Resting fMRI with single-slice excitation and full SMS recon-
struction, which allows for the evaluation of total mean squared error
in the unexcited slices
Exp2. Resting fMRI with SMS-excitation and reconstruction, to
evaluate tSNR efficiency
Exp3. Task fMRI with SMS-excitation and reconstruction, to evaluate
GLM statistical efficiency
Exp4. Resting fMRI with SMS-excitation and reconstruction, to
evaluate tSNR efficiency in thinner slices, comparing protocols with
fixed TRvol
3.1. CAIPI sampling

The k-space sampling schemes explored in this work can be charac-
terized by 3 parameters:

Δkz =Δky: defines the conventional within-shot CAIPI sampling
pattern, corresponding to the z-gradient blips that control the FOV
shift between simultaneously acquired slices
Δkz =Δt: defines the between-shot shift of the sampling pattern in the
kz direction, which corresponds to a changing phase relationship
between simultaneously acquired slices
Δky =Δt: defines the between-shot shift of the sampling pattern in the
ky direction, which is only non-zero if in-plane acceleration is used

Fig. 1 illustrates a Δkz =Δky ¼ 3=2, Δkz =Δt ¼ 3, and Δky =Δt ¼ 0
sampling pattern. For SMS acquisitions with conventional CAIPI sam-
pling, Δkz =Δt ¼ 0, which means the sampling pattern is identical from
shot-to-shot. Here, by introducing sampling patterns where Δkz =Δt and
Δky =Δt are non-zero, the sampling pattern (defined by Δkz =Δky) is
shifted in k-space from shot-to-shot. Although these parameters can also
vary with time, in this work, we focus mainly on acquisitions with con-
stant sampling parameters, so that the relative shift from any shot to the
next does not change.

One advantage of designing the sampling scheme with constant shift
parameters (i.e. regular shifts across time) is that this results in g-factors
that are also constant across time, simplifying analysis and ensuring a
stationary noise model for the entire time-series reconstruction. Intui-
tively, this results from the property that any width sampling window
centered on any given time-point will have sampling patterns that are
identical, to within a shift, and that g-factors are invariant to shifts in k-
space.

3.2. Numerical simulations

To form a basis for both sets of numerical simulations, a single-band
3

reference dataset was acquired on a cylindrical phantom using a 64-chan-
nel head and neck coil. This reference data was used to provide realistic
coil sensitivities and noise covariance, and to define the geometry of the
image for the signal modelled in Sim2. Both Sim1 and Sim2 simulated the
same MB¼ 8 acquisition with no in-plane acceleration, and 256 time-
points using 16 compressed virtual coils using the geometric coil
compression scheme (Zhang et al., 2013).

3.2.1. Simulation 1 (Sim1)
In Sim1, Monte Carlo simulations were performed using Gaussian

white additive noise across 1000 different complex noise realizations. To
compare the proposed reconstructions against post-hoc smoothing, linear
smoothing operators Sκ ¼ ðI þ κr’rÞ�1 were constructed, with κ chosen
empirically to match effective DOF with Sλ using Eq. (10), across a range
of λ spanning 10�5 to 102, and (Δkz =Δky ¼ 3; Δkz=Δt ¼ 2) sampling.
Three different GLM design regressors were initially used to evaluate
DOF and efficiency: (i) 5-period block design, (ii) fast event-related
design, (iii) white noise regressor (see Supporting Fig. S1).

3.2.2. Simulation 2 (Sim2)
In Sim2, inter-slice leakage was examined by simulating reconstruction

of a noise-free dataset with a voxel-wise random signal, repeated 10 times.
A 1/f characteristic of BOLD fMRI data (Zarahn et al., 1997) was used to
provide a low-frequency signal model for assessing leakage bias, because
residual bias is signal-dependent (Eq. (6)) in the proposed reconstruction.
To characterize leakage, in this simulation only slice 5 contained signal,
such that any reconstructed signal in the other 7 slices would have to come
from signal leakage. A range of different λ (from 0 to 10�2) and sampling
patterns (Δkz =Δky ¼ 3; Δkz=Δt ¼ 0; 1; 2; 3) were explored, with effi-
ciencies calculated using the event-related regressor only.
3.3. In vivo experiments

Four total subjects were scanned on a 3 T system (Prisma, Siemens
Healthineers) using a 64-channel head and neck coil with informed
consent in accordance with local ethics. Acquisition parameters common
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to experiments 1–3 were: 2 mm isotropic resolution, 64 slices, flip
angle¼ 40�, phase encoding direction¼AP, bandwidth¼ 2368Hz/px.
For the “MB8R1” protocols (Δkz =Δky ¼ 5 and Δkz =Δt ¼ 2Þ, sets of 8
slices were acquired simultaneously, with no in-plane acceleration, with
TE¼ 38ms and TRvol¼ 680ms. For the “MB8R2” protocols (Δkz =Δky ¼
5/2, Δkz =Δt ¼ 3, Δky =Δt ¼ 1), sets of 8 slices were acquired simul-
taneously, with R¼ 2 in-plane, with TE¼ 30ms and TRvol¼ 520ms. MB
excitation pulses were designed to minimize peak power using optimized
phase schedules (Wong, 2012). Sensitivity maps were estimated using
the ESPIRiT method (Uecker et al., 2014), from a separate single-band
reference acquisition, and the same reference data was used to train
slice GRAPPA kernels. All data were compressed down to 24 virtual
channels after whitening with the coil noise covariance.

3.3.1. Experiment 1 (Exp1)
In Exp1, one subject was scanned using the MB8R1 and MB8R2

protocols in a resting condition, except the MB excitations were replaced
by single slice excitations, of slice 5 only. This data was reconstructed
using the full SMS reconstruction to recover 8 imaging slices (without
using any knowledge that the other 7 slices are unexcited). This allowed
for an assessment of total mean squared error (bias2 þ noise variance) in
the unexcited slices. One minute of data for each (96 and 128 time-points
for MB8R1 and MB8R2 respectively) were acquired.

3.3.2. Experiment 2 (Exp2)
In Exp2, one subject was scanned using the same MB8R1 and MB8R2

protocols as in Exp1, but with full MB¼ 8 excitations. One minute of data
for each (96 and 128 time-points for MB8R1 and MB8R2 respectively)
were acquired, which was used to estimate voxel-wise maps of resting
tSNR efficiency.
Fig. 2. (a) Average spectra from a representative voxel (voxel 1) showing unregula
constructions. DOF-matching post-hoc kernel smoothing reconstructions are shown
showing different behavior (blue, orange, yellow lines) are shown alongside cor
Approximate DOF =Nt plots. (c) g-factor. (d–f) Exact GLM efficiency combining inform
left) corresponding to (d) block design, (e) event-related design and (f) white noise
black, overlapping with voxel 3.

4

3.3.3. Experiment 3 (Exp3)
In Exp3, two subjects were scanned in a 5min, 30 s off/on block

design visual task experiment. One subject using the MB8R1 protocol
(440 time-points), and a second subject using the MB8R2 protocol (576
time-points). The functional data were analyzed using FSL FEAT, with
pre-whitening for noise auto-correlations (Woolrich et al., 2001).

3.3.4. Experiment 4 (Exp4)
In Exp4, to evaluate reconstruction performance in fixed-TR (and

fixed temporal auto-correlation) conditions, one subject was scanned in
two whole-brain, 1-min resting state acquisitions to assess tSNR effi-
ciency. A “MB8 - 50% gap” protocol with 8 sets of 8 simultaneous (64
total) slices, with Δkz =Δky ¼ 5 and Δkz =Δt ¼ 2, and a “MB12 - no gap”
protocol with 8 sets of 12 simultaneous (96 total) slices, with
Δkz =Δky ¼ 5 and Δkz =Δt ¼ 3. The acquisitions used a slice thickness of
1.5 mm, which reduces through-plane dephasing and increases the
thermal noise dominance. In both cases, coverage in the superior-inferior
direction extended 144mm, but in the “MB8 - 50% gap” acquisition, a
slice gap of 50% (0.75mm) was used to maintain a fixed TRvol¼ 712m s.
Additional parameters for these acquisitions were: TE¼ 39ms (no in-
plane acceleration) and bandwidth¼ 2480Hz/px.
3.4. SMS-reconstruction

Eq. (4) was solved iteratively using a conjugate gradient algorithm
implemented in MATLAB, using a tolerance of 10�4 and a maximum
number of iterations of 200. Reconstruction times depend on the data
and λ, but typically ranged between 30min and 2 h for a
96� 96� 8� 256 slice group on a 32-core AMD Opteron computer. The
g-factor and efficiency expressions were evaluated directly, by
rized (thin blue), λ¼ 1� 10�3 (dotted blue), and λ¼ 1� 10�2 (thick blue) re-
in black dotted and thick lines respectively. (b–f) Analytical plots for 3 voxels
responding Monte Carlo estimates (blue, orange, yellow dots), versus λ (b)
ation from DOF and g-factors, calculated using regressors (shown in the bottom
respectively. DOF-matched post-hoc smoothing efficiency is plotted in dashed
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partitioning the matrix inversions into smaller independent subproblems
by exploiting the independence of each x-location (along the fully-
sampled readout direction) and the coherent aliasing patterns when
possible. Reconstruction code for the proposed method can be found at
https://users.fmrib.ox.ac.uk/~mchiew/research. The in vivo data were
compared with conventional slice-GRAPPA reconstructions using a
MATLAB implementation of the CMRR-SMS (Center for Magnetic Reso-
nance Research, University of Minnesota) reconstruction with the Leak-
Block option set. All data were magnitude transformed following image
reconstruction, which constitutes a non-linear operation on the data and
alters the noise distribution, but this effect should be negligible when
tSNR >2 (Gudbjartsson and Patz, 1995).

4. Results

The results of Sim1 are plotted in Fig. 2. In Fig. 2a, noise spectra are
plotted, normalized to the unregularized spectrum, for λ¼ 0; 1� 10�3

and 1� 10�2 reconstructions, and DOF-matching post-hoc smoothing
κ ¼ ð2:89 � 10�2;1:66 � 10�1Þ. As total noise is the sum of squares in
either the temporal or frequency domain, it is apparent that the regu-
larized reconstructions result in less noise compared to post-hoc
smoothing with the same effective DOF (blue and black lines having
similar spectral profiles, but with the blue lines having lower amplitude
than the corresponding black lines). As λ or κ increases, the effective DOF
decreases and the coloring of the noise spectrum is more pronounced as
higher frequency content is suppressed. Additional plots of
Figure 3. (a) Single slice phantom signal simulation (Sim2). Green and red marker
square error across time, quantifying spatial leakage bias, with (c) g-factor (d) norm
voxel time-courses for a central and peripheral voxel respectively. The DOF =Nt valu
whereas the DOF =Nt values are 1.00, 0.97, 0.86, 0.76 for the peripheral voxel. Arro

5

reconstruction noise spectra as a function of λ can be found in Supporting
Fig. S2. Fig. 2b and c plot the variation in approximate DOF (Eq. (12))
and g-factor (Eq. (8)) respectively against λ, showing the expected
decrease with increasing regularization across the three voxels (selected
to reflect a range of behavior). Voxels 1 and 2 show high and moderate g-
factor voxels respectively, while voxel 3 does not alias onto any other
voxel, with a g-factor of 1.

The relative efficiency metrics (Eq. (9)) in Fig. 2d–f, which reflect the
ratio of the squared g-factors to the DOF, show that while a net benefit
(eλ > 1Þ is observed in the linear smoothing reconstructions for any voxel
that has a g0 > 1, there is no gain in efficiency for any voxel that does not
alias onto another voxel, where g0 ¼ 1. Post-hoc smoothing (black
dashed line) shows the same efficiency curve as voxel 3, indicating that
no efficiency gain is realized. In all cases with an efficiency benefit, eλ
increases with λ, to a maximum in this case near λ ¼ 10�1. As λ gets too
large, the loss of DOF in the regression begins to outweigh the reduced g-
factors, and statistical power decreases. The efficiency curves for each
regressor are unique due to the dependence of DOF on the design matrix.
However, they all show very similar characteristics for low values of λ.
They exhibit fairly broad peaks in a logarithmic scale, indicating that
near-optimal gains are easily achieved within an order of magnitude of
the maxima.

The single-slice digital phantom (Sim2) is shown in Fig. 3a. To assess
residual leakage and aliasing, the normalized root mean square error
(NRMSE) across time was computed across varying λ in Fig. 3b, by
comparing the reconstructed output to the input signal. While an
s denote central and peripheral voxels used in (f,g). (b) Normalized root-mean-
alized degrees of freedom (DOF =Nt) (e) GLM relative efficiency. (f,g) Example
es are 1.00, 0.81, 0.54, 0.45 as λ increases from 0 to 10�2 in the central voxel,
ws in (f) denote regions where temporal smoothing is evident.

https://users.fmrib.ox.ac.uk/%7emchiew/research


M. Chiew, K.L. Miller NeuroImage 203 (2019) 116165
unbiased reconstruction (λ ¼ 0) is zero everywhere, with increasing λ,
increased intra-slice error and slice leakage is observed. The 95th per-
centiles for the NRMSE values in each case were: ðλ ¼ 0; NRMSE ¼ 0Þ,
ð1 � 10�3;0:006Þ, ð5 � 10�3; 0:020Þ, and ð1�10�2; 0:029Þ respectively.
In Fig. 3c–e, g-factors, DOF =Nt , and efficiency are shown. The voxel-wise
maps show that the greatest efficiency increases are in regions with the
highest unregularized g-factors, which can be seen when comparing row
1 of Fig. 3c with row 4 of Fig. 3e. Fig. 3f plots a representative central
voxel time-series from the digital phantom showing increasing temporal
smoothness in the time-courses as λ increases. In contrast, Fig. 3g plots
time-series from a representative peripheral voxel, which shows very
little apparent smoothing.

In Fig. 4, the effect of different sampling patterns (at λ ¼ 5� 10�3) is
shown against fixed, time-independent sampling Δkz =Δt ¼ 0, and
sampling with shifts of 1, 2, or 3 in the kz direction. Fig. 4a shows that
while residual bias and slice leakage is strongly dependent on λ; it is not
noticeably different across different Δkz =Δt sampling shifts. This is
related to the fact that the aliasing pattern (FOV shift) does not change
when the entire sampling pattern is shifted across time (Δkz =Δt > 0). A
reduction in g-factors (Fig. 4b) with time-varying sampling is shown,
without much difference in DOF =Nt (Fig. 4c). The net effect on efficiency
(Fig. 4d), however, particularly in the (Δkz =Δt ¼ 1; 2) cases, is a result of
lower g-factors while retaining the same degrees of freedom. Despite the
clear benefit of time-varying sampling, the top row of Fig. 4d shows that
there is still a small efficiency gain with time-independent sampling.

Single-band excitation in vivo data from Exp1 were reconstructed
using the full SMS pipeline for a single subject using the MB8R1 protocol
is shown in Fig. 5. Ideally, these data should only signal in the excited
slice, although in practice both noise (amplified by g-factors) and slice
leakage bias will contribute to the NRMSE in the un-excited slices. This
data was also reconstructed using conventional single-slice methods
(without the slice unaliasing step), to use as a reference for the NRMSE
calculation, and to normalize the NRMSE values. Note that the masking
of the coil-sensitivities here produces a brain-like outline in the non-
excited slices. The errors are notably smoother in the slice GRAPPA
reconstruction outside the target slice, with the regularized re-
constructions showing lower overall NRMSE, outside of some high
NRMSE edge or boundary features in the λ¼ 1� 10�3 reconstruction.
Fig. 4. Digital phantom characteristics with different temporal sampling patterns. (
relative efficiency.

6

The errors are visibly noise (g-factor) dominated in the slice GRAPPA
(row 1) and λ¼ 1� 10�3 (row 2) reconstructions, and even in the highest
regularization reconstruction at λ¼ 1� 10�2 (row 3), little visible ali-
asing of the excited slice 5 is apparent in any of the other slice locations.

The results of the tSNR efficiency experiments (Exp2) are shown in
Figs. 6 and 7. Fig. 6a shows representative images from the fully excited
MB8R1 protocol, across the slice GRAPPA and regularized re-
constructions. The tSNR efficiency (Fig. 6b) is slightly improved in cen-
tral brain areas for the regularized (λ¼ 1�10�2Þ reconstruction, which is
highlighted by the positive values in the ΔtSNR efficiency maps relative
to slice GRAPPA. However, some regions do show reduced tSNR effi-
ciency, particularly noticeable in regions with unaliasing errors, high-
lighted by the arrows in the example images and tSNR efficiency maps.

Similar results for the MB8R2 protocol are plotted in Fig. 7a and b,
illustrating that the slice GRAPPA reconstruction struggles to robustly
unalias the SMS data at this acceleration. However, the temporally
regularized reconstructions (λ¼ 1�10�3; 1�10�1; Þ result in better
images and higher tSNR efficiencies. In both the MB8R1 and MB8R2
regularized reconstructions, sharp boundaries and narrow regions of
tSNR efficiency loss can be observed in the tSNR efficiency maps, further
highlighting the dependence of the reconstruction on high fidelity
sensitivity estimates. To characterize the specific tSNR efficiency benefit
in the central brain areas that often suffer most from g-factor penalties,
masks were drawn over the deep gray nuclei including the basal ganglia
and thalamus (see mask in Supporting Fig. S3) for the MB8R2 data. The
mean	 standard deviation of the tSNR efficiency in this mask for the
various reconstructions were, slice GRAPPA: 2.74	 0.31, λ ¼ 1� 10�3:
4.56	 1.03, and λ ¼ 1� 10�2: 9.02	 2.42.

A comparison of the impact of slower acquisition schemes on tSNR
efficiency is shown in Fig. 8, computed analytically using the MB8R2
protocol and the coil sensitivities measured from the subject in Fig. 7.
Two “slow” acquisitions were simulated to determine whether the
reduction in expected noise variance due to the slower acquisition will
compensate for the corresponding reduction in temporal degrees of
freedom: (i) an effective MB8R1 acquisition by binning multiple
consecutive shots together, and (ii) reducing the number of simultaneous
slices down to 4 for a MB4R2 acquisition. Both of these methods halve
a) bias or residual aliasing and slice leakage (b) g-factor, (c) DOF =Nt , (d) GLM



Fig. 6. Representative single time-point
reconstructed images (a) and tSNR effi-
ciencies (b) for the MB8R1 protocol. The
top rows shows the slice GRAPPA
reconstruction, followed by the
(λ¼ 1�10�3Þ and (λ¼ 1�10�2Þ regu-
larized reconstructions. The tSNR effi-
ciencies in the bottom 2 rows of (b) are
shown as ΔtSNR efficiencies relative to
slice GRAPPA. The arrows denote re-
gions where unaliasing errors are
apparent, and the corresponding regions
in the tSNR efficiency maps. (c) shows
histograms of the tSNR efficiency for
each dataset.

Fig. 5. Results from Exp1 showing the NRMSE computed from an SMS reconstruction of single-band excitations of slice 5, using the (a) MB8R1 and (b) MB8R2
acquisition schemes. The NRMSE values are normalized to the average RMS signal in the excited slice.

M. Chiew, K.L. Miller NeuroImage 203 (2019) 116165

7



M. Chiew, K.L. Miller NeuroImage 203 (2019) 116165
the effective number of time points (and temporal DOF) in the acquisi-
tion, and are compared to the MB8R2 protocol with λ¼ 1� 10�2 regu-
larization. To ensure a fair comparison, the MB8R1 efficiency map was
multiplied by a factor of 2 to account for the increased sampling, and the
MB4R1 efficiency map was increased by a factor of 1.96 to account for
higher steady-state signal magnitude with the longer TR (assuming
TR¼ 480 and 960ms for the MB8R2 and MB4R2 respectively, and
T1¼ 1600ms). The results indicate that at comparable effective DOF of
approximately 50% relative to the unregularized MB8R2 acquisition in
all cases, the λ¼ 1� 10�2 MB8R2 reconstruction produces considerably
higher efficiency in the central part of the FOV, while performing simi-
larly in the periphery.

The output of GLM analyses on the visual task block-design experi-
ments (Exp3) are shown in Figs. 9 and 10. In Fig. 9, a MB8R1 dataset is
shown for slice GRAPPA and a λ¼ 1� 10�2 regularized reconstructions.
At this under-sampling factor, the slice GRAPPA reconstruction is quite
robust, and there is little difference in the z-stat maps between the two
reconstructions. A scatterplot of the z-statistics in Fig. 9e, however, do
reveal a small improvement in z-statistics for the proposed reconstruction
over slice GRAPPA, reflecting the increased statistical efficiency.

In Fig. 10, a MB8R2 dataset is shown for slice GRAPPA, λ ¼ 1� 10�3,
λ ¼ 1� 10�2, and post-hoc smoothing reconstructions. Here, the un-
derlying images highlight the apparent tSNR difference expected be-
tween the slice GRAPPA and regularized reconstructions, and no residual
aliasing is apparent in the images or in the z-statistic maps in any of the
Fig. 7. Representative single time-point reconstructed images (a) and tSNR efficien
reconstruction, followed by the λ¼ 1� 10�3 and 1� 10�2 reconstructions. (c) show

8

reconstructions. While apparent false positives are similar across re-
constructions, the regularized reconstructions show much higher sensi-
tivity in the expected primary visual areas. The post-hoc smoothing used
a kernel width parameter (κ¼ 2:5�10�1Þ chosen to match the average
DOF from the λ¼ 1� 10�2 reconstruction. Although the underlying
image does appear less noisy, as predicted, no apparent statistical benefit
is observed with post-hoc smoothing because the variance per DOF is
unchanged. Fig. 10c shows example time-courses from a high z-stat voxel
across reconstructions, showing the effect of the reconstruction param-
eters on temporal fidelity. In Fig. 10d, the power spectra corresponding
to these time-courses are shown, with the relatively flat slice GRAPPA
spectrum highlighting the fact that these data are dominated by g-factor
noise amplification. Furthermore, we see the effect of smoothing as a
coloring of the spectra, along with some temporal artefacts (red circles)
resulting from the time-varying sampling.

Results from Exp4 are shown in Fig. 11, highlighting both recon-
structed magnitude images at a representative time-point, and tSNR ef-
ficiency maps. The results of the slice GRAPPA and λ¼ 1� 10�2

reconstructions are comparable in the “MB8 - 50% gap” protocol,
consistent with the MB8R1 results from the previous experiments, even
at a reduced slice thickness. However, in the “MB12 - no gap” protocol,
the increased reconstruction burden leads to considerable noise ampli-
fication in the slice GRAPPA acquisition, which is improved in the
λ¼ 1� 10�2 reconstruction, resulting in higher tSNR efficiency, partic-
ularly in central brain and cerebellar regions.
cy (b) for the resting MB8R2 protocol. The top row shows the slice GRAPPA
s histograms of the tSNR efficiency for each dataset.



Fig. 8. Comparison of g-factors (a–c), normalized
DOF (d–f), and relative efficiency (g–i) of 3 different
acquisition schemes compared to an unregularized
MB8R2 acquisition in a single representative slice.
The left column (a,d,g) shows an effective MB8R1
acquisition formed by combining consecutive time-
points of the MB8R2 acquisition. The middle col-
umn (b,e,h) shows a MB4R2 acquisition that reduces
the number of simultaneous slices acquired by half.
In both the MB8R1 and MB4R2 cases, the efficiencies
have been adjusted to account for the increased
sampling or T1 recovery due to the longer volume
TR. These are compared to a MB8R2 reconstruction
with regularization parameter λ¼ 1� 10�2 in the
right column (c,f,i).

Fig. 9. Visual task fMRI dataset using MB8R1 protocol. (a,b) Axial and sagittal z-statistic maps (jzj 
 5Þ overlaid on an example image reconstructed using slice
GRAPPA. (c,d) Corresponding slices to (a,b) from λ¼ 1� 10�2 regularized SENSE reconstruction. (e) z-statistic scatterplot of all voxels in the λ¼ 1� 10�2 recon-
struction against the slice GRAPPA, with the line of identity in orange. Points above the line indicate higher z-statistics in the λ¼ 1� 10�2 reconstruction compared to
slice GRAPPA.
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5. Discussion

Reconstruction of SMS fMRI data has predominantly been performed
using time independent, volume-by-volume reconstructions based on
SENSE or GRAPPA-based equivalents. Here, we propose the use of reg-
ularization that modulates temporal smoothness in a spatially adaptive
9

manner, to reduce variance (g-factor) by sacrificing temporal degrees of
freedom in a way that has a net statistical benefit. Unregularized SENSE
reconstructions are unbiased (no leakage) and contrast independent,
contingent on the fidelity of the sensitivity estimates. Slice GRAPPA
approaches, with limited kernel sizes and dependence on signal contrast
changes, trade robustness for residual intra- and inter-slice artefact,



Fig. 10. Visual task fMRI dataset using
the MB8R2 protocol. (a,b) Sagittal and
axial z-statistic maps (jzj 
 3Þ overlaid
on example image reconstructed images.
From left to right, each column repre-
sents slice GRAPPA, λ¼ 1� 10�3 and
λ¼ 1� 10�2 regularized re-
constructions, and κ¼ 2:5� 10�1 post-
hoc smoothed reconstructions. (c)
Example time-courses from a single high
z-stat voxel, across all reconstructions.
(d) Example log power spectra from the
same voxel, highlighting the noise col-
oring resulting from the regularization
and post-hoc smoothing. Red circles
denote spikes related to the residual bias
and the spatio-temporal point spread
function.

Figure 11. Results of Exp4. (a–d) Data
from the “MB8 - 50% gap” protocol, and
(e–h) data from the “MB12 - no gap”
protocol. Within each dataset, the slice
GRAPPA reconstruction is shown on the
left column, and the regularized recon-
struction with λ¼ 1� 10�2 on the right.
The top row (a,b,e,f) shows example
magnitude images at a single recon-
structed time-point, indicating the full-
brain and cerebellar coverage. The bot-
tom row (c,d,g,h) shows the tSNR effi-
ciency maps - note the colour scale
difference in (c,d) compared to (g,h).
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effectively allowing for small amounts of bias in the reconstructions to
produce better overall images with potentially lower mean squared error.
The proposed reconstruction makes a similar trade-off, relying on the
low-frequency nature of BOLD signals to ensure that temporal regulari-
zation results in comparable or less mean squared error than is produced
by conventional slice-GRAPPA unaliasing, while improving statistical
efficiency.

One advantage of GRAPPA-based approaches, however, is that
explicit estimation of coil sensitivities is not required which makes them
more robust to any inconsistencies in the calibration data. In contrast,
SENSE based approaches to slice unaliasing depend more strongly on the
quality of the estimated sensitivity maps (Zahneisen et al., 2014).
Additionally, as can be seen in the tSNR efficiency results, slice GRAPPA
10
produces smoother g-factor noise amplification and therefore smoother
tSNR efficiencymaps, whereas sharp boundaries or discontinuities can be
seen in the proposed SENSE-based reconstructions. These boundaries are
due in part to the sharp boundaries in the g-factor and effective DOF
maps, characteristic of SENSE reconstructions. Sensitivity
mis-estimation, or motion-induced effects, particularly near head
boundaries or in regions such as the eyes, can also contribute to localized
discontinuities in the tSNR efficiency maps. Increased regularization
factors in the proposed method reduce these apparent discontinuities, as
the temporal smoothing constraint contributes more to the reconstruc-
tion than the sensitivity-encoded data consistency term.

A natural question is whether there is any advantage to acquiring data
at higher acceleration factors and temporally smoothing in
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reconstruction compared to acquisition at intrinsically lower temporal
resolution. As we have shown, choosing to reduce DOF by the adaptive
smoothing reconstruction does result in higher efficiency than slower
acquisition strategies, which reduce DOF uniformly across the volume by
taking more time to sample each volume. Although the proposed method
results in images with spatially varying DOF, voxel-wise variation in ef-
ficiency is already commonplace using conventional parallel imaging due
to spatially varying g-factors. Other advantages of acquiring data at
higher acceleration factors include reduced intra-volume motion,
potentially better contrast, and reduced physiological noise aliasing
when slower acquisitions do not sufficiently sample cardiac frequencies.

Spatially varying smoothing is also possible using voxel-wise post-hoc
kernel smoothing of varying kernel widths. However, we have shown
that post-hoc smoothing with an encoding independent kernel can only
reduce the efficiency (Liu and Frank, 2004; Smith et al., 2007). The
proposed smoothing regularized reconstruction, in contrast, depends on
the encoding (i.e. the k-space sampling pattern and coil sensitivities), and
reduces noise variance beyond what would be expected from the spectral
filtering effect alone. By shifting the noise spectra down, there is a net
reduction in variance per degree of freedom, and therefore a benefit to
statistical inference. The efficiency measure presented here generalizes
the tSNR efficiency commonly used to assess fMRI time-series fidelity, by
accounting for the effective degrees of freedom, rather than acquisition
time.

The method described in this paper is not specific to SMS-EPI,
although we chose to focus on it in the scope of this work due to its
popularity for fMRI data acquisition, and the simplicity of the sampling
modifications required. The proposed reconstruction framework does not
depend on any specific features of SMS acquisition, and will benefit any
2D or 3D acquisition strategy that can support time-varying sampling
schemes. Although time-varying sampling is not a requirement of the
method, efficiency gains are significantly greater when time-varying
sampling is employed. This is analogous to FOV shifting in conven-
tional CAIPI, by optimizing the sampling scheme to with respect to the
reconstruction constraints. In this case, time-varying k-space samples
provide more information when the smoothness constraint effectively
shares sampling information across time. As we have also shown, the
sampling pattern does not need to have a fixed shift across time, although
regular sampling does result in the highest efficiency gains. With a fixed
shift across time, where Δkz =Δt is constant, the g-factors are time-
independent. In the case of more general sampling patterns, as with
the pseudorandom sampling, the conditioning of the inverse problem
associated with any given time-point is dependent on the sampling of its
neighbors, resulting in time-dependent g-factors that can be used to
assess the impact of noise amplification on individual time-points.

The smoothing parameter λ can be selected using a number of
different criteria: an upper limit on the amount of spatial leakage given
some signal model, minimizing mean-squared error, maximum effi-
ciency, or a lower limit on the retained DOF. The benefit of the latter two
choices is that they are signal independent, although the trade-off be-
tween bias and variance in the reconstruction does require a signal model
to fully characterize. Simulations showed that while the peak efficiency
points can occur at relatively high regularization factors (e.g. λ ¼ 1�
10�1), smaller regularization factors (e.g. λ ¼ 1� 10�2) can still provide
11
considerable efficiency gains without noticeable bias. The spatio-
temporal characteristics of the residual bias depend in part on the k-
space sampling scheme, and can be modulated by changing the temporal
sampling shifts to produce less temporally coherent residual aliasing,
although this can cause issues with data analysis due to non-stationary
noise resulting from the time-varying g-factors.

While the assumption of low-frequency signal content was used to
justify the use of the temporal regularization by reducing the impact of
signal leakage, the efficiency gain only describes the effects on the re-
sidual white Gaussian thermal noise, and does not account for noise
autocorrelations or physiological noise. While consideration of a more
comprehensive fMRI noise model would providemore accurate statistical
efficiency modelling, e.g. by including spatio-temporal noise character-
istics of sub-second TR acquisitions (Bollmann et al., 2018), they would
substantially increase noise model complexity. The presence of other
noise sources diminishes the impact of the efficiency gains calculated
here, although in g-factor limited regimes where the noise is thermally
dominated, the assumed thermal noise model is asymptotically correct.
Furthermore in Exp4, data acquired at higher spatial resolution across
slice acceleration factors demonstrated the benefit of the proposed
reconstruction under conditions with controlled temporal autocorrela-
tion (fixed volume TR). However, incorporating more sophisticated noise
modelling and better informed constraints for the regularized time-series
image reconstruction, as well as interactions between regularization
factors and acquisition parameters such as volume TR would be a natural
extension of this work.

In this work, we focus on statistical efficiency (reducing noise vari-
ance per degree of freedom) as the primary metric of reconstruction
quality, rather than optimizing directly for minimizing noise or maxi-
mizing SNR. We explicitly construct the efficiency metric expression by
an end-to-end consideration of the fMRI dataset, from noisy multi-coil k-
space to the variance of the GLM estimator and the tSNR efficiency,
which is possible due to the linear reconstruction and analysis frame-
work. While we do not directly optimize for other fMRI analysis methods,
such as independent component or seed-correlation analysis for resting
state fMRI, reduced noise variance per DOF should also be beneficial,
although this has not yet been evaluated.

6. Conclusion

A linear reconstruction method for SMS-EPI fMRI data has been
developed based on temporal smoothing regularization in a spatially
adaptive, encoding-dependent way. This reduces noise for improved
statistical power and efficiency compared to conventional slice-GRAPPA
reconstructions.
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Appendix A

The reconstruction is a linear transform of the measured k-space and a noise term:

bx ¼ ðA’Aþ λr’rÞ�1A’ðkþ nÞ [A1]

The noise model we assume is zero-mean, Gaussian white noise, with n ¼ Nð0;σÞ, and we further assume that the noise has been whitened using the
coil noise covariance, so that:

E½nn’� ¼ σ2I [A2]
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The mean or expectation of the estimate is (because the noise is zero mean):

x ¼ E½bx� ¼ ðA’Aþ λr’rÞ�1A’k [A3]

and the mean-subtracted estimate is a function of the noise:

ðbx � xÞ ¼ ðA’Aþ λr’rÞ�1A’n [A4]

We calculate the g-factor from the voxel-wise variance of the linear estimator:

VarðbxÞ¼E½ðbx � xÞðbx � xÞ’� ¼ E
�ðA’Aþ λr’rÞ�1A’nn’AðA’Aþ λr’rÞ�1� [A5]

Since the noise term is the only stochastic part of this expression:

VarðbxÞ ¼ ðA’Aþ λr’rÞ�1A’
�
σ2I
�
AðA’Aþ λr’rÞ�1 [A6]

The square root of the entries along the diagonal of VarðbxÞ reflect the standard deviation of the noise expected in each voxel. The g-factor is
calculated as the ratio of this standard deviation with the standard deviation expected from a fully-sampled acquisition. Since the fully-sampled, un-
regularized variance in each voxel m is σ2 =ðA’AÞm;t , the ratio then becomes:

gλðm; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
�ðA’Aþ λr’rÞ�1A’AðA’Aþ λr’rÞ�1�

m;t
σ2

ðA’AÞm;t

vuut [A7]

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
ðA’Aþ λr’rÞ�1A’AðA’Aþ λr’rÞ�1



m;t
ðA’AÞm;t

r
[A8]

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
SλðA’AÞ�1Sλ’

�
m;t
ðA’AÞm;t

q
[A9]

where Sλ ¼ ðA’Aþ λr’rÞ�1A’A, and Xm;t denotes the diagonal element of X corresponding to the mth voxel and tth time-point.
For the operator r’r: if the data matrix X were vectorized with each voxel’s time-course vertically concatenated, r’r would be a block diagonal

matrix where each block is a matrix with mostly 2 on the diagonals, and �1 on the neighboring off-diagonals. An example r’r diagonal block for a 5-
time point input is given as:

r’r ¼

0BBBB@
1 �1 0 0 0
�1 2 �1 0 0
0 �1 2 �1 0
0 0 �1 2 �1
0 0 0 �1 1

1CCCCA [A10]

We definer using non-circular boundary conditions (i.e. only finite differences between neighboring points were taken, not including the difference
between the first and last time-points). In practice, this matrix was not constructed, but the action of r’r on X was implemented by subtracting
temporally shifted versions of X to a scaled version of itself, using MATLAB’s circshift function (and taking care of the boundary conditions
appropriately).

Appendix B

In the context of a univariate GLM analysis, a regression coefficient bβ can be expressed as a function of Sλ as:

bβ ¼
�
~D’ ~D

��1

~D’Sλx̂ [B1]

where ~D ¼ SλD is the smoothed design matrix, assumed to be a single column. More complex contrasts can be accommodated without any loss of
generality by a simple transformation (Smith et al., 2007).

From Worsley and Friston (1995), the variance of the regression coefficient bβ is:

varðbβÞ ¼ ε2ð~D’ ~DÞ�1 ~D’SλSλ’~Dð~D’ ~DÞ�1 [B2]

with

ε2 ¼ g2σ2

DOF
[B3]

and
12
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DOF ¼ trm
��
I � ~Dð~D’ ~DÞ�1 ~D

’
�
SλSλ’

�
[B4]
with trmð �Þ used to indicate that values across time for a given voxel m are summed. In Eq. (B3), we make use of the fact that following reconstruction,
the noise variance is amplified by the square of the g-factor. Note that in Worsley et al., the design matrix and smoothing operators are denoted by G and
K respectively.

Then benefit of regularization, in the context of the GLM, can be quantified by the relative efficiency of the estimator, where a more efficient
estimator has increased sensitivity and statistical power. It is defined by the ratio of the variances of the estimators in the unregularized (λ ¼ 0) and
regularized cases:

eλ ¼ varðbβ0Þ
varðbβλÞ

¼
�
g0
gλ

�2trm
��
I � ~Dð~D’ ~DÞ�1 ~D

’
�
SλSλ’

�
trm
��
I � DðD’DÞ�1D’

�� ðD’DÞ�1

ð~D’ ~DÞ�1 ~D
’

SλSλ’~Dð~D’ ~DÞ�1
[B5]

which dictates whether the decrease in noise amplification outpaces the loss in effective DOF. When eλ > 1, a net benefit in GLM efficiency is observed.

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuroimage.2019.116165.
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