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Abstract

Background: The fronto-striatal circuits are the common neurobiological basis for neuropsychiatric disorders, including 
schizophrenia, Parkinson’s disease, Huntington’s disease, attention deficit hyperactivity disorder, obsessive-compulsive disorder, 
and Tourette’s syndrome. Fronto-striatal circuits consist of motor circuits, associative circuits, and limbic circuits. All circuits 
share 2 common features. First, all fronto-striatal circuits consist of hyper direct, direct, and indirect pathways. Second, all 
fronto-striatal circuits are modulated by dopamine. Intracellularly, the effect of dopamine is largely mediated through the cyclic 
adenosine monophosphate/protein kinase A signaling cascade with an additional role for the cyclic guanosine monophosphate/
protein kinase G pathway, both of which can be regulated by phosphodiesterases. Phosphodiesterases are thus a potential target 
for pharmacological intervention in neuropsychiatric disorders related to dopaminergic regulation of fronto-striatal circuits.
Methods: Clinical studies of the effects of different phosphodiesterase inhibitors on cognition, affect, and motor function in 
relation to the fronto-striatal circuits are reviewed.
Results: Several selective phosphodiesterase inhibitors have positive effects on cognition, affect, and motor function in 
relation to the fronto-striatal circuits.
Conclusion: Increased understanding of the subcellular localization and unraveling of the signalosome concept of 
phosphodiesterases including its function and dysfunction in the fronto-striatal circuits will contribute to the design of new 
specific inhibitors and enhance the potential of phosphodiesterase inhibitors as therapeutics in fronto-striatal circuits.
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Introduction
Several neuropsychiatric disorders, including Parkinson’s 
disease, Huntington’s disease, attention-deficit hyperactiv-
ity disorder (ADHD), Tourette’s syndrome, schizophrenia, and 
obsessive-compulsive disorder, share the fronto-striatal circuits, 
also known as cortico-striatal-thalamic circuits, as their neuro-
biological basis. The fronto-striatal circuits comprise motor, cog-
nitive, and limbic circuits (Alexander et al., 1986, 1990; Alexander 
and Crutcher, 1990). These circuits operate in a very complex 
manner that is extensively described elsewhere (Surmeier 
et al., 2007; Haber and Rauch, 2010; Gerfen and Surmeier, 2011; 
Surmeier et  al., 2011; Calabresi et  al., 2014). Dysfunction of 
these circuits produces the wide range of motor, cognitive, and 
affective symptoms observed in related neuropsychiatric disor-
ders. One prominent feature of the complex functioning of the 
fronto-striatal circuits is their modulation by dopamine, both 
at the level of the frontal cortex as well as the striatum. As a 
result, dopaminergic receptors are strongly expressed through-
out all fronto-striatal circuits (Gerfen and Surmeier, 2011; Nishi 
et al., 2011; Kuroiwa et al., 2012). Unsurprisingly, dopaminergic 
medication has been the first-line therapy for several disorders 
related to dysfunctional fronto-striatal circuits; however, effi-
cacy is often moderate at best and accompanied by severe side 
effects (e.g., ADHD, schizophrenia, and Parkinson’s disease).

Dopamine originating from substantia nigra pars com-
pacta (SNc) and/or ventral tegmental area (VTA) (nigrostriatal 
and mesolimbic pathways) binds to both dopamine type1 (D1) 
receptors and dopamine type2 (D2) receptors on medium spiny 
neurons (MSNs) in the striatum (Gerfen and Surmeier, 2011). D1 
receptors are mainly found on MSNs of the direct pathway, and 
D2 receptors are mainly found on MSNs of the indirect pathway 
where they establish antagonistic interactions with adenosine 
A2a receptors (Gerfen et al., 1990; Ferre et al., 2011). Additionally, 
dopamine released from VTA (mesocortical pathway) also binds 
to D1 receptors in the frontal cortex (Kuroiwa et al., 2012). D1 
receptors activate the Gαs/olf family of G proteins to stimu-
late cyclic adenosine monophosphate (cAMP) production and 
thereby striatonigral and frontal signaling (Sibley et  al., 1993; 
Beaulieu and Gainetdinov, 2011). In contrast, the D2 receptors 
couple to the Gαi/o family of G proteins and thus induce inhibi-
tion of cAMP production, thereby inhibiting striatopallidal sign-
aling that eventually leads to disinhibition of the frontal cortex 
(Figure 1). Actions of the dopamine receptors in both pathways 
can be viewed as synergistically or complementary.

Intracellularly, the effect of dopamine on striatonigral, stri-
atopallidal, and frontal neurons is largely mediated through 
the cAMP-activated cascade (Nishi et al., 2008, 2011; Nishi and 
Snyder, 2010; Kuroiwa et  al., 2012). cAMP is synthesized from 
adenosine triphosphate by adenylyl cyclase, which is activated 
directly by activated G-protein coupled receptors or by calmo-
dulin (CaM)-dependent protein kinase (PK)/ after Ca2+ influx. 
cAMP affects synaptic plasticity through both presynaptic neu-
rotransmitter release and postsynaptic intracellular pathways 
(Figure 1). The former might be mediated via a presynaptic cal-
cium (Ca2+)/CaM-dependent PK/cAMP/cAMP-dependent PKA 
cascade and elevation of cAMP has been found to result in the 
synthesis and/or release of several neurotransmitters, includ-
ing 2 main players in the fronto-striatal circuits: glutamate 
and dopamine (Schoffelmeer et al., 1985; Imanishi et al., 1997; 
Rodriguez-Moreno and Sihra, 2013).

The influence on postsynaptic intracellular pathways occurs 
through activation of postsynaptic PKA by cAMP produced by 
adenylyl cyclase stimulated by either glutamatergic-induced 
Ca2+ influx or dopamine signaling-stimulated Gs. PKA exerts 

several effects related to neuroplasticity and neuroprotec-
tion. The fastest postsynaptic response in relation to neuro-
plasticity mediated by cyclic nucleotides is the activation and 
insertion of stored receptors by PKA through phosphorylation 
of GluR1 subunits promoting α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptor trafficking into the 
postsynaptic membrane for potentiation of glutamatergic trans-
mission (Song et al., 2013). In addition to the mobilization and 
membrane insertion of stored receptors, the process of protein 
synthesis (e.g., AMPA receptors) further increases neuroplasti-
city (Carew and Sutton, 2001; Izquierdo et al., 2006).

PKA also phosphorylates cAMP response element- bind-
ing protein (CREB) (Mayr and Montminy, 2001) and Dopamine- 
and cAMP-Regulated PhosphoProtein MR 32 kDa (DARPP-32) 
(Greengard, 2001; Svenningsson et  al., 2004). Phosphorylated 
CREB is also involved in neuroplasticity (e.g., synthesis of other 
proteins) (Impey et al., 1996; Lu et al., 1999; Sakamoto et al., 2011) 
and neuroprotection (e.g., neuronal arborization, synaptogenesis, 
and neurogenesis) (Mantamadiotis et al., 2002; Bruel-Jungerman 
et al., 2006; Sakamoto et al., 2011). One of the genes transcribed by 
phosphorylated CREB is bdnf (Scott Bitner, 2012). After release, the 
protein BDNF binds to the tropomyosin-related kinase B receptor, 
which is the receptor with the highest affinity for BDNF. BDNF is 
involved in the proliferation, survival, and differentiation of new 
neurons (i.e., neurogenesis in the brain) (Minichiello, 2009).

In addition, the activity-dependent release of BDNF and sub-
sequent tropomyosin-related kinase B-mediated activation of 
CREB is also an important mechanism of enhancing neuronal 
communication, specifically in active neurons of the brain. For 
instance, BDNF increases synaptic strength with adjacent neu-
rons by processes like long-term potentiation (LTP), thus ame-
liorating their connectivity (Lu et  al., 2008; Minichiello, 2009). 
Interestingly, LTP itself has been linked to both synaptogenesis 
and neurogenesis (Bruel-Jungerman et al., 2006).

DARPP-32 is phosphorylated at Thr34 in both striatal and fron-
tal neurons. DARPP-32 thereby converts into a potent inhibitor of 
protein phosphatase-1 (PP-1). DARPP-32 is also phosphorylated at 
Thr75 by Cdk5 and this converts DARPP-32 into an inhibitor of 
PKA. Thus, DARPP-32 has the unique property of being a dual-
function protein, acting either as an inhibitor of PP-1 or of PKA 
influencing neuroplasticity (Svenningsson et al., 2004). The inhi-
bition of PP-1 controls the phosphorylation state and activity 
of many downstream physiological effectors, including various 
neurotransmitter receptors (e.g., AMPA receptor GluR1 subunit, 
N-methyl-D-aspartate receptor NR1 subunit), ion channels and 
pumps (e.g., N/P-type Ca2+ channels, Na+ channel, Na+, K+-ATPase), 
and transcription factors (e.g., CREB, c-Fos, ΔFosB) (Greengard 
et al., 1999). Striatal LTP and long-term depression are dependent 
on cAMP and DARPP-32 phosphorylation (Calabresi et al., 2000).

The cAMP/PKA cascade is thus a potential target for pharma-
cological intervention in neuropsychiatric disorders related to 
dopaminergic frontal and striatal dysfunction. cAMP is degraded 
by cAMP-specific phosphodiesterases (PDEs) and dual substrate 
PDEs. Eleven PDE families have been described, distinguished 
by molecular properties, substrate specificity, and regulation 
(Bender and Beavo, 2006). These enzymes are expressed in 
unique and overlapping patterns throughout the body and cen-
tral nervous system (Lakics et al., 2010; Table 1). Selective PDE 
inhibitors (PDE-Is) prevent the degradation of cyclic nucleotides 
leading to increased concentrations of cAMP. Due to the differ-
ential expression of PDE subtypes in one or more of the frontal 
and striatal pathways or dopaminergic terminals, different sub-
type-specific PDE-Is enable stimulation of dopamine synthesis, 
inhibtion of D2 receptor signaling or stimulation of D1 receptor 
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Figure 1. Fronto-striatal circuits originate in the frontal cortex and pass through the basal ganglia, which project via the thalamus back to frontal brain areas. Output 

neurons in the striatum are medium spiny neurons (MSNs), which consist of direct pathway and indirect pathway neurons. The direct pathway neurons inhibit toni-

cally active neurons in globus pallidus interna (GPi)/substantia nigra pars reticulata (SNr). The indirect pathway neurons activate neurons in GPi/SNr via inhibition 

of the globus pallidus externa (GPe) and activation of the subthalamic nucleus (STN). Direct and indirect pathway neurons induce opposing effects on the output 

neurons in GPi/SNr, resulting in disinhibition and proinhibition of output, respectively. Within the basal ganglia all projections are GABAergic except those from the 

STN. Main phosphodiesterases (PDEs) expressed in fronto-striatal circuits are PDE1B, PDE4, and PDE10A. PDE1B is generally colocalized with dopamine (DA) D1 recep-

tors in the brain and thought to represent a major inactivation mechanism of D1 receptors. By acting like a DA D1 agonist PDE1B-Is can enhance phosphorylation of 

cAMP response element binding protein (CREB) as well as Dopamine- and cAMP-Regulated PhosphoProtein MR 32 kDa (DARPP-32) enhancing synaptic transmission 

(e.g., AMPA receptors), neuron excitability, and synapto- and neurogenesis, resulting in neuroplasticity and neuroprotective effects at glutamatergic frontal and fronto-

striatal synapses. Regarding fronto-striatal signaling, the effect of PDE4 inhibition on cAMP/protein kinase A (PKA) signaling, is linked to indirect pathway adenosine 

A2a receptor signaling and has no major role in D1 receptor direct pathway signaling. An opposite situation is observed at frontal dopaminergic signaling. In the frontal 

cortex, PDE4 is –just as PDE1B- localized at DARPP-32 expressing neurons. In contrast to the striatum, PDE4 inhibition enhances DA D1 receptor-induced phosphoryla-

tion of DARPP-32 in the frontal cortex, indicating a prominent role of PDE4 in frontal DA receptor signaling. Finally, DA release from DAergic midbrain terminals can 

be influenced with a PDE4 inhibitor as DA is expressed at DAergic terminals in neurons of the SNc in which cAMP has been reported to be a strong inducer of tyrosine 

hydroxylase (TH) gene transcription rate and mRNA affecting DA synthesis and release. In direct pathway neurons, PDE10A inhibition activates cAMP/PKA signaling 

related to D1 receptor signaling, whereas in indirect pathway neurons PDE10A inhibition activates cAMP/PKA signaling by simultaneous potentiation of adenosine 

A2A receptor signaling and inhibition of D2 receptor signaling. Effects of PDE10A inhibition are suggested to predominate the indirect pathway. In contrast to PDE4 

inhibition, PDE10A inhibition does not increase TH phosphorylation and therefore has no effects on DA synthesis and release. Nevertheless, it cannot be ruled out that 

selective PDE inhibitors (PDE-Is) might influence both the direct and indirect pathway via enhancing the release of DA from frontal DAergic projections depending on 

the –to be determined- presence of PDEs in these terminals.

In striatal interneurons containing nitric oxide synthase (NOS), nitric oxide (NO) is produced and diffuses into dendrites of MSNs which contain high levels of guanylate 

cyclase (GC), which, when activated, lead to the synthesis of cyclic guanosine monophosphate (cGMP). In the striatum, transient elevations in intracellular cGMP, next 

to cAMP, primarily act to increase neuronal excitability and to facilitate glutamatergic fronto-striatal transmission. Thus, inhibition of selective PDE subtypes can also 

target the cGMP/protein kinase G (PKG) pathway and have an effect on fronto-striatal functioning.
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signaling (Nishi et al., 2011). However, the level of expression of 
different PDE family members in these fronto-striatal circuits in 
both physiological and pathological conditions is incompletely 
understood and a subject of intense investigation. In the fronto-
striatal circuits, the main therapeutic mechanism of PDE inhibi-
tion is enhanced neuroplasticity and neuroprotection through 
previously discussed CREB and DARPP-32 signaling cascades 
(Figure 1). However, known effects of PDE-Is on neuroinflamma-
tion and cytokine-mediated responses may play additional roles 
(Hebb and Robertson, 2008; Wilson and Brandon, 2015).

The integration of individual PDEs into specific signalosomes 
within different functional compartments has revealed the 
functional roles of these PDEs and linked the large number of 
PDE isoforms to the compartmentalized regulation of specific 
cyclic nucleotide signaling pathways and biological responses. 
This compartmentalization therefore contributes to both 
the fine-tuning and specificity of cyclic nucleotide signaling 
(Jurevicius and Fischmeister, 1996; Zaccolo et al., 2000; Mongillo 
et al., 2006; Maurice, 2011; Stangherlin et al., 2011; Stangherlin 
and Zaccolo, 2012). More in detail, compartmentalization pro-
vides spatially distinct pools of PKA and PKG to be activated in 
different ways. This idea was confirmed by the observation of 
accumulation of cAMP in localized pools (Houslay, 1995). These 
pools are created by physical interactions between different 
components of signaling cascades and structural elements of 
the cell. Localization and activation of both cyclases and PDEs 
are important determinants in the process of cyclic nucleotide 
homeostasis by modulating fluctuations in the compartments. 
For PDEs, sequestration and anchoring is the principal mecha-
nism to create cyclic nucleotide gradients (Houslay and Milligan, 
1997; Houslay and Adams, 2003). Subsequently, different PKA 
isoforms are anchored at specific intracellular sites by A-kinase 
anchoring proteins (AKAPs) (Rubin, 1994). AKAPs control the gra-
dients of cAMP in the cell and modify localized target proteins, 
thereby causing sequestration of PKA into distinct cellular com-
partments. This also applies to the fronto-striatal circuits and 

is considered the main determinant of the target PDE isoform 
within a specific neuropsychiatric disorder. In addition, different 
PDE isoforms can integrate multiple distinct cellular inputs and 
allow crosstalk between cyclic nucleotides and other signaling 
networks and systems (Dodge-Kafka et al., 2005; Mongillo et al., 
2006; Houslay et al., 2007; Stangherlin et al., 2011; Wilson et al., 
2011; Kritzer et al., 2012).

Since the focus of this review is on frontal and striatal dopa-
minergic regulation, PDE1B, PDE2A, PDE4, PDE7B, PDE9A, and 
PDE10A in particular are of special interest (Lakics et al., 2010). 
PDE1B, PDE7B, and PDE10A are highly enriched in striatum and/
or frontal cortex. PDE2A, PDE4 (A, B, D), and PDE9A are more 
widely distributed but are also expressed in striatum and/or fron-
tal cortex. There are only very limited preclinical data on PDE2A, 
PDE7A, and PDE9A inhibition (e.g., Duinen et al., 2015). To date, 
most research has been devoted to the potential of PDE1B, PDE4, 
and PDE10A for regulation of dopaminergic frontal and striatal 
signaling, and therefore these subtypes will be discussed below.

PDE1

PDE1 and Dopamine Signaling

PDE1 hydrolyzes both cAMP and cGMP. PDE1, unlike any other 
class of PDE, is uniquely activated by the binding of a complex 
of Ca2+ and CaM. PDE1 is encoded by 3 separate genes: PDE1A, 
PDE1B, and PDE1C. PDE1B is highly colocalized with D1 receptors 
in the brain and is particularly rich in the striatum, hippocam-
pus, and prefrontal cortex (Lakics et al., 2010). PDE1 activity was 
first described as cytosolic; however, it now appears that PDE1A 
is not restricted to the cytosol but is also present in the nucleus 
where it contributes to the regulation of transcription factors 
(Nagel et al., 2006). This opens a new field of research in tran-
scriptional regulation. Changes in PDE1 location associated with 
cell differentiation might contribute to compartmental signal-
ing (Nagel et al., 2006).

Table 1. Localization of the Different PDEs in the Brain of Rodents and Humans in Adulthood

PDE Localization in the Body Localization in the Brain

PDE1A-C Heart, smooth muscles, lungs Hippocampus, cortex, olfactory bulb, striatum (highest expression levels), 
thalamus, amygdala, cerebellum; expression levels are in general highest for 
1A and lowest for 1C

PDE2A Heart, adrenal cortex, platelets Hippocampus, cortex, striatum, hypothalamus, amygdala, midbrain
PDE3A-B Heart, smooth muscles, kidneys, platelets Throughout the brain low expression levels
PDE4A-D Wide variety of tissues: e.g., smooth muscles,

lungs, kidneys, testes
Hippocampus, cortex, olfactory bulb, striatum, thalamus, hypothalamus, 

amygdala, midbrain, cerebellum; expression levels are in general highest for 
4A-4D (differs per brain structure) and lowest for 4C

PDE5A Smooth muscles, skeletal muscles, lungs,
kidneys, platelets

Hippocampus, cortex, cerebellum

PDE6A-C Rod and cone cells in retina Pineal gland
PDE7A-B Heart, skeletal muscles, liver, kidneys, testes,

pancreas
Hippocampus, cortex, olfactory bulb, striatum, thalamus, hypothalamus, 

midbrain; expression levels are in general highest for 7B
PDE8A-B Heart, liver, kidneys, lungs, testes, thyroid Hippocampus, cortex, olfactory bulb, striatum, thalamus, hypothalamus, 

midbrain; expression levels are in general highest for 8B
PDE9A Kidneys, spleen, prostate, various

gastrointestinal tissues
Hippocampus, cortex, olfactory bulb, striatum, thalamus, hypothalamus, 

amygdala, midbrain, cerebellum
PDE10A Heart, skeletal muscles, lungs, liver, kidneys,

testes, pancreas, thyroid
Hippocampus, cortex, striatum (highest expression levels), midbrain, 

cerebellum
PDE11A Skeletal muscles, liver, kidneys, testes,

prostate, thyroid
Throughout the brain low expression levels

Abbreviation: PDE, phosphodiesterase.

Note that this table does not provide information with respect to the level of expression (protein or mRNA) of the different PDEs. Adapted from 
Prickaerts, 2015, based on Lakics et al, 2010; Pérez-Torres et al, 2010.
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Since PDE1B is strongly and selectively expressed in the stria-
tum and frontal cortex, it could be a relevant target for modu-
lating fronto-striatal behaviors. However, only a few studies have 
been published with PDE1-Is (Medina, 2011; Nunes et al., 2011). 
Indeed, as noted by the authors, in these studies no potent and 
selective inhibitors of PDE1 isoforms were available for research. 
Vinpocetine, often referred to as a PDE1-I, has substantial other 
activities, including inhibition of Na2+ channels and IκB kinase. 
Vinpocetine therefore should not be considered as a selective 
PDE1-I. Since PDE1B is activated by Ca2+ and CaM, it provides a 
mechanism for crosstalk between Ca2+ and cyclic nucleotide sign-
aling (Nishi et al., 2008, 2011; Nishi and Snyder, 2010). PDE1B was 
localized to all DARPP-32-positive MSNs indicating expression in 
both striatal pathways (Nishi et al., 2011). Behavioral profiles of 
PDE1B knockout mice showed rather mild behavioral effects. The 
authors show an increased spontaneous locomotor activity in the 
presence of methamphetamine administration. Cognitive aspects 
are reported as similar to wild type. Overall, the data suggest pre-
dominant effects of PDE1B-Is would be seen in the striatonigral 
direct pathway (Reed et  al., 2002; Ehrman et  al., 2006; Siuciak 
et  al., 2007; Zhang, 2010). However, regarding effects on frontal 
and striatal dopamine release or effects on cAMP/PKA signaling 
in the frontal cortex, these areas have so far been understudied.

Implications and Clinical Overview of PDE1B-Is

PDE1B is generally colocalized with dopamine D1 receptors in 
the brain and thought to represent a major inactivation mecha-
nism of D1 receptors. PDE1B is not membrane bound but con-
tained mainly in a soluble intracellular compartment (Fusco 
and Giampa, 2015). Targeting this subfamily of PDEs is therefore 
considered a promising therapeutic strategy in disorders char-
acterized by frontal cognitive dysfunction, like schizophrenia 
and ADHD. Negative and cognitive symptoms of schizophrenia 
are associated with reduced dopamine (D1) function in the pre-
frontal cortex, also referred to as hypofrontality (Liemburg et al., 
2012; Arnsten, 2013). The reduced prefrontal dopamine function 
disturbs the balance of excitatory to inhibitory synaptic inter-
actions in this area (Winterer, 2006). Thus, the decreased ratio 
of D1/D2 signaling in schizophrenia would favor unstable cor-
tical representation of internal and external stimuli (Winterer 
and Weinberger, 2004) and as such, affect cognition. Likewise, 
dopaminergic hypofrontality is observed in ADHD patients 
(Pliszka, 2005; Sagvolden et al., 2005; Arnsten and Pliszka, 2011) 
and linked to inattentiveness, hyperactivity, and impulsivity. By 
acting supposedly like a dopamine D1 agonist, a PDE1B-I can 
enhance phosphorylation of GluR1 subunits to potentiate glu-
tamatergic fronto-striatal signaling. In addition, potentiation of 
dopamine receptors will increase phosphorylation of DARPP-32 
and CREB, subsequently inducing gene expression in the pre-
frontal cortex and benefiting clinical symptoms by activation of 
neuroplasticity at prefrontal synapses.

Regarding striatal disorders like movement disorders and 
positive symptoms in schizophrenia, not much data is available. 
Assuming effects of PDE1B are indeed preferentially induced 
in the dopamine D1 direct pathway, subsequent DARPP-32 and 
CREB phosphorylation will enhance synaptic transmission, 
neuron excitability, and synapto-neurogenesis inducing neuro-
plasticity and neuroprotection at glutamatergic fronto-striatal 
synapses. In theory, neuropsychiatric disorders related to stri-
atal hypofunction (like hypokinetic movement disorders such 
as Parkinson’s disease) would benefit from stimulated plas-
ticity in striatonigral neurons (Nishino et  al., 1993; Heckman 
et  al., 2015). This is in contrast to the desired mechanism of 

action of treatment for hyperkinetic movement disorders (like 
Huntington’s disease) and antipsychotic treatment, as both pref-
erably target the D2 receptor striatopallidal pathway (Strange, 
1998; Walker, 2007). Support for this hypothesis comes from stud-
ies that found impaired cyclic nucleotide signaling mechanisms 
to occur in human Parkinson’s disease as well as in experimental 
animals (Belmaker et al., 1978; Volicer et al., 1986; Nishino et al., 
1993; Sancesario et al., 2004). Additional upregulation in PDE1B 
activity has also been observed following 6-hydroxydopamine 
(6-OHDA) lesions (as a Parkinson’s model) in rats (Sancesario 
et al., 2004). The opposite has been observed in Huntington’s dis-
ease (Luthi-Carter et al., 2000; Nucifora et al., 2001). These studies 
found decreased cyclic nucleotide (cAMP) levels in the deaffer-
ented striatum accompanied by decreased PDE1B activity. The 
decreased PDE1B activity may be compensatory to the decrease 
in cyclic nucleotide levels. CREB-mediated transcriptional dys-
regulation has also been reported to occur during Parkinson’s 
disease pathology. PDE1-Is have been tested in an animal model 
of haloperidol-induced catalepsy. As haloperidol is a potent D2 
dopamine receptor antagonist, interference with D2 dopamine 
receptors causes significant motor disturbances seen frequently 
with schizophrenics treated with antipsychotic medicines. The 
haloperidol-induced catalepsy model is capable of testing agents 
for exacerbation or lessening of these motoric effects. The potent 
and selective PDE1-I, ITI-214 (see below), reversed the haloperi-
dol-induced catalepsy, indicating the potential use of this mech-
anism to reverse such motoric effects (Wennogle et al., 2010).

BDNF has been demonstrated to exert protective actions on 
nigral dopaminergic neurons in in vivo and in vitro models of 
Parkinson’s disease (Hyman et al., 1991; Levivier et al., 1995; Shults 
et al., 1995; Hung and Lee, 1996; Feng et al., 1999; Mohapel et al., 
2005; Sun et al., 2005), whereas inhibition of nigral BDNF expression 
has been reported to cause dopaminergic neuronal loss (Porritt 
et al., 2005). Postmortem studies have demonstrated reduced lev-
els of BDNF within the SNc in Parkinson’s disease patients (Mogi 
et al., 1999; Parain et al., 1999; Howells et al., 2000; Chauhan et al., 
2001). Furthermore, during in vitro experiments, BDNF has been 
demonstrated to promote the survival and differentiation of 
mesencephalic dopaminergic neurons (Hyman et al., 1991; Feng 
et al., 1999). The enhancement of cerebral cyclic nucleotide lev-
els by PDE1B inhibition would improve CREB-mediated signaling 
mechanisms providing therapeutic effects in Parkinson’s disease.

Recently, a set of 4 clinical studies were performed with a 
truly selective and potent PDE1-I, ITI-214 (Li et al., 2016a). With 
the exception of work performed with vinpocetine, a nonselec-
tive agent as noted above, ITI-214 is the first selective PDE1-I 
studied in humans. Clinical evaluations included a series of 
Phase I single- and multiple ascending-dose studies performed 
in the US and Japan. ITI-214 was given orally to healthy volun-
teers and patients using once-a-day dosing and was shown to 
be safe and well tolerated, with a linear pharmacokinetic profile. 
This study has been reported in a press release (Intra-Cellular 
Therapies, 2014), where the company concludes that “these stud-
ies represent a significant milestone as the first demonstration 
of the safety of a potent and highly specific PDE1-I in humans.”

PDE4

PDE4 and Dopamine Signaling

PDE4, which is cAMP specific, is encoded by 4 distinct genes in 
mammals, PDE4A, PDE4B, PDE4C, and PDE4D, and is expressed 
as at least 25 splice variants. Each of these variants has a modu-
lar structure consisting of a variant-specific N-terminal domain, 
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regulatory domains (upstream conserved region 1 and 2 [UCR1 
and UCR2]), a conserved catalytic domain, and an isoform-spe-
cific C-terminal domain (McCahill et al., 2008; Gurney et al., 2011; 
Richter et  al., 2013). Transcription of a number of PDE4 genes 
is activated by the cAMP/PKA/CREB cascade (D’Sa et  al., 2002; 
Le Jeune et al., 2002), and PKA induction of PDE4 genes serves 
as a long-term feedback mechanism. The N-terminal domain 
and UCR1/2 interact with variant-specific binding proteins to 
direct the subcellular targeting of PDE4 variants (McCahill et al., 
2008). Various targeting proteins have been identified, including 
arrestin, AKAPS, receptor for activated C kinase 1, disrupted in 
schizophrenia 1, Src, and extracellular receptor kinase (ERK) (see 
Nishi and Snyder, 2010).

Nishi and colleagues (2008) showed that the inhibition of 
PDE4 by rolipram weakly enhanced cAMP/PKA signaling both 
in neostriatal slices and in vivo (Nishi et  al., 2008). Rolipram 
increased the phosphorylation of DARPP-32 but only at high 
concentrations. Rolipram treatment enhanced adenosine A2a 
receptor-mediated phosphorylation of DARPP-32 but had no 
effect on D1 receptor/cAMP/PKA-mediated phosphorylation at 
the level of DARPP-32. Enhanced adenosine A2a receptor-medi-
ated signaling is expected to oppose actions of the dopamine 
D2 receptor in striatopallidal neurons. These findings may sug-
gest that PDE4 is exclusively expressed in indirect pathway neu-
rons. However, immunohistochemical analysis of previously 
mentioned neostriatal slices revealed that PDE4B expression 
can be found in both pathways but with a higher expression 
in indirect pathway neurons. Regarding striatal dopaminergic 
signaling, it seems that the effect of PDE4 inhibition on cAMP/
PKA signaling is linked to adenosine A2a receptor signaling and 
has no major role in striatal dopamine signaling. An opposite 
situation is observed at frontal dopaminergic signaling. In the 
frontal cortex, several PDE isoforms are expressed in cortical 
neurons (Cherry and Davis, 1999; Pérez-Torres et al., 2000). For 
the mouse frontal cortex, it has been described that PDE4B is 
localized at DARPP-32-expressing neurons (Nishi and Snyder, 
2010). In contrast to the striatum, rolipram enhanced dopamine 
D1 receptor-induced phosphorylation of DARPP-32 in the frontal 
cortex, indicating a prominent role of PDE4 in frontal dopamine 
receptor signaling. Finally, dopamine is known to be expressed 
at dopaminergic terminals in neurons of the SNc (Cherry and 
Davis, 1999), where cAMP has been reported to be a strong 
inducer of tyrosine hydroxylase (TH) gene transcription rate 
and mRNA affecting dopamine synthesis (Kumer and Vrana, 
1996; Chen et al., 2008). Rolipram enhanced haloperidol-induced 
phosphorylation of TH at Ser40 in presynaptic dopamine termi-
nals with a proportional increase in dopamine synthesis though 
failed to do so in the absence of haloperidol. Also, rolipram 
enhanced levels of 3,4-Dihydroxyphenylacetic acid and the 
3,4-Dihydroxyphenylacetic acid/dopamine ratio, indicating an 
increased dopamine metabolism. However, no increase in the 
level of dopamine itself was found, indicating the absence of a 
direct effect on dopamine release (Nishi et al., 2008).

Implications and Clinical Overview of PDE4-Is

Compared with PDE1, much more is known regarding the role of 
PDE4 in frontal and striatal dopaminergic functioning. However, 
by no means have all the effects been unraveled and all the ques-
tions been resolved for PDE4. PDE4 inhibition has been shown 
to increase dopaminergic tone in striatal neurons by increasing 
both synthesis and metabolism, though lacking a direct effect 
on release. It is known that basal ganglia functioning depends 
on specific amounts of dopamine in order to function at peak 

performance. Low levels of dopamine cause movement dif-
ficulties, while excessive dopamine causes involuntary move-
ments. Even if PDE4 inhibition itself may not be involved in the 
process of releasing dopamine, the enhanced production of the 
dopamine precursor levodopa by enhanced cAMP-stimulated 
TH gene transcription may result in enhanced stimulus-driven 
dopamine release. PDE4-Is may therefore constitute an interest-
ing treatment for neuropsychiatric disorders involving hypo-
functioning striatal dopamine systems, like Parkinson’s disease. 
Indeed, rolipram has been reported to attenuate MPTP-induced 
dopamine depletion in the striatum and reduce the loss of nigral 
TH-positive neurons in vitro (Hulley et  al., 1995a; Yamashita 
et al., 1997a, 1997b) and in vivo (Hulley et al., 1995b; Yang et al., 
2008). Next, it remains to be seen if these effects on synthesis 
and metabolism also apply to frontal dopaminergic terminals 
arriving from the VTA. If so, PDE4 would be an interesting target 
for disorders characterized by frontal dopaminergic dysfunction, 
like ADHD or schizophrenia (cognitive and negative symptoms). 
Frontal dopaminergic hypofunctioning can not only be opposed 
by PDE4 inhibition via augmented release of neurotransmitters 
at dopaminergic terminals but also, like previously discussed for 
PDE1B, by means of increased DA D1 receptor/cAMP/PKA sign-
aling inducing DARPP-32 and CREB phosphorylation, leading to 
concomitant gene transcription related to neuronal plasticity. 
Because PDE4 inhibition affects both these mechanisms, PDE4-Is 
are particularly interesting as a potential treatment for ADHD 
and schizophrenia. Finally, in the striatum, PDE4 inhibition 
regulates adenosine A2a signaling and is therefore often viewed 
as exerting dopamine D2 antagonistic effects, although it may 
also be viewed as mimicking the effect of an adenosine A2a ago-
nist. Both would indicate antipsychotic potential of PDE4-Is by 
counteracting hyperdopaminergia, which has been confirmed 
by several studies over the years, including early clinical trials 
(Casacchia et al., 1983; Parkes et al., 1984; Siuciak, 2008). Based 
on results of rolipram, this latter mechanism is also applicable to 
Huntington’s disease. Rolipram exerted neuroprotective effects in 
2 rodent Huntington’s disease models via increased CREB phos-
phorylation and subsequent targets like BDNF (DeMarch et al., 
2007, 2008; Fusco and Giampa, 2015). Neuroprotective effects of 
rolipram were induced by sparing of striatal neurons, prevention 
of intranuclear inclusion formation, and attenuation of micro-
glial reactivity (DeMarch et al., 2008). Furthermore, rolipram was 
effective in preventing CREB binding protein sequestration into 
striatal neuronal intranuclear inclusions, sparing interneurons 
of R6/2 mice and rescuing motor coordination and activity defi-
cits (Giampa et al., 2009b; but see Hannan, 2009). However, there 
are a range of molecular and cellular mechanisms implicated in 
the pathogenesis of Huntington’s disease (Gil and Rego, 2008).

When examining actual clinical data, the first clinical trials into 
PDE4 were done in the field of depression research (Esposito et al., 
2009). These first clinical studies showed a good antidepressant 
response to rolipram treatment (Zeller et al., 1984; Fleischhacker 
et  al., 1992). However, rolipram produces severe dose-limiting 
side effects, including emesis, headache, gastric hyper secretion, 
nausea, and vomiting. This has put a serious hold on the further 
development of rolipram and other related PDE4-Is. It also pre-
vented rolipram from reaching the market. Yet, a clinical Phase 
II trial started in 2006 to reevaluate the antidepressant properties 
of rolipram (estimated study completion date: December 2013). 
No details are yet available to the scientific community. Another 
PDE4-I, ND1251, was reported to improve memory in a group of 8 
depressed subjects (Outsourcing Pharma, 2014).

Although rolipram was primarily developed for treat-
ing depression (Zeller et  al., 1984; Fleischhacker et  al., 1992), 
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rolipram has also been investigated in early clinical trials as a 
treatment for Parkinson’s disease (Casacchia et al., 1983; Parkes 
et  al., 1984). Some positive effects of rolipram were observed, 
however not exceeding the efficacy of levodopa or other dopa-
minergic drugs. At the moment, second-generation PDE4-Is are 
being developed, which are supposed to have less-emetic side 
effects and are being studied for other disorders besides depres-
sion. As a result, roflumilast was approved by the Food and 
Drug Administration (FDA) in 2011 as an antiinflammatory drug 
for the treatment of Chronic Obstructive Pulmonary Disease 
exacerbations.

PDE4-Is were also tested in clinical trials as treatment for 
schizophrenia. Takeda has recently finished a proof of mecha-
nism Phase I clinical study with the PDE4-I roflumilast in combi-
nation with second-generation antipsychotics in schizophrenia 
patients (ClinicalTrials.gov Identifier: NCT02079844).

PDE4-Is were also examined as a treatment for Huntington’s 
disease. The new experimental PDE4-I GSK356278 was tested by 
GlaxoSmithKline as a new treatment for Huntington’s disease in 
2 subsequent Phase I studies. In 2012, the first Phase I study was 
completed investigating the safety, tolerability, pharmacoki-
netics, and pharmacodynamics of GSK356278 (ClinicalTrials.
gov Identifier: NCT01573819). GSK356278 was well tolerated 
when it was given as a single dose to healthy people, and in 
this study the objective was to observe effects of GSK356278 
after daily intake. Subsequently, a second Phase I positron emis-
sion tomography brain occupancy study of GSK356278 was con-
ducted in male healthy volunteers (ClinicalTrials.gov Identifier: 
NCT01602900; no results are disclosed). It is currently unclear 
whether this PDE4-I treatment is aimed at the motor or cogni-
tive symptoms observed in Huntington’s disease.

Of note, Ibudilast (or AV-411) is another PDE4-I in devel-
opment as an antiinflammatory drug to treat, for instance, 
Amyotrophic Lateral Sclerosis (ClinicalTrials.gov Identifier: 
NCT02238626). However, this compound not only inhibits PDE4 
but also serves as a glial activator. Central nervous system appli-
cations of AV-411 are being explored in clinical Phase II stud-
ies, that is, pain and drug abuse (ClinicalTrials.gov Identifier: 
NCT00723177, NCT01217970, NCT02025998, NCT01860807).

Additionally, different genetic studies have shown a positive 
relationship between PDE4B polymorphisms and schizophre-
nia, which likely results in significantly decreased PDE4B levels 
as detected in postmortem brain tissue (Fatemi et  al., 2008a; 
Guan et  al., 2012). Low PDE4B levels, which might be consid-
ered as a compensatory mechanism, do not necessarily result 
in increased cAMP levels, as several mechanisms can also be 
activated that counteract the decreased degradation of cAMP by 
PDE4B. Another genetic link is related to the gene Disrupted-in 
Schizophrenia-1 (DISC1; Harrison and Weinberger, 2005). A chro-
mosomal translocation of this gene increases susceptibility for 
schizophrenia (Millar et al., 2000; Sachs et al., 2005), and, inter-
estingly, binding of DISC1 to PDE4B is disrupted, which might 
result in an overactivity of the latter (Millar et al., 2005; Murdoch 
et al., 2007).

PDE10

PDE10 and Dopamine Signaling

PDE10, which is encoded by PDE10A, is a dual substrate PDE, 
hydrolyzing both cAMP and cGMP. PDE10A is present both in 
striatonigral direct and striatopallidal indirect pathway MSNs 
(Xie et al., 2006; Nishi et al., 2008). Additionally, PDE10A regulates 
cAMP/PKA signaling (Nishi et  al., 2008) and gene expression 

(Strick et al., 2010) in the MSNs of both pathways. Interestingly, 
PDE10A hydrolyzes both cAMP and cGMP, but it has an approxi-
mate 20-fold higher affinity for cAMP (Bender and Beavo, 2006), 
making it an interesting target for disorders involving the 
fronto-striatal circuits. In the striatum, PDE10A is expressed in 
both direct and indirect pathway MSNs, but not in interneurons 
(Xie et  al., 2006; Nishi et  al., 2008; Sano et  al., 2008). Of the 3 
splice variants, PDE10A2 is associated with the membrane, 
whereas PDE10A1 and PDE10A3 are found in the cytosol (Kotera 
et al., 2004). In the striatum, mainly PDE10A2 is expressed, and 
it is found at membranes in dendrites and spines of MSNs (Xie 
et al., 2006). PDE10A2 is phosphorylated by PKA at Thr16 within 
the N-terminal region (Kotera et al., 2004). Nishi and colleagues 
argue that this seems to induce the translocation of PDE10A2 
from membrane to cytosol, thereby controlling cAMP/PKA sign-
aling within the spines (Nishi and Snyder, 2010; see also Wilson 
and Brandon, 2015).

Through this effect on cAMP/PKA signaling, PDE10A inhibi-
tion by papaverine showed enhanced phosphorylation of CREB 
and ERK (Rodefer et  al., 2005; Siuciak et  al., 2006; Becker and 
Grecksch, 2008) and of their downstream targets DARPP-32 and 
GluR1 (Nishi et al., 2008) at PKA sites in striatal MSNs both in 
vitro and in vivo. More specifically, in both direct and indirect 
pathway neurons, PDE10A shows equal expression patterns 
(Xie et al., 2006; Nishi et al., 2008; Sano et al., 2008), regulation 
of cAMP/PKA signaling (Nishi et al., 2008), and gene expression 
(Strick et al., 2010). However, distinguishing between both path-
ways, in direct pathway neurons, PDE10A inhibition activates 
cAMP/PKA signaling related to D1 receptor signaling (Nishi et al., 
2008), whereas in indirect pathway neurons, PDE10A inhibition 
activates cAMP/PKA signaling by simultaneous potentiation of 
adenosine A2A receptor signaling and inhibition of D2 receptor 
signaling. A study of neuronal type-specific regulation of DARPP-
32 phosphorylation at Thr34 using neostriatal slices showed that 
papaverine increased DARPP-32 phosphorylation by 6-fold in 
indirect pathway neurons, whereas it increased DARPP-32 phos-
phorylation by only 2-fold in direct pathway neurons, indicating 
that effects of PDE10A inhibition predominate the indirect path-
way (Bateup et al., 2008; Nishi et al., 2008). Recent electrophysi-
ological results support this conclusion (Threlfell et  al., 2009). 
More support is provided by recent behavioral studies published 
by different groups; however, these latter studies also show sub-
stantial D1 direct pathway effects of PDE10A-Is (Megens et al., 
2014a, 2014b; Gentzel et al., 2015; Suzuki et al., 2016).

In vivo, PDE10A-Is are studied mostly for effects on spon-
taneous or stimulated behaviors providing evidence for pre-
dominant indirect pathway effects (similar to effects of D2 
receptor blockers). This would include inhibition of spontane-
ous or stimulant-induced behavior, inhibition of conditioned 
avoidance behavior, reversal of stimulant-induced sensory 
gating deficits, and preferential activity against apomorphine-
induced climbing (Schmidt et  al., 2008; Grauer et  al., 2009; 
Kehler and Nielsen, 2011; Gresack et  al., 2013; Megens et  al., 
2014b). However, concomitant D1 receptor stimulation causes 
reduced efficiency against behavioral stimulants via direct path-
way activation (Menniti et al., 2007; Sotty et al., 2009; Gresack 
et al., 2013; Megens et al., 2014b). D1 receptor stimulation is also 
responsible for the cognition-enhancing effects (Rodefer et al., 
2005; Grauer et al., 2009) and socializing effects (Grauer et al., 
2009) of PDE10A-Is. So indeed, there is compelling evidence for 
substantial direct pathway activation of PDE10A-Is. This latter 
notion is supported by recent work from Megens and cowork-
ers (2014a) in suppressed behavior via D1 receptor blockade, D2 
receptor blockade or dopamine depletion. Their results indicate 
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that PDE10A-Is reverse behavioral suppression after D1 recep-
tor blockade (hypolocomotion) via direct pathway activation 
(next to suppressing stimulant behavior via indirect pathway 
activation). These effects are indicative of substantial D1 ago-
nistic effects of PDE10A-Is (next to their D2 antagonistic effects). 
Still, the main effects of PDE10A-Is are suggested to be exerted 
trough the indirect pathway. By this route, PDE10A-Is can cause 
extrapyramidal side effects, resembling D2 receptor blockers. 
The latter may explain why PDE10A-Is have not yet reached the 
market as antipsychotic treatment. This notion is supported by 
the recent failure of the Pfizer PDE10A-I MP-10 (or PF-02545920) 
in a Phase II clinical trial as antipsychotic treatment, where it 
showed no efficacy on positive and negative symptoms and pro-
duced motor side effects (akathisia and dystonia) in patients 
with schizophrenia (DeMartinis et al., 2012).

Finally, in contrast to PDE4 inhibition by rolipram, PDE10A 
inhibition by papaverine showed no increases on TH phospho-
rylation at Ser40 (PKA site), suggesting no effects of PDE10A 
inhibitors on dopamine synthesis. Of note, only at high concen-
trations did papaverine show an effect on TH phosphorylation. 
Also, results for papaverine should be confirmed by using the 
more potent PDE10A-Is TP-10 and MP-10. Additionally, PDE10A 
inhibition showed no effects on dopamine metabolism (Nishi 
et al., 2008). Therefore, in contrast to PDE4, it is assumed that 
PDE10A does not play a major role at dopaminergic terminals.

Implications and Clinical Overview of PDE10A-Is

PDE10A is even more extensively studied in relation to the 
fronto-striatal circuits than the previously discussed PDE4 and 
PDE1B subtypes. Due to the hypothesis of a higher expression 
in indirect pathway neurons, PDE10A-Is have received much 
attention as potential dopamine D2 antagonists and as such for 
their antipsychotic properties. Historically, positive symptoms 
in schizophrenia have been linked to overstimulation of dopa-
mine receptors in the striatum (Baumeister and Francis, 2002), 
which is attenuated by (PDE10A inhibition-induced) dopamine 
D2 receptor antagonism. Because of the expected predominant 
effects in the indirect pathway, PDE10A is also hypothesized as 
a therapeutic target in Huntington’s disease. Increases in cAMP 
are expected to drive CREB-dependent signaling pathways, 
known to be dysregulated in Huntington’s disease mouse mod-
els (Choi et al., 2009). In line, like rolipram, TP-10 was shown to 
be neuroprotective in the quinolinic acid model of Huntington’s 
disease through CREB-mediated neuroprotection (Giampa et al., 
2009a). In a follow-up study, PDE10A-I treatment of R6/2 mice 
showed significant delays in development of the motor deficits 
measured in this model accompanied by reduced striatal and 
cortical cell loss (Giampa et  al., 2010). This was accompanied 
by increased CREB phosphorylation, suggesting that increased 
cAMP signaling in these brain regions could slow progression 
of neurodegeneration. Additionally, gene expression studies 
have implicated PDE10A and cAMP signaling as a therapeutic 
strategy for Huntington’s disease (Hebb et  al., 2004). Chronic 
treatment of wild-type mice with TP-10 resulted in an increase 
in gene expression of members of the ERK and PKA signaling 
pathways as well as an increase in ERK and MSK phosphoryla-
tion (Roze et al., 2008; Kleiman et al., 2011; Martin et al., 2011). 
Both these effects have proven to be neuroprotective in models 
of Huntington’s disease. Hypothetically, in Parkinson’s disease, 
PDE10A-Is could be used in the same way to treat dopamine 
agonist- or levodopa-induced dyskinesias. Chronic treatment 
with both classes of drugs leads to improvement in symptoms 
but causes unwanted side effects. These unwanted symptoms 

are thought to be due to D1 receptor functional supersensitiv-
ity, abnormal cAMP signaling, and enhanced ERK signaling 
(Bezard et al., 2001; Aubert et al., 2005; Santini et al., 2007). Cyclic 
nucleotide levels were found to be decreased in the brains of 
rats treated with a combination of levodopa and 6-OHDA (Giorgi 
et al., 2008). Consistent with this finding, treatment of levodopa-
induced dyskinesias with TP-10 reduced the severity of dyski-
nesias observed in 6-OHDA rats. In this way, PDE10A-Is rescue 
decreases in cyclic nucleotide levels and prolong the use of levo-
dopa (Wilson and Brandon, 2015).

Preclinical antipsychotic effects of PDE10A-Is may have ini-
tiated fronto-striatal disorder-related research, though lack of 
clinical efficacy and possible extrapyramidal side effects are 
hampering PDE10A-Is in reaching the market as antipsychotic 
treatment. An example of the latter is provided by the failure 
of the Phase II clinical trial of the Pfizer PDE10A-I MP-10 (or 
PF-02545920). MP-10 showed no efficacy and produced motor 
side effects. Despite the serious challenges, there remains inter-
est in PDE10A-Is as an antipsychotic treatment. For instance, 
Takeda is currently recruiting participants for a clinical Phase 
II study to evaluate the efficacy, safety, and tolerability of TAK-
063 compared with placebo in treatment of acutely exacerbated 
schizophrenia. Efficacy was explained as determining whether 
cognitive impairment associated with schizophrenia would be 
attenuated (ClinicalTrials.gov Identifier: NCT02477020). Also, 
a Phase I  study by Hoffmann-La Roche has just been com-
pleted in which the safety, tolerability, and pharmacokinetics of 
RO5545965 in patients with schizophrenia on risperidone was 
tested (no results have been posted; ClinicalTrials.gov Identifier: 
NCT02019329). Of note, in 2012 Amgen started and terminated a 
Phase I study to assess the safety and tolerability of their PDE10-I 
AMG 579 following a single oral dose administration in healthy 
subjects and patients with schizophrenia or stable schizoaffec-
tive disorder (ClinicalTrials.gov Identifier: NCT01568203).

A recent study found no difference in PDE10A mRNA expres-
sion between schizophrenia patients and comparison subjects 
in any of the brain regions studied (thalamus, caudate, putamen, 
nucleus accumbens, globus pallidus, and substantia nigra). This 
is the first in vivo assessment of PDE10A expression in patients 
with schizophrenia. However, this should not be interpreted as 
a case against developing PDE10A drugs in schizophrenia. The 
study of intracellular signaling pathways makes a persuasive 
case for how PDE10A-Is could influence the overall signaling in a 
therapeutic direction, regardless of whether there is an intrinsic 
change in PDE10A in schizophrenia (Marques et al., 2016).

Pharmaceutical companies have also started to redesignate 
their PDE10A-Is to Huntington’s disease. A Phase II proof-of-con-
cept trial is now being initiated in which Pfizer’s PDE10A-I MP-10 
will be tested for safety and efficacy in subjects with Huntington’s 
disease (ClinicalTrials.gov Identifier: NCT02197130). Omeros initi-
ated a Phase II clinical trial in Huntington’s disease patients with 
OMS824 after an earlier Phase II trial in schizophrenia patients 
(no results disclosed; ClinicalTrials.gov Identifier: NCT01952132). 
The Huntington’s disease trial is a sequential-cohort dose esca-
lation study that evaluates the safety and tolerability of OMS824 
over 4 weeks (ClinicalTrials.gov Identifier: NCT02074410). In par-
allel with the clinical OMS824 trial, Omeros is conducting pre-
clinical rat studies to support clinical trials of longer duration. 
However, based on that data, there might be a safety issue and 
based on follow-up communications with the FDA, Omeros has 
suspended the ongoing Huntington’s disease trial. The FDA has 
requested that Omeros further evaluates the preclinical data in 
order to characterize the compound more fully prior to reinitiat-
ing the clinical trial (Omeros, 2014). Additional support for the 
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use of PDE10A-Is in Huntington’s disease comes from a recent 
study that shows that PDE10A levels are lowered early before 
symptom onset in Huntington’s disease (Niccolini et al., 2015b). 
Whether this is cause or consequence remains to be determined; 
however, it most likely resembles a consequence of the degener-
ation of striatal cells and therefore the PDE10A enzymes within. 
These results were recently confirmed by a study with the radio-
ligand [18F] MNI-659A (Russell et al., 2016). A comparable large-
scale Phase 0 study is currently recruiting new participants. The 
aim of this study is to measure the availability of the PDE10A 
enzyme in Huntington’s disease gene expansion carriers using 
the recently developed radioligand [18F] MNI-659. The study will 
be cross-sectional, examining Huntington’s disease gene expan-
sion carriers at different stages of the disease (premanifest, stage 
1, and stage 2) compared with healthy controls (ClinicalTrials.gov 
Identifier: NCT02061722).

Of note, Niccolini et  al. (2015a) also demonstrated striatal 
and pallidal loss of PDE10A expression in Parkinson’s disease 
patients, which is associated with Parkinson’s disease dura-
tion and severity of motor symptoms and complications. These 
results suggest that dopaminergic nigrostriatal degeneration 
affects the expression of PDE10A in striatum and pallidum. 
Hypothesizing, it most likely resembles a compensatory mecha-
nism. Less dopaminergic input from the SNc equals less cAMP 
activation in striatal and pallidal areas decreasing the required 
levels of PDE10A. In another, more implausible scenario, the 
decrease is causative. The decrease in PDE10A levels reflects 
the overall expression of PDE10A in these brain areas not speci-
fied for the direct and indirect pathway. Because of the stronger 
expression of PDE10A in the indirect pathway compared with 
the direct pathway, PDE10A degeneration will affect the indi-
rect pathway more strongly. Subsequently, reduced PDE10A 
expression results in enhanced activation of the indirect path-
way, resulting in increased inhibition of movement. In both 
Parkinson’s disease and Huntington’s disease, altered PDE10 lev-
els are likely compensatory/consequential instead of causative. 
In hyperkinetic movement disorders like Huntington’s disease, 
PDE10A may thus be a promising target for pharmacological 
agents (PDE10A-Is enhance the little cAMP signaling that is left 
in the indirect pathway).

Conclusion

Clinical trials investigating the effects of PDE-Is in neuropsychi-
atric disorders are overall very sparse, and the wealth of positive 
preclinical data could not yet be translated into clinical efficacy. 
As a result, no definitive conclusions can be drawn merely based 
on clinical trial outcomes. Therefore, the current review provides 
a discussion of the role of PDEs in dopaminergic frontal and stri-
atal signaling and the potential of their associated inhibitors in 
specific disorders of the fronto-striatal circuits. Subsequently, an 
overview is provided of the current clinical status.

The fronto-striatal circuits compose the neurobiologi-
cal basis for several neuropsychiatric disorders, including 
Parkinson’s disease, Huntington’s disease, ADHD, Tourette’s 
syndrome, schizophrenia, and obsessive-compulsive disorder. 
The fronto-striatal circuits constitute a plurality of parallel seg-
regated circuits, which can be clustered together in motor cir-
cuits, associative/cognitive circuits, and limbic circuits (Krack 
et al., 2010). Together, dysfunctions in these circuits produce the 
wide range of symptoms observed in related neuropsychiatric 
disorders.

Intracellularly, direct and indirect pathway signaling in the 
striatum is largely mediated through the cAMP/PKA cascade 

(Nishi et al., 2008, 2011; Nishi and Snyder, 2010). Cyclic nucleo-
tide cascades are involved in synaptic transmission, neuron 
excitability, neuroplasticity, and neuroprotection in all types 
of fronto-striatal circuits (Figure 1). Additionally, all fronto-stri-
atal circuits are modulated by dopamine. Next to the effects of 
cAMP/PKA pathways on glutamatergic and GABAergic signaling 
in the fronto-striatal circuits, these cyclic nucleotide pathways 
also play a major role in the dopaminergic modulation of the cir-
cuits. The intracellular effect of dopamine is mediated through 
dopamine receptor-regulated activation of cAMP/PKA and sub-
sequent DARPP-32 and CREB phosphorylation in both striatal 
and frontal neurons.

In the last decades, PDEs have therefore received increased 
attention for their possible role in disorders involving the fronto-
striatal circuits. Based on overall expression patterns in frontal 
and striatal dopaminergic terminals, indirect pathway neurons, 
and direct pathway neurons, PDE1B, PDE2A, PDE4, PDE7B, PDE9A, 
and PDE10A seem to be the most interesting targets (Lakics 
et al., 2010), although most attention and resources have thus 
far been devoted to the potential of PDE1B, PDE4, and PDE10A 
due to their role in dopaminergic signaling. The main site of 
action and expression of PDE1B, PDE4, and PDE10A as discussed 
in this clinical review is inferred from biochemical analyses of 
striatal cAMP/PKA effectors, behavioral phenotypes of knockout 
mice, and the observation of effects of subtype-specific PDE-Is 
on dopamine-related behavior. The different PDE subtypes, and 
more specifically their splice variants, can be related to differ-
ent disorders due to their differential expression in one or more 
of the frontal and striatal pathways or dopaminergic terminals 
inducing stimulation of dopamine synthesis, the inhibtion of D2 
receptor signaling or the stimulation of D1 receptor signaling. 
The different PDE isoforms contain a multiplicity of structural 
and biochemical properties and are located in specific subcel-
lular compartments, with specific transcriptional and posttran-
scriptional regulation (Keravis and Lugnier, 2012). Therefore, 
expression of a PDE subtype in a brain area does not make it an 
interesting target per se. Their particular involvement in dopa-
minergic modulation of fronto-striatal signaling is what makes 
them an interesting target for related disorders. Preferably, the 
targeted cyclic nucleotide signaling cascade is involved in the 
pathology of the disorder or contributes to the reduction of the 
pathology. However, even if this is not the case, PDE inhibition 
could still influence the overall signaling in a therapeutic direc-
tion. Currently, researchers are just beginning to unravel the 
precise subcellular localization and the role of functional com-
partmentalization in physiological and pathological conditions 
of the fronto-striatal circuits (e.g., PDE10A: Russwurm et  al., 
2015; Li et  al., 2016b; MacMullen et  al., 2016). Another impor-
tant consideration is that, in general, PDE-I research involving 
fronto-striatal disorders is based on the classical view of basal 
ganglia direct and indirect pathway functioning. Considerable 
evidence is accumulating to challenge this classical view (Cui 
et al., 2013; Calabresi et al., 2014; Keeler et al., 2014).

From a therapeutic perspective, inhibition of PDEs with 
increased expression appears most promising. This way, cogni-
tion and plasticity deficits resulting from impaired cAMP/PKA 
signaling might be improved by inhibiting specific PDE isoforms. 
However, PDE inhibition might have negative effects on cogni-
tion and plasticity when PDEs are already downregulated and 
cAMP levels and PKA activity are high. In this scenario, elevated 
cAMP levels might go over a physiological level and disrupt 
signaling. Along this line, high doses of rolipram impaired pre-
frontal cognitive function in aged but not young monkeys, likely 
due to overstimulation of the already disinhibited cAMP/PKA 
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signaling pathway in the aged prefrontal cortex (Ramos et al., 
2003; Arnsten et al., 2005). This argues to specifically target PDEs 
that are overexpressed (Table 2).

In addition to the backbone formed by frontal neurons, 
MSNs and their dopaminergic modulation, the importance of 
interneurons in physiological and pathological fronto-striatal 
functioning is becoming increasingly apparent. Several types 
of interneurons can be found in the striatum, like cholinergic 
and different GABAergic interneurons (Gerfen and Surmeier, 
2011). In particular, nitric oxide synthase containing GABAergic 
interneurons we would like to highlight. These nitric oxide-
producing interneurons play an important role in fronto-striatal 
functioning (West and Tseng, 2011). Nitric oxide diffuses from 
these interneurons into dendrites of MSNs that contain high 
levels of guanylate cyclase, which, when activated, lead to the 
synthesis of cGMP (Figure  1). In the intact striatum, transient 
elevations in intracellular cGMP primarily act to increase neu-
ronal excitability and to facilitate glutamatergic fronto-striatal 
transmission (West and Tseng, 2011; Threlfell and West, 2013). 
Although the main focus in the fronto-striatal system has 
been on cAMP signaling, several PDE-Is (also) target cGMP (e.g., 
PDE1-Is and PDE10-Is) and may exert their effects (additionally) 
on the cGMP signaling cascade (Padovan-Neto et al., 2015).

Summarizing, increased understanding of the subcellular 
localization and unraveling of the signalosome concept of PDEs 
including its function and dysfunction in the fronto-striatal 
circuits will contribute to the design of new specific inhibitors 
and enhance the potential of PDE-Is as therapeutics in fronto-
striatal circuits.
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