
plants

Article

Alleviation of Lead Stress on Sage Plant by 5-Aminolevulinic
Acid (ALA)

Hamed M. El-Shora 1,*, Gehan F. Massoud 2, Ghada A. El-Sherbeny 1, Salma Saleh Alrdahe 3

and Doaa B. Darwish 1,3

����������
�������

Citation: El-Shora, H.M.; Massoud,

G.F.; El-Sherbeny, G.A.; Alrdahe, S.S.;

Darwish, D.B. Alleviation of Lead

Stress on Sage Plant by

5-Aminolevulinic Acid (ALA). Plants

2021, 10, 1969. https://doi.org/

10.3390/plants10091969

Academic Editor: Anelia Dobrikova

Received: 27 July 2021

Accepted: 18 September 2021

Published: 21 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt;
drghadaelsherbeny@yahoo.com (G.A.E.-S.); ddarwish@ut.edu.sa (D.B.D.)

2 Agricultural Research Centre, Medicinal and Aromatic Plants Research Department,
Horticulture Research Institute, Cairo 12619, Egypt; gehan.fawzy75@gmail.com

3 Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
salrdahe@ut.edu.sa

* Correspondence: shora@mans.edu.eg

Abstract: Oxidative stress is imparted by a varying range of environmental factors involving heavy
metal stress. Thus, the mechanisms of antioxidant resistance may advance a policy to improve metal
tolerance. Lead as a toxic heavy metal negatively affects the metabolic activities and growth of medic-
inal and aromatic plants. This investigation aimed to assess the function of 5-aminolevulinic acid
(ALA) in the alleviation of Pb stress in sage plants (Salvia officinalis L.) grown either hydroponically
or in pots. Various concentrations of Pb (0, 100, 200, and 400 µM) and different concentrations of
ALA (0, 10, and 20 mg L−1) were tested. This investigation showed that Pb altered the physiological
parameters. Pb stress differentially reduced germination percentage and protein content compared
to control plants. However, lead stress promoted malondialdehyde (MDA) and H2O2 contents in the
treated plants. Also, lead stress enhanced the anti-oxidative enzyme activities; ascorbate peroxidase
superoxide, dismutase, glutathione peroxidase, and glutathione reductase in Salvia plants. ALA ap-
plication enhanced the germination percentage and protein content compared to their corresponding
controls. Whereas, under ALA application MDA and H2O2 contents, as well as the activities of SOD,
APX, GPX, and GR, were lowered. These findings suggest that ALA at the 20 mgL−1 level protects the
Salvia plant from Pb stress. Therefore, the results recommend ALA application to alleviate Pb stress.

Keywords: Salvia officinalis; lead; 5-aminolevulinic acid; germination; malondialdehyde; antioxi-
dant enzymes

1. Introduction

Plants are immobile in their nature, and they are subjected to various abiotic and
biotic stresses. Therefore, they develop different strategies to cope with stress conditions
and mitigate the toxic effect. Heavy metals are toxic pollutants that are tough to eliminate
and small quantities can cause an unlimited threat to the environment [1]. Heavy metals
produce oxidative stress and desiccation in plants, which result in the reduction of the
yield and corrosion in the crop quality [2–4]. Photosynthesis and PSII are sensitive to heavy
metals and particularly lead stress. The high concentration of lead can cause a number of
poisonous symptoms in plants including negative effects on photosynthesis. Lead effects
have been illustrated for both donor and acceptor sites of photosynthesis-2 (PS II), the
cytochrome b/f complex, and photosynthesis-1 (PSI). It is commonly known that the PSI
electron transport process is less sensitive to inhibition by lead than photosynthesis-2
(PSII) [5,6].

Lead is the most abundant hazardous metal in the environment, where it is not an
essential nutrient for plants, and it is regarded as a toxic heavy metal due to its widespread
distribution and its extensive environmental and human health problems [7]. Pb(NO3)2 is
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a causal source of pollution in ecosystems [8]. Its major sources are chimneys of factories,
pesticides, fertilizers, and exhausts of automobiles [9]. Lead accumulation is recognized
to cause highly deleterious effects on the growth and yield of plants [10], where it was
reported to induce the production of reactive oxygen species (ROS) and cause oxidative
damage to nucleic acids, proteins, and lipids [11,12] also, Pb-induced ROS scavenging
enzymes in plants [13,14].

The plant growth hormones are often used to relieve abiotic stress in plants. ALA is
considered one of the most vigorous plant growth regulators and the first compound in
the pathway of porphyrin synthesis, which leads to the speeding up of the synthesis of
chlorophyll in plants [15]. It has been found that ALA performs a crucial part in sustaining
optimum plant growth and it improves crop yields [16]. ALA is known to stimulate plant
development and reactions to several stresses [17,18]. It was found that ALA induces stress
tolerance [19,20] and revival of growth under herbicide stress [21].

Salvia officinalis L. (sage) belongs to the Family Lamiaceae. This species is native to
the Middle East and Mediterranean areas and recently it has been naturalized throughout
the world particularly in Europe and North America [22,23]. It is used in folk medicine as
herbal tea and antiseptic, antihydrotic, and anti-inflammatory medicine where it has cura-
tive properties for ulcers, gout, dizziness, rheumatism, hyperglycemia, and seizures [24,25].
Also, it is used as a food additive as dried leaves [26]. For all these fantastic medicinal and
cookery potentialities, S. officinalis is cultivated and many Mediterranean countries, where
sage grows, have substantial gains from its production and export [27]. Lead is counted as
a strong environmental pollutant. Different ecological, evolutionary, and environmental
processes in the microsphere are disordered because of lead toxicity to the microbial com-
munity. Based on this vital evaluation, the effects of increasing doses (control, 100, 200, and
400 µM) of lead nitrate as heavy metal on seed germination and the antioxidant capacity of
sag seedlings were investigated. Also, the present work aimed to investigate the influence
of ALA on the mitigation of lead toxicity in sage plants.

2. Materials and Methods
2.1. Plant Material

Laboratory and greenhouse experiments using pots were designed. The seeds of
Salvia officinalis L. were obtained from the Medicinal and Aromatic Plants, Department
of Horticulture Research Institute, Agriculture Research Center, Egypt and selected for
apparent uniformity in size and shape.

2.2. Germination of Salvia officinalis Seeds

The seeds of Salvia were germinated as described by the authors of [28]. Healthy seeds
were surface treated with a 0.5% (v/v) aqueous solution of HgCl2 for 1–2 min followed
by repeated washing with distilled water. The seeds were divided into three groups and
raised on moist filter paper in Petri dishes. The first group was soaked in distilled water as
a control. The second group was primed in 10 mgL−1 ALA solution for 12 h. The third
group was primed in 20 mgL−1 ALA solution for the same period of time. Each group of
primed seeds was divided into three sub-groups to be watered for 7 days with Hoagland
solution [29] containing 100, 200, and 400 µM of Pb(NO3)2. For the pot experiment, the
seeds were germinated in small plastic pots with sandy soil. Seeds were considered to be
germinated on the first appearance of the radicle. Germination % = Number of germinated
seeds/Total number of seeds [30].

2.3. Treatment of Salvia officinalis Seedlings with Pb(NO3)2

The non-primed seeds (control) and the ones primed in 10 or 20 mgL−1 ALA were left
to germinate for days in sterile Petri dishes or in plastic pots with sandy soil of 70% relative
activity. All seeds were watered with Hoagland solution free from Pb(NO3)2 for 7 days.
Each group of primed seeds in 10 or 20 mgL−1 ALA was then divided into three sub-groups.
The first sub-group was transported to a Hoagland solution with 100 µM Pb(NO3)2. The
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second sub-group was transferred to a Hoagland solution with 200 Pb(NO3)2 and the third
sub-group was shifted to a Hoagland solution with 400 µM Pb(NO3)2. All sub-groups of
seedlings were left to grow for 14 days in a growth chamber under controlled conditions
(12:12 day/night, 25/30 ◦C±2, and photon flux density of 95 µmol m2s−1. The hydroponic
system was continuously aerated using an air pump and the solution was renewed each
48 h.

2.4. Preparation of Leaf Extract of Salvia officinalis

Samples of plant leaves were weighed and homogenized in a pestle and motor with
extraction buffer (pH 7.0) then centrifuged for 10 min at 10,000× g rpm. The obtained
supernatant represented the plant leaf extract.

2.5. Determination of Total Soluble Protein (TSP) Content

The TSP content of leaves of Salvia officinalis L. was determined by the method in
Ref. [31]. A sample of 30 µL of leaf extract was added to a tube and the volume was
made up to 100 µL with 0.15 M NaCl. Then, 1 mL of Bradford’s reagent was added and
mixed well and the absorbance at 595 nm was determined. The protein concentration
in the sample using the calibration curve of bovine serum albumin (BSA) as a standard
was measured.

2.6. Determination of MDA Content

Lipid peroxidation was investigated by the estimation of the malondialdehyde (MDA)
content by the method in Ref. [32]. Samples (200 mg) of the frozen leaves were ground
in 3 mL of 0.2% (w/v) TCA and then centrifuged. A sample (0.2 mL) of the resulting
supernatant was combined with 2 mL of 25% (w/v) TCA including 0.4% thiobarbituric acid
(TBBA) and incubated for 35 min at 95 ◦C. The mixture was cooled in an ice bath and then
centrifuged at 10,000× g rpm for 15 min. The absorbance was recorded at 532 nm.

2.7. Determination of Hydrogen Peroxide Content

Determination of H2O2 content was carried out following Ref. [33]. A sample (0.5 g) of
plant leaves was homogenized with liquid nitrogen then suspended in chilled 5 mL of 0.1%
(w/v) TCA. The homogenate was then centrifuged at 13,000× g rpm for 20 min. A sample
of 0.5 mL of supernatant was mixed with 0.5 mL of 10 mM potassium phosphate buffer
(pH 7.0) and 1 mL of M KI. The reaction was left for 1 h in darkness followed by measuring
the absorbance at 390 nm. H2O2 concentration was determined by using a standard curve.

2.8. Determination of Antioxidant Enzyme Activity
2.8.1. Preparation of Enzymes Extract

Enzyme extract was prepared Ref. [34] where one gm of fresh leaves from control
and treated plants was homogenized with 4 mL of 150 mM phosphate buffer (pH 7.0)
containing 1 mM polyvinylpyrrolidone (1%) and 1 mM EDTA followed by centrifuging at
15,000× g rpm at 4 ◦C for 25 min. The resulting supernatant represented the crude extract
for the enzymes assay.

2.8.2. Assay of Enzymes
Assay of Ascorbate Peroxidase (APX, EC: 1.11.1.11)

The activity of ascorbate peroxidase (APX) was determined by the method in Ref. [35].
It is a spectrophotometric method where the rate of decrease in absorbance of ascorbate
during its oxidation is measured at 290 nm wavelength. Half gram of plant leaves was
mixed with 10 mL of phosphate buffer (50 mM pH 7.5) comprising 0.3 mM EDTA and
homogenized in a pestle and mortar followed by centrifuging for 25 min at 10,000× g rpm
at 4 ◦C.

The supernatant was transported to another tube and used as enzyme extract. The
enzyme was assayed in 1 mL cuvette containing 350 µM ascorbate, 0.5 mM EDTA, 2 mM
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H2O2, 100 mM potassium phosphate buffer (pH 7.0), and 100 µL enzyme extract. The rate
of reduction in absorbance at 290 nm in the course of ascorbate oxidation was read.

Assay of Glutathione Peroxidase (GPX, EC: 1.11.1.9)

Glutathione peroxidase (GPX) activity was estimated by [36]. Plant extract (50 µL),
3 mL of extraction buffer (pH 7.5), 0.3 mL of sodium azide and 0.2 mL EDTA were mixed.
Glutathione (2 mL) and 0.2 mL of H2O2 were included in the mixture and incubated at
37 ◦C for 10 min followed by termination of the reaction after 15 min by 0.5 mL of 10%
TCA. The samples were then centrifuged. The supernatant was assayed for glutathione as
mentioned previously.

Assay of Superoxide Dismutase (SOD, EC: 1.15.1.1)

SOD activity was determined following Ref. [37]. The assay is based on its capacity to
hinder the photochemical reduction of the nitro blue tetrazolium (NBT). The assay mixture
(3 mL) contained 100 mM phosphate buffer (pH 7.8), 20 mM methionine, 520 µM NBT,
10 µM EDTA, 30 µM of riboflavin, a sample (50 µL) of the enzyme extract, and 300 µL the
reaction was allowed to stand 20 min under 4000 lx light. The absorbance was taken at
560 nm.

Assay of Glutathione Reductase (GR, EC: 1.6.4.2)

GR assay was carried out according to Ref. [38] by measuring the reduction in ab-
sorbance at 334 nm due to NADPH oxidation. The assay mixture of 3.0 mL contained 1 mM
oxidized glutathione (GSSG), 2 mM EDTA, 150 mM extraction buffer (pH 7.5), 0.4 mM
NADPH, and 100 µL enzyme preparation at 30 ◦C.

2.9. Statistical Analysis

The experimental design was randomized completely. All values represent the mean
of four replicates. Data were exposed to ANOVA and examined by Duncan’s multiple
range tests at 0.05 probability level using the COSTAT 6.3 program. Values represent the
mean ± SD (n = 3). Means monitored by the similar letter did not significantly vary at
p ≤ 0.05 fitting to Duncan’s multiple range tests.

3. Results

The data in Figure 1A,B indicate that the germination percentage of Salvia officinalis
seeds in hydroponic and in pot experiments were decreased gradually with an increase
in the concentration of Pb(NO3)2 (100, 200, and 400 µM). The germination percentage of
S. officinalis seeds in Petri dishes treated with 400 µM solution was 19.33% and 23.33% at
both Hoagland’s nutrient solutions and pot experiments, respectively.

Priming seeds in 10 or 20 mg L−1 of ALA, the application of ALA increased the
percentage of germination of S. officinalis seeds under all the tested concentrations of Pb
(100, 200, and 400 µM) in both experiments. ALA at 20 mgL−1 was most effective in the
alleviation of lead stress compared to 10 mgL−1 of ALA.

The results represented in Figure 2A,B showed that the total soluble protein content
in S. officinalis leaves grown in hydroponic and in pot experiments was reduced under the
various tested concentrations of Pb and the reduction was concentration-dependent. Alle-
viation of Pb stress in S. officinalis plants in hydroponic or pot experiments was dependent
on ALA concentration.

Lipid peroxidation (MDA) as a marker of stress was determined to investigate the
oxidative stress in S. officinalis under Pb treatment. The illustrated data in Figure 3A,B
indicated a low level of MDA in control plants, however, in Pb-treated plants, MDA
increased gradually depending on the concentrations of Pb. The highest value was recorded
under treatment with 400 µM Pb concentration. Application of ALA resulted in reducing
H2O2 contents by 18.57% and 34.96% in hydroponic as well as 16.84% and 30% in pot
experiment at 10 and 20 mg L−1 level of ALA.
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Production of both hydrogen peroxide (H2O2 and MDA) was increased apparently in
response to Pb stress, and the increase was significantly counteracted by priming in ALA.
The obtained results indicated the presence of low concentrations of H2O2 in plants whose
seeds were treated with water, 10 and 20 mgL−1 of ALA (Figure 4A,B).
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Figure 4. Effect of various concentrations of Pb(NO3)2 on H2O2 content in leaves of Salvia officinalis and stress alleviation by
ALA in hydroponic (A) and pot experiment (B).

However, H2O2 increased gradually under Pb treatments in a concentration-dependent
manner. The highest contents of H2O2 in leaves of treated plants were 11.0 and 16.00 nmol g−1

FW at 400 µM Pb in hydroponic and pot experiments, respectively. Priming of S. officinalis
seeds in 10 or 20 mgL−1 of ALA resulted in partial alleviation of Pb stress.

The alleviation of lead toxicity was represented by 29.07% and 50.09% in the presence
of 10 or 20 mg L−1 of ALA, respectively. Pb stress potentially disturbed the enzymatic
activities of S. officinalis plants. This experiment indicated an appreciable activity of
ascorbate peroxidase (APX) in the control plants (Figure 5A,B).
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However, APX increased progressively with increasing Pb concentrations in the leaves
of S. officinalis plants whose seeds were primed or not primed in ALA. The highest activities



Plants 2021, 10, 1969 7 of 13

were 31.43 and 40.57 units mg−1 protein in hydroponic and pot experiments, respectively.
In the treatment with 400 µM of Pb, the increase was about five times that of the control.
Priming seeds in ALA decreased APX activity and the ameliorative role of ALA was more
apparent with 10 than 20 mg L−1 in hydroponic and pot experiments.

Regarding the activity of glutathione peroxidase (GPX), it takes place in the same
manner as the other antioxidant enzymes. As indicated in Figure 6A,B, GPX increased
under treatments with Pb at various concentrations. Priming seeds in ALA lowered the
activity of the GPX enzyme and 20 mg L−1 of ALA was more effective than 10 mg L−1.
This was recorded for plants grown in hydroponic and pot experiments.
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Concerning superoxide dismutase (SOD), the results illustrated in Figure 7A,B showed
that low activity was observed in control plants and enhanced under Pb treatment with
various concentrations. However, SOD increased continuously with increasing the con-
centration of Pb. The highest activities of SOD were 34.0 and 38.37 units mg−1 protein
recorded at 400 µM Pb in hydroponic and pot experiments, respectively.
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ALA either at 10 or 20 mg L−1 ameliorated partially the induced stress by Pb treat-
ments on Salvia plants and this was apparent by the lowered activity of SOD under the
treatments with various concentrations of Pb. The enzyme activities were decreased by
41.09% and 61.26% under Pb 400 µM treatment in hydroponic experiments with 10 and
20 mg L−1 ALA. Also, SOD activity was lowered by 37.45 and 52.12% in pot experiments
under Pb 400 µM at ALA 10 and 20 mg L−1 level, respectively.

The results indicated in Figure 8A,B showed that GR activity increased under all Pb
treatments. However, ALA treatment lowered the GR activity, lowering in the rate of
activity at 20 mg L−1 ALA was higher than that recorded at 10 mg L−1 of ALA.
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4. Discussion

The results obtained in the present study showed that the treatment of Salvia officinalis
with Pb (0, 100, 200, 400 µM) showed a considerable alteration in the measured physio-
logical parameters in both hydroponic and pot experiments. Thus, there is a reduction
in the percentage of seed germination of S. officinalis, which may be attributed to the fact
that Pb treatment reduced the rate of cell metabolic processes such as cell division, nucleic
acid synthesis [39] and Pb impaired seedling development, as well as chlorophyll produc-
tion [40]. In addition, increasing levels of Pb in soil inhibited the germination of seeds and
affected the plant metabolism [41].

On the other hand, plant growth was improved under the combined treatment of
ALA (10 and 20 mg L−1) and Pb stress. This increase in seed germination with ALA might
be owing to the fact that ALA has an enhancing effect in regulating various metabolic
processes, due to this behavior, the growth and yield of most plants under abiotic stresses
have been improved [42]. It has been reported that ALA improved plant growth by
alleviating cadmium [43] and lead effects in oilseed rape (Brassica napus).

The present results regarding total soluble protein (TSP) revealed that there is a
decline in TSP content with increasing Pb concentration in untreated sage plants with
ALA. Tamás et al. [44] and El-Shora et al. [45] reported that Pb treatment reduced protein
content, which may be attributed to oxidative modifications by ROS [46] produced under
Pb stress [47–49]. Also, priming seeds in ALA possibly increases the defense system
through induction of antioxidant synthesis [50].

The data indicated that S. officinalis treated with both concentrations of ALA before
Pb treatment showed an increase in MDA content comparing to the control. These results
are in harmony with the fact that plants grown under stressed conditions create free
radicals leading to lipid peroxidation of membranes and increasing MDA content [51,52].
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Lipid peroxidation is a biochemical marker for the free radical-mediated injury with
increasing lead concentration in Talinum triangulare leaves [53,54]. MDA is responsible for
cell membrane damage, and it is one of the final products of peroxidation of unsaturated
fatty acids in phospholipids [55]. In lipid peroxidation, the free radicals take away electrons
from membrane lipid leading to cell membrane damage [56].

The level of ALA in plants originated from primed seeds in water or ALA expressed
lower content of H2O2 compared to those treated with various concentrations of Pb. The
increase in H2O2 content as one of ROS in Salvia leaves under Pb treatments, whether
in hydroponic or pot experiments, reflected the oxidative stress stimulated by Pb and
these results agreed with those reported by the authors of [57] and might be due to the
destabilization of membranes by increasing Pb levels. It has been reported that ROS were
produced under stress conditions and are eliminated by antioxidant systems [58]. Pb
toxicity enhances the ROS production in mitochondria, chloroplasts, and peroxisomes [59].
Rasheed et al. [60] reported that application of ALA diminishes the levels of both MDA
and H2O2 and consequently reduces the oxidative damage in sunflower subjected to
water stress.

Higher plants have an antioxidant system that diminishes oxidative stress. This
system involves antioxidant enzymes that support plants with adaptation and survival
under various stresses and oxidative damage [61,62]. The results reveal a higher level of
antioxidant activities in plants whose seeds were primed in ALA at 10 and 20 mg L−1 than
those of the control plants. It seems likely that ALA enhanced the activities of the various
enzymes of ROS hunting. In plants grown from seeds primed in ALA and treated with
Pb, the activities of the four estimated antioxidant enzymes (APX, GPX, SOD, and GR)
improved continuously but with slower rates compared to the plants grown from seeds
primed in water possibly because Pb concentrations seem likely to be high.

Ascorbate peroxidase (APX) is located in chloroplasts as well as cytosol and represents
a key enzyme in the ascorbate cycle where it exchanges H2O2 by negotiation of ascorbate
as an electron donor and formation of H2O [63]. In this study, APX activity increased
under treatment with Pb depending on the concentration, which indicates its role in the
defense mechanism under stress. Regarding GPX, its activity increased under Pb stress
in the present investigation, and this is in harmony with the results of [64], where GPX is
involved in removing ROS production under stress.

The increment in the SOD activity in the present work under lead stress is probably
due to the reduction of superoxide radicals [65]. Superoxide radicals are considered to be
the first radicals produced under stress, and SOD converts superoxide radicals quickly into
H2O2 and O2. Thus, SOD plays an important part in scavenging free radicals [66].

Glutathione reductase (GR) is involved in the AsA-GSH cycle and performs a critical
function in scavenging ROS under stress and maintains both AsA and GSH levels in living
cells [67].

Various researchers suggested that ALA can alleviate stress through improving an-
tioxidant enzyme activities while scavenging ROS [62,68,69] and this is what the results in
the present investigation proved either in hydroponic or pot experiments. The activities
of the measured enzymes in plants originated from water-primed seeds were higher than
those primed in ALA and then treated with Pb and this might be due to the use of higher
Pb concentrations.

Priming of Salvia seeds in 10 or 20 mg L−1 ALA expressed an ameliorative effect on Pb
toxicity. ALA is a common precursor of tetrapyrroles as well as a crucial growth regulator
in higher plants and has been reported to be effective in improving photosynthesis and
alleviating the adverse effects of various abiotic stresses in higher plants such as salinity
stress in cucumber seedlings [70]. It has been described that ALA protects seedlings of
plants against stress by preventing lipid peroxidation, induction of antioxidant enzyme
activities, regulating endogenous hormones in addition to nutrient accumulation [70]. Also,
ALA improved the tolerance against salt stress in Isatis indigotica [71].
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5. Conclusions

Pb markedly reduced germination and protein content but increased MDA, H2O2
levels, and the antioxidant enzyme activities in S. officinalis (Sage) leaves. Priming seeds
in ALA (10 and 20 mg L−1) decreased the levels of both H2O2 and MDA. In addition, it
lowered the induced GPX, APX, SOD, and GR under Pb treatment. Hence, priming seeds
in ALA is valuable for the alleviation of Pb stress in S. officinalis and possibly in other plants.
Nonetheless, more investigations are crucial to evaluate the genuine mechanism of ALA in
alleviating the heavy metal (Pb) stress in plants.
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