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ABSTRACT

Motivation: A reconstruction of full-length transcripts observed by
next-generation sequencer or tiling arrays is an essential technique
to know all phenomena of transcriptomes. Several techniques of the
reconstruction have been developed. However, problems of high-
level noises and biases still remain and interrupt the reconstruction.
A method is required that is robust against noise and bias and
correctly reconstructs transcripts regardless of equipment used.
Results: We propose a completely new statistical method that
reconstructs full-length transcripts and can be applied on both
next-generation sequencers and tiling arrays. The method called
ARTADE2 analyzes ‘positional correlation’, meaning correlations of
expression values for every combination on genomic positions of
multiple transcriptional data. ARTADE2 then reconstructs full-length
transcripts using a logistic model based on the positional correlation
and the Markov model. ARTADE2 elucidated 17 591 full-length
transcripts from 55 transcriptome datasets and showed notable
performance compared with other recent prediction methods.
Moreover, 1489 novel transcripts were discovered. We experimentally
tested 16 novel transcripts, among which 14 were confirmed
by reverse transcription–polymerase chain reaction and sequence
mapping. The method also showed notable performance for
reconstructing of mRNA observed by a next-generation sequencer.
Moreover, the positional correlation and factor analysis embedded in
ARTADE2 successfully detected regions at which alternative isoforms
may exist, and thus are expected to be applied for discovering
transcript biomarkers for a wide range of disciplines including
preemptive medicine.
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1 INTRODUCTION
Every cell of every organism has a signature set of RNA
molecules with certain fractions, called the transcriptome. The
transcriptome carries out specialized cell activities. To know all
about the transcriptome is an essential step for understanding
life. Several technologies are developed therefore to observe
the transcriptome. Hybridization-based methods with genome
tiling arrays have been used to approach all phenomena
in the transcriptome for species such as humans, mice or
Arabidiopsis thaliana whose genome sequences have been read
with high quality (Shoemaker et al., 2001; Yamada et al., 2003).
On the other hand, high-throughput sequencers, typically called
next-generation sequencers (NGS), are emerging as a major
equipment to acquire information about transcriptomes by the
method called mRNA-Seq, because they can be applied not only
for well-studied organisms but also for other exotic organisms
(Mizrachi et al., 2010; Xu et al., 2011).

Using either method, a reconstruction of the shape of full-
length RNA/transcripts from observation results is still a critical
step in the study, because both genome tiling array probes and
NGS reads are short (<100 nt) and represent partial observations
of original molecules whose lengths are 1000 nt and more.
There are several computational programs that address this
issue. We have also developed ARTADE1, an abbreviation
for ‘ARabidopsis Tiling-Array-based Detection of Exons’—the
previous version of ARTADE, to reconstruct the shape of mRNA
molecules based on genome information and mRNA expression
profiles from genome tiling arrays (Toyoda and Shinozaki, 2005).
Cufflinks is one of the major programs applied for mRNA-
Seq results (Trapnell et al., 2010). However tiling array and
mRNA-Seq results often contain high levels of noise, which
may come from observation machinery and biological fractions
(Roberts et al., 2011a; Royce et al., 2005, 2007). This makes the
reconstruction of full-length transcripts more difficult if the dynamic
range of expression values is low. Besides, it is known that
amplification, hybridization and sequencing biases cause bad effects
on observations. Almost all recent methods try to reconstruct full-
length transcripts by only using transcriptome on a single condition.
We think, however, there is a theoretical limit to the extent these
methods can remove noise and bias.
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ARTADE2 takes a novel approach to these problems named
‘positional correlations’ that are correlations of expression values
for every combination of genomic positions in multiple conditions
(Fig. 1). The approach is based on the principle that the correlation
coefficient of expression values derived from the same RNA
molecule must be 1 for every pair of positions corresponding
to the RNA molecule. Positional correlation also has robustness
even if expression values suffer from sequence bias, amplification
and noise (details are described in Section 2.1). The concept
of correlations is common to tiling arrays and next-generation
sequencing. We established this idea with our new statistical
method termed ARTADE2. ARTADE2 and the positional correlation
information allow us to treat multiple sets of transcriptomes and
obtain more reliable full-length transcripts. With this article, we
show that ARTADE2 certainly improves reconstruction of RNA
molecules shapes. ARTADE2 inherits some ideas from ARTADE1
about the statistical model for transcription and genome sequence
information. ARTADE1 used the expression values themselves to
elucidate the exon structure genome sequence under the assumptions
of the Markov model, but did not take correlation into account
(Toyoda and Shinozaki, 2005). ARTADE2 in contrast also can be
applied to all species whose genome have been read and can treat
NGS data.

ARTADE2’s positional correlation approach also has good
performance in detecting mRNA regions that may have alternative
splicing, transcript starts and polyadenylation sites. If RNA
molecules of alternative isoforms are observed under some
conditions, positional correlations between the isoform region and
another exon region must be not 1, because fractions of expression
values for these regions are different in some conditions. In this
article, we propose a method for dissecting the difference of
positional correlations based on factor analysis. We demonstrate
that ARTADE2 can detect and visualize alternative isoforms from
multiple transcriptomes.

2 METHODS

2.1 Reconstruction of full-length transcripts from
positional correlations with a mathematical model

The full-length transcript structure was predicted using a mathematical model
based on ‘positional correlation’ that checks every possible combination of
tiling arrays or tags of mRNA-Seq under multiple conditions (Fig. 1). Ideally,
expression values of the k-th condition (k =1...,K) derived from the same
RNA molecule have the same value vk in all positions of its exon regions. Let
p={p1,...,pt} be set of exon positions and vpl ={v1

pl
,...,vK

pl
} be expression

values of position pl . Obviously, r(vm,vn)=1 for every position pair (m,n)
in p, where r represents Pearson’s correlation, because vk

m =vk regardless of
position m. The correlation also has robustness of bias and amplification
attributed independently to each probe. The correlation r(vm,vn) is still
1 even if the expression value of position m is changed by bias and
amplification i.e. vk

m =Amvk +Bm, where Am is the amplified coefficient and
Bm is bias by sequences around position m, respectively. If noise is added,
for example vk

m =Amvk +Bm +ε(0,σ2
m), where ε(0,σ2

m) is Gaussian noise of
mean 0 and variance σ2

m(<∞) and independent with all others, unfortunately
an expectation of r(vm,vn) is σvmσvn/

√
σ2

vm +σ2
m

√
σ2

vn +σ2
n <1, where σ2

vm is
variance of vm. Even if this is the case, variances σ2

vm and σ2
vn increase when

including multiple conditions which have variety of expression values in
contrast to fixed σ2

m and σ2
n . The influence of noise therefore is reduced with

an increase of condition variations. Moreover, if there are no observations
derived from RNA molecules at position m i.e. vk

m =Bm +ε(0,σ2
m) for all

Fig. 1. Positional correlation of transcriptomes mapped on a 2D omic-space
plane (Toyoda and Wada, 2004). Positional correlations are calculated from
every possible combination of 18 conditional (55 experiments) tiling arrays.
Prediction of exon structure using only one measurement is difficult because
each fragment is influenced by bias and noise. Exon structure is clearly
shown, however, by using positional correlations of tiling array probes. As
a result, ARTADE2 could predict two transcripts in the region including
a novel transcript (chromosome 1 Plus 11616183..11617412). The novel
transcript was also evaluated by reverse transcription–polymerase chain
reaction (RT–PCR) and cDNA sequencing. (find OMAT1P011320 on Fig. 6
and Supplementary Table S5.)

k, an expectation of r(vm,vn) is 0 for every n. As a result, the structure of
the transcript emerges by taking positional correlations of genomic positions
under multiple conditions (Fig. 1).

We named the reconstruction method as ‘ARTADE2’. The ARTADE2
algorithm is illustrated in Figure 2. In this algorithm, we use the
positional correlation matrix score (PCS) to measure consistency between
the predicted transcript and its positional correlations using threshold of
correlation coefficient θ (the calculation procedure for PCS is described
in Supplementary Fig. S1). PCS is high if many positional correlations
have higher values than θ for pairs of positions both of which belong to
exons of the same transcript, while positional correlations have smaller
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Fig. 2. ARTADE2 algorithm. A region in which positional correlations are
high is selected as a candidate for predicted transcripts. Then estimations of
threshold parameter and exon structure are alternately iterated while PCS
increases. Finally, a transcript is obtained if the PCS value of the transcript
exceeds 0.5.

values than θ for the pairs of other combinations of positions; i.e. exon–
intron, intron–intron, exon–intergenic region or exons of different transcripts.
PCS becomes, therefore, a criterion for determining whether the predicted
transcript should be recorded.

ARTADE2 predicts transcript s by a logistic model based on Markovian
nucleotide transitions of genome x and the PCS of positional correlations R
formulated as

P(S=s|x,R,θ)= exp{αMTS(s,x)+βCMS(s,R,θ)+ξIS(s)+ES(s)}
Z(S)

, (1)

where Z(S) is the normalized constant. There are four scores in Equation (1).
Markov transition score (MTS) is obtained from the probability of Markov
transitions for states of transcripts and genome sequences. Correlation matrix
score (CMS) is proportional to transcript length and PCS. Exon score (ES)
and intron score (IS) are calculated from probabilistic distributions of exon
and intron lengths of predicted structure. Exons and introns of the transcript
are iteratively estimated by maximizing Equation 1) and optimizing threshold
parameter θ. Hyperparameters α, β and ξ were previously estimated by
training with 2813 RIKEN Arabidopsis full-length (RAFL) cDNAs on the
plus strand of Chromosome 1. A mathematical description of the method
is described in Supplementary Material: ARTADE2 Mathematics. We then
record the transcript when the final estimated transcript has a PCS value
>0.5. The prediction is continued until the entire genome has been scanned.

2.2 Preparing for comparison targets
This article describes our use of the original ARTADE model (Toyoda and
Shinozaki, 2005), which we namedARTADE1, for performance comparisons
with our present method. ARTADE1 predicts transcripts from one sample
tiling arrays and sequences of nucleotides through the Markov model
(Supplementary Fig. S2). Transcripts with P <1×10−8 for their structures
were independently predicted under 18 different conditions by ARTADE1.
We chose a representative transcript by selecting the predicted transcript with
the lowest P-value among the 18 conditions. The method can be downloaded
from www.sourceforge.net (the present version is 1.2.2.2).

We also performed Cufflinks and Cuffmerge (Roberts et al., 2011b;
Trapnell et al., 2010) to reconstruct transcripts based on NGS data, which
were used as comparison targets. Initially, we performed Cufflinks on each
mapping result, and then we merged the predicted sets with Cuffmerge.
For the transcript set for Cufflinks, we selected the longest predicted model
as the representative transcript if there are more than two predicted models
in the same locus.

Fig. 3. Calculation procedure of match rate used in Tables 1 and 2. The
size of each region used for the match rate is measured at single nucleotide
resolution.

2.3 Evaluation of predicted transcripts
We compared predicted full-length transcripts with references to assess a
performance ofARTADE2. The set of predicted transcripts must be expressed
under some conditions. Besides this, most of predicted transcript structures
must correspond to known transcript structures of Arabidopsis, because
the full-length cDNAs of Arabidopsis have been significantly researched
as a model for plant species. We therefore compared predicted transcripts
with 39 361 TAIR9 (The Arabidopsis Information Resource version 9)
gene models (http://www.arabidopsis.org). The TAIR8 genome is used for
mapping of tiling arrays and mRNA-Seq data. We therefore transferred the
TAIR9 gene models according to the TAIR8 genome. We paired predicted
transcripts with the TAIR9 reference if they had at least 30% overlap in the
region. If more than two transcripts fit, we selected the best-fit transcript
pair by comparison among them. The judgment boundary about correctness
of 5′ and 3′ ends was set at a 300 bp distance between the prediction and
TAIR9 ends. The match rate of the predicted transcript was calculated from
a correspondence as shown in Figure 3.

For Figure 5, Supplementary Figs S6 and S7, we calculated precision
and recall of the predicted transcript models on references with a way
modified from the match rate, because some prediction methods used
for the comparison provide multiple transcript models for a single locus.
Locations outside the transcripts (O) and introns (I) were treated as the same
in calculations of precision and recall. We also allowed correspondences
between multiple predicted transcripts and multiple reference transcripts.
When a position had inconsistency in multiple transcripts of prediction or
annotation, such as exon and intron or exon and outside, the position was
considered as an exon.

2.4 Implementation of factor analysis
The factor analysis method embedded in ARTADE2 is based on a maximum
likelihood (ML) method. The first and second factors obtained by ML method
are rotated obliquely using the criterion of promax rotation (Hendrickson and
White, 1964) after an orthogonal varimax rotation (Kaiser, 1958). From the
obtained first and second major factor loadings, we checked availability of
separation for the predicted transcript. If different factors were found, we
re-predicted the transcript by dividing the region at the edge of two factors.

The same techniques were also applied to exons of the transcript predicted
by ARTADE2 for the detection of alternative isoforms. The detected region
consists of a cluster of high factor loading probes. For the detection, the
number of factors was estimated by using minimum average partial method
(Velicer et al., 2000). We here define a ‘discreteness’ value given to each
cluster. The discreteness value measures a density of high factor loadings
in cluster. Detail for the cluster detection algorithm and a definition of the
discreteness is described in Supplementary Material (sections: Use of factor
analysis to remove concatenation of different transcripts and and Factor
Analysis for detection of regions having alternative isoforms).
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2.5 Dataset
We used tiling arrays for 55 experiments with A.thaliana observed under
18 conditions (Supplementary Table S1). The GeneChip Arabidopsis tiling
arrays set (1.0F Array and 1.0R Array, Affymetrix) was used. Details of RNA
sample preparation were described previously (Matsui et al., 2008; Okamoto
et al., 2010). Probe sequences of the tilling array set were mapped to genome
of Arabidopsis TAIR8. The tiling array has intensity of perfectly matching
(PM) probes and mismatch (MM) probes. We calculated expression signals
from PM, MM values with MAS5 algorithm. Pre-processing of tiling array
data were described earlier (Iida et al., 2011). All data are available at Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/info/linking.html)
under accession numbers GSE9646, GSE15700 and GSE26074.

We also used mRNA-Seq dataset with SOLiD3 Plus system (Applied
Biosystems) for 16 libraries from 7 conditions (Supplementary Table S1),
which are a subset of samples used for tiling array experiments. We
mapped mRNA-Seq tags to the A.thaliana genome (TAIR8) with TopHat
(Trapnell et al., 2009). We normalized mRNA-Seq data into each library
having 1 GB of tags (i.e. 20 million reads); see Supplementary Table S2.

3 RESULTS AND DISCUSSION

3.1 Full-length transcript structures predicted with
ARTADE2 significantly validated by references

ARTADE2 was used to predict 17 591 full-length transcripts. In
total, 16 102 of predicted transcripts were categorized to already
annotated regions with TAIR9. Table 1 shows the predicted results
of ARTADE2 (the pairing procedure of prediction and references
is described in Section 2.3). Gene ends were correctly matched in
∼90% of ARTADE2 predicted transcripts with an 83.24% structure
match rate. Table 2 lists the prediction accuracies of ARTADE2
regarding PCS. Excluding transcripts with extremely high PCS
values, the clarity of the transcript is directly correlated to the PCS
value.

For comparison with a single condition method, 15 459 transcripts
were predicted by ARTADE1 (version 1.2.2.2) (Toyoda and
Shinozaki, 2005), as explained in Section 2.2 (results of ARTADE1
on an individual condition are shown in Supplementary Table
S3). Among them, 14 661 transcripts were categorized to already
annotated regions. ARTADE2 is superior to ARTADE1 with regard
to both end and transcript structure predictions. Furthermore,
the number of transcripts predicted by ARTADE2 is larger
than that predicted by ARTADE1. ARTADE1 particularly tends
to overestimate ends compared with ARTADE2 (Supplementary
Fig. S3). This overestimation produces incorrect results for RNA
metabolism analysis or insignificant results for gene co-expression
analysis because of an interfusion of expression values in the extra
regions.

Supplementary Figure S4 shows box plot of relative importance
(RI) calculated with four scores defined in Equation (1). The value
of RI is the difference between scores of predicted transcripts and
calculated under the assumption that the region was intergeneic. The
CMS that is proportional to PCS contributes the most to ARTADE2
prediction.

3.2 ARTADE2 shows high precision and recall against
highly expressed gene models

It is considered that most of the predicted transcript structures must
match with already known transcript structures of TAIR9 and these
transcripts should express under some conditions. Supplementary

Table 1. Accuracies of prediction results

Method Number of 5′ end 3′ end Structure
match models predictiona predictiona match rateb

(%) (%) (%)

ARTADE2 15 804c 88.66 91.67 83.24
ARTADE1 14 554c 84.37 83.78 78.31

aRate of models whose 5′ or 3′ end distance from TAIR9s end are with in 300 bp.
bDefinition is written at Figure 3.
cModels involved best pairs with annotated models based on match rate in 16 102
(ARTADE2) and 14 661 (ARTADE1) predicted models which were categorized as
already annotated.

Table 2. Match rate of predicted transcripts with ARTADE2 concern
about PCS

PCSa Number 5′end (%) 3′end (%) Match rate (%)

< 0.5, ≤ 0.6 813 73.06 82.41 73.18
< 0.6, ≤ 0.7 4524 83.22 89.06 80.51
< 0.7, ≤ 0.8 6167 90.92 92.52 84.57
< 0.8, ≤ 0.9 3509 94.21 94.93 86.68
< 0.9, ≤ 1.0 791 93.55 95.07 83.58

aA calculation procedure of PCS is described in Supplementary Figure S1.

Figure S5 shows histogram of maximal expression values among
55 experiments and about 33, 239 TAIR9 representative gene
models. It seems that there are two different distributions in the
histogram. One is considered as the distribution of gene models,
which have only background bias and noise and the other is
considered as the distribution of gene models ,which express
under at least one condition. Moreover, that these two distributions
overlap considerably was also mentioned by Royce et al. (2005).
However, it seems that highly expressed transcripts, for example
whose expressions over e7, do not overlap with the background
and noise distribution. Figure 4 shows a histogram of expressions
of TAIR9 representative gene models and predicted transcripts by
ARTADE2 without novel detections. The histogram of ARTADE2
seems consistent with the distribution of the expressed gene models.

We compared predicted transcripts of ARTADE2 to TAIR9 gene
models while limiting to 7460 highly expressed gene models whose
expressions were over e7 to access performance of ARTADE2 in
reconstructing actually expressed transcripts. We paired predicted
transcripts with the 7460 references that mutually overlap in at
least 30% of their region. Figure 5 shows a precision and recall
curve of exons between TAIR9 genes and predicted transcripts
with ARTADE2 and other methods. Tiling Analysis Software
(TAS), developed according to Affymetrix, detects the expressed
region from tiling array probes. We note here that the TAS
method is used only to detect expressed regions and can hardly
predict any full-length transcripts. AUGUSTUS predicts genes in
eukaryotic genomic sequences with a complicated hidden Markov
model (Stanke and Waack, 2003). The hidden Markov model of
Arabidopsis used for AUGUSTUS was based on 24 766 genes
(http://augustus.gobics.de), while ARTADE2 was based on 2813
RAFL cDNAs on the plus strand Chromosome 1. In comparison to
Figure 5, ARTADE2 had the largest area under the precision–recall
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Fig. 4. Histograms of maximum expression values for 33 239 TAIR9
representative gene models and for predicted transcripts of ARTADE2
without novel gene candidates. The ARTADE2 histogram overlaps with the
right peak of the TAIR9 histogram where expression values are high.

curve. Total recalls of ARTADE2 and AUGUSTUS are much the
same (0.86 and 0.89, respectively). ARTADE1 had low precision
for highly expressed genes because transcripts of low P-value of
ARTADE1 tended to predict multiple gene models of references as
one transcript.

Precisions of ARTADE2 transcripts are also high in comparison
with all TAIR9 gene models (Supplementary Fig. S6). In the result,
AUGUSTUS has a high recall rate because AUGUSTUS predicts
gene models by searching code transitions, which are similar to
the transition model learned by known gene models in the entire
genome. In contrast, ARTADE2 restricts the predicted region where
probes are highly correlated since RI of CMS is high (Supplementary
Fig. S4) while ARTADE2 also uses genomic sequence information.
We segment these methods shown as Table 3.

3.3 ARTADE2 shows probable novel gene candidates
In total, 1489 transcripts existed in un-annotated regions. Among
them, 1319 transcripts were allocated as antisenses of TAIR9 genes,
and 170 transcripts were completely un-annotated. We confirmed
that 1089 (73.1%) of novel genes were verified by mRNA-Seq, small
RNA evidence (Lister et al., 2008), analysis of 5′ end tag sequences
of uncapped RNAs derived by a method called parallel analysis
of RNA ends (PARE, (German et al., 2009), mass spectrometry
outputs for proteomes [mass (Baerenfaller et al., 2008; Castellana
et al., 2008; Grobei et al., 2009; Piques et al., 2009; Reiland et al.,
2009)] and cap analysis of gene expression [CAGE, (Kodzius et al.,
2006)]; see Table 4 and Supplementary Table S4 for more details. In
particular, the number of un-annotated transcripts verified by mass
spectrometry was only 88 (5.9%) compared with an 81.2% support
of known gene models. Therefore, most of the novel transcripts are
considered non-coding RNAs.

To confirm the existence of novel gene candidates, we performed
strand-specific RT–PCR assays as described in Supplementary
Material (section of RT–PCR assays for detecting novel gene
candidates). We considered a gene to be confirmed if it had a
PCR product for which its size was near the predicted size and its
sequence was correctly mapped on the predicted locus. We tested

Fig. 5. Precisions and recalls for exons between TAIR9 gene models and
transcripts predicted with several methods. The precision and recall are
calculated at a single nucleotide resolution. The plot curve shifts with
PCS values (ARTADE2) or P-values (ARTADE1, AUGUSTUS, TAS).
7460 TAIR9 gene models with expressions over e7 were used to compare
references. Transcripts used for the comparison were limited to those that
overlap mutually with references in at least 30% of the genome region from
5′ end to 3′ end. The precision–recall curve of ARTADE2 covers the largest
area of all methods.

16 gene candidates found in the completely un-annotated regions
and obtained positive results for 14 of them (87%); see Figure 6 and
Supplementary Table S5. The high rate of successful confirmation of
real transcripts indicates the reliability of ARTADE2 for predicting
novel genes.

3.4 Application of ARTADE2 on NGS data
ARTADE2 is not only a method for tiling arrays but also for mRNA-
Seq data obtained from whole transcriptome shotgun sequencing
by NGS. To test performance of ARTADE2 on NGS data, we
applied slightly modified ARTADE2 programs on a set of NGS
data (see section: Expansion of ARTADE2 for mRNA-Seq data
in Supplementary Material). We name the method for NGS as
‘NGS-ARTADE2’.

We also confirmed the performance of NGS-ARTADE2 by the
same procedure used in the result of tiling arrays while comparing
the result of Cufflinks. The histogram of maximum expression values
of tag counts on TAIR9 representative models among 16 experiments
seems to have two distributions of only background and noise and
of expressed genes as well as in the case of tiling arrays; see
Figure 7. There was also similar result for the tiling arrays so that
the histogram of NGS-ARTADE2 was approximately consistent to
the distribution of the expressed genes. However, the histogram of
Cufflinks deviates for both distributions of TAIR9. Table 5 shows
accuracies between NGS-ARTADE2 versus Cufflinks calculated
by same procedure used for tiling array study (Table 1). NGS-
ARTADE2 has superior accuracies than Cufflinks even allowing
for the difference in numbers of match models.

Precisions and recalls of exons of predicted transcripts which
overlap with highly expressed TAIR9 gene models (having over
e6 tag means) are almost same for NGS-ARTADE2 and Cufflinks,
see Supplementary Figure S7. However, NGS-ARTADE2 shows
a prediction performance over Cufflinks for reconstruction of
full-length transcripts. To assess the performance, we calculated
coverage on transcription regions for all pairs of predicted and
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Table 3. Types of methods for transcript finding

Method Base information Target transcript Reliability of coding sequence Expression analysis

AUGUSTUS Genome Whole genome ++ Requires other RNA information
TAS RNA Expressed region − +
ARTADE1 Genome / RNA Expressed region + +
Cufflinks (with Cuffmerge) RNA (Multiple) Expressed region + ++
ARTADE2 Genome / RNA (Multiple) Expressed region + ++

++, very good; +, good; −, impossible.

Table 4. Verification table of predicted transcripts withARTADE2 by several
evidences

Known (16 102) Novel (1489)

Count Ratio (%) Count Ratio (%)

mRNA-Seq 14 553 90.4 278 18.7
small RNA 3873 24.1 231 15.5
PARE 15 774 98.0 857 57.6
mass 13 067 81.2 88 5.9
CAGE 12 897 80.1 486 32.6
No other evidences 92 0.6 400 26.9

reference gene models (Fig. 8). NGS-ARTADE2 is superior to
Cufflinks for both kinds of coverage. Coverage on references by
Cufflinks is obviously small compared with other results. This is
caused by the tendency of Cufflinks to split full-length transcripts
wrongly. This is also a reason why the expression histogram of
Cufflinks had a bigger peak than TAIR9 in Figure 7. Although
Cufflinks provided a greater number of transcript models than
ARTADE2, it never meant that Cufflinks had better performance for
recall. Recalls of ARTADE2 and Cufflinks were almost the same,
ARTADE2: 0.6306, Cufflinks: 0.6495, when we used all annotated
gene models for the references irrespectively of their expression
values.

3.5 Factor analysis shows superior dissection of
multiple transcriptome data

Sometimes two different RNAs were highly correlated and closely
located on the genome to each other. ARTADE2 may, therefore,
predict these RNAs as one transcript because the correlation
coefficient between expression values for these RNAs goes over the
threshold parameter used for calculating PCS. In this case, Promax
rotation (Hendrickson and White, 1964), one of the factor analyses,
can divide different elements even if these are mutually correlated.
If there are different factors in predicted region, the region is
divided to two regions from the boundary where the factor number
which has higher factor loadings is changed (see Supplementary
Fig. S8 and algorithms and section: Use of factor analysis to
remove concatenating of different transcripts in Supplementary
Material). Then, ARTADE2 re-predicts models in the two regions
independently. Totally, 355 transcripts were split into two or more
transcripts with the factor analysis (ARTADE2 + FA) in study of
tiling arrays; see Figure 9. Among them, 285 (C33 + C34) set of
ARTADE2+FA successfully had common 3′ and 5′ ends with TAIR9

Fig. 6. Electrophoresis images of novel genes. We tested to validate 16 novel
gene candidates with RT–PCR for control and 2 h dry conditions. Fourteen
candidates were confirmed by both RT–PCR and correct mapping of the
sequence. The expression value is the median of tiling array values in exon
probes.

gene models in at least one transcript while merged models that are
predicted transcripts before the split did not have. A small fraction
of merged models (C32) correctly predicted both 3′ and 5′ ends
while ARTADE2 + FA could not predict correct ends. These may
have occurred due to existences of alternative transcription starts
or polyadenylation sites. Predicted transcripts used for Sections 3.2
and 3.4 were predicted with ARTADE2 + FA.

3.6 Elucidation of regions that may have alternative
isoforms with factor analysis

Factor analysis can also detect alternative expression patterns hidden
in predicted transcript structure. Figure 10 shows an example of
such detection. The region known for having alternative splicing
emerges as a cluster of secondary factor loadings. Moreover, factor
scores indicate conditions that influence expression change in the
alternative splicing. The factor analysis method detected a total of
6459 clusters in a study of tiling arrays. Among them, 2093 (32.4%)
clusters overlapped with regions known as alternative isoforms of
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Fig. 7. Histograms of maximal expression values for 33 239 TAIR9
representative gene models, 22 720 NGS-ARTADE2 models and 34 426
Cufflinks models. Novel models are removed in the histograms. Similar with
Figure 4, we defined threshold; maximal expression values >e6 for defining
expressed genes in the case of current NGS dataset. The NGS-ARTADE2
histogram fits closely with the histogram of highly expressed models of
TAIR9. On the other hand, Cufflinks has a bigger peak than TAIR9, indicating
that Cufflinks tends to make multiple gene models on loci where TAIR9 has
a single gene model; see Figure 8 for more detail.

Table 5. Accuracies between NGS-ARTADE2 versus Cufflinks

Method Number of 5′ end 3′ end Structure
match predictiona predictiona match rateb

models (%) (%) (%)

NGS-ARTADE2 21 132c 87.03 86.77 79.39
Cufflinks 22 962c 70.10 73.63 69.11

aRate of models whose 5′ or 3′ end distance from TAIR9s end are with in 300 bp.
bDefinition is written at Figure 3.
cModels involved best pairs with annotated models based on match rate in 24 282
ARTADE2 and 36 501Cufflinks models which were categorized as already annotated.

TAIR9 models. In detail, 1834 clusters were alternative start or
polyadenylation sites and 259 clusters were alternative splicing
regions. As well another 488 (7.6%) clusters were recognized as
differences between known gene structures and predicted transcripts
as in the example of the cluster shown in Supplementary Figure
S9 was also confirmed that the rate of overlaps of reference
increases with the decrease of the discreteness value which was
defined in Section 2.4 and given to each cluster (Supplementary
Figure S10). We also published detected clusters on the web server
http://matome.base.riken.jp/.

3.7 Publication of tools and results
The ARTADE2 program can be executed and downloaded on
the website MAthematical Omics Modeling Engine (MATOME,
http://matome.base.riken.jp/). In addition on the site, positional
correlation plots of the Arabidopsis tiling array of 18 conditions and

Fig. 8. Box plots of coverage for predictions using NGS-ARTADE2 and
Cufflinks. Each box plot shows coverage calculated from overlap pairs
between highly expressed TAIR9 gene models as reference and transcripts
of those predictions. There are two kinds of coverage. ‘Coverage on
prediction’ means the cover rate of predicted transcripts by correspondent
reference model and ‘Coverage on reference’ is the coverage rate of reference
model. Lower coverage on reference by Cufflinks indicates more fragmented
predictions compared with NGS-ARTADE2.

Fig. 9. This figure shows how factor analysis improves transcript
reconstruction in comparison with reference gene models. When we
compared transcript models reconstructed ARTADE2 and ARTADE2 with
factor analysis (ARTADE2 + FA), we found 355 ARTADE2 models were
split in ARTADE2 + FA. Among them, 25 ARTADE2 models (C32) had
reference gene models with better fitting than split ones (left half of the
figure). On the other hand, 285 ARTADE2 models (C33 + C34) had no good-
fitting reference gene models. In most of these cases, at least one set of split
gene models provided by ARTADE2 + FA had good-fitting reference gene
models (right half of the figure). The remaining are cases having references
in both models (C31) and are not able to be judged (C35).

mRNA-Seq of 7 conditions can be confirmed at arbitrary regions.
Clusters of alternative expression patterns detected by factor analysis
for tiling array study can be also accessed and downloaded on
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Fig. 10. Detection of an alternative isoform that was previously annotated
as alternative splicing region. Here we adopted factor analysis for probes
that exist in the transcript’s exon region. In the figure, we plotted the
factor loadings until the second factor while the factor number is set to
5. The rectangle enclosed by an orange line is a cluster created by high
factor loadings. The bottom plot shows scores for 55 experiments of factor
loadings of the first (horizontal) and second (vertical) factors. It seemed that
NaCl stress at 10 h is only related to the upregulation of the second factor
region.

the site. Our previously published results for ARTADE2DB can
be accessed at http://artade.org. The database is built using the
semantic web and provides an advanced search engine (Kobayashi
and Toyoda, 2008). All transcripts predicted with ARTADE2 are
recorded in the database. Moreover, the database provides functional
prediction results from co-expression analysis (Iida et al., 2011).

4 CONCLUSIONS
We propose the ARTADE2 statistical method and algorithm
for the reconstruction of full-length transcripts based on multi-
conditional transcriptome data. The method reconstructs transcripts
from positional correlations of expression data of RNA molecules
observed as fragments. The correlation information specifically
indicates the RNA molecule that the fragment corresponds to. We
used Arabidopsis tiling arrays for 18 conditions (55 experiments)
to validate performance of ARTADE2. ARTADE2 worked well in
reconstructing RNA structures from fragmented RNA, including
novel transcripts. Some of the novel transcripts were validated by
RT–PCR and sequencing.

In addition, ARTADE2 is scalable for various types of RNA
measurements. A NGS is the most likely candidate for using this
method to analyze new data. For example, mRNA-Seq provides
whole transcriptome shotgun sequencing data, and the annotated
design of its products is similar to that of tiling array probes
(Mortazavi et al., 2008). We also confirmed adaptation of ARTADE2
to mRNA-Seq data. RNA information such as exon-junction and
paired-end represent additional information from mRNA-Seq which
tiling array does not have. This information would also be valuable
for future extension of ARTADE2. Junctions that are used in
Cufflinks would clear exon or intron splicing variations. Paired-
end information can be used to know intervals in which transcript
regions are the same. This information would be added as some
variable for the logistic model of ARTADE2.

ARTADE2 can also find information for changes in the transcript.
As a result, enormous novel regions that may have alternative
isoforms are detected using factor analysis. ARTADE2 would be the
preliminary step in elucidating the mechanism of RNA metabolism.
Theoretically, the ARTADE2 method can also be adapted for
use for other species. Our proposed method can automatically
and dynamically provide transcriptome descriptions of unexploited
species. This will allow a significant increase in the speed of RNA
analysis from new species.
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