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Abstract

Introduction

Accurate etiological diagnosis of meningitis is important, but difficult in resource-limited set-

tings due to prior administration of antibiotics and lack of viral diagnostics. We aimed to

develop and validate 2 real-time multiplex PCR (RT-PCR) assays for the detection of com-

mon causes of community-acquired bacterial and viral meningitis in South African children.

Methods

We developed 2 multiplex RT- PCRs for detection of S. pneumoniae, N. meningitidis, H.

influenzae, enteroviruses, mumps virus and herpes simplex virus. We tested residual CSF

samples from children presenting to a local paediatric hospital over a one-year period,

whose CSF showed an abnormal cell count. Results were compared with routine diagnostic

tests and the final discharge diagnosis. We calculated accuracy of the bacterial RT-PCR

assay compared to CSF culture and using World Health Organisation definitions of labora-

tory-confirmed bacterial meningitis.

Results

From 292 samples, bacterial DNA was detected in 12 (4.1%) and viral nucleic acids in 94

(32%). Compared to CSF culture, the sensitivity and specificity of the bacterial RT-PCR was

100% and 97.2% with complete agreement in organism identification. None of the cases

positive by viral RT-PCR had a bacterial cause confirmed on CSF culture. Only 9/90 (10%)

of patients diagnosed clinically as bacterial meningitis or partially treated bacterial meningitis

tested positive with the bacterial RT-PCR.
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Discussion

In this population the use of 2 multiplex RT-PCRs targeting 6 common pathogens gave

promising results. If introduced into routine diagnostic testing, these multiplex RT-PCR

assays would supplement other diagnostic tests, and have the potential to limit unnecessary

antibiotic therapy and hospitalisation.

Introduction

Bacterial meningitis (BM) is a life threatening illness in children[1]. A high index of suspicion

and rapid initiation of appropriate antibiotics are necessary to minimise adverse outcomes,

and various child health programmes now recommend pre-hospital administration of broad

spectrum antibiotics in cases of suspected sepsis or meningitis[2, 3]. The diagnosis of bacterial

meningitis is traditionally confirmed by microbiological testing of cerebro-spinal fluid (CSF),

which includes cytochemical analysis, cell count, microscopy and culture[4]. However, admin-

istration of antibiotics prior to lumbar puncture may decrease the yield of culture, creating

diagnostic uncertainty[5]. In many routine settings, the lack of availability or lack of use of

diagnostic tests for viral causes of meningitis compounds the problem[4, 6, 7]. Inability to dis-

tinguish between partially treated bacterial meningitis and viral meningitis can lead to unnec-

essarily prolonged antibiotic treatment and increased number and duration of hospital

admissions [8, 9].

Molecular diagnostic tests, including polymerase chain reaction (PCR), can improve the

diagnosis of infectious diseases by rapid detection of microbial nucleic acids, including from

non-viable organisms[10]. PCR may be more sensitive than culture for the diagnosis of menin-

gitis, especially where prior antibiotic treatment reduces the sensitivity of culture [6, 11]. There

are a number of advantages to using real-time PCR (RT-PCR) methods as compared to con-

ventional endpoint PCR methods, namely elimination of the need for post-amplification pro-

cessing, minimisation of laboratory contamination, and a more rapid turn-around time. In

addition, the development of multiplex RT-PCR assays provides the opportunity to detect

multiple potential pathogens simultaneously[11–18]. Such multiplex RT-PCR assays can offer

a very comprehensive panel of potential pathogens allowing for an extensive and exhaustive

investigation of patients with suspected meningitis[19, 20]. However, in practice in specific

geographic settings and in particular patient population groups, a far more limited number of

pathogens constitute the vast majority of cases of meningitis. The inclusion of a large number

of target pathogens into commercial or in-house multiplex-PCR assays increases the cost and

complexity of such assays. [19, 20] and may prevent implementation of these in routine labora-

tory testing in low to middle income countries.

In the light of these concerns and limitations, we aimed to develop and validate 2 RT-PCR

assays suitable for the detection of the commonest causes of community acquired bacterial

and viral meningitis in children in South Africa. [21] [22, 23] [24–26]. Such RT-PCRs could be

included in routine laboratory testing algorithms and would aid clinicians in the accurate diag-

nosis of meningitis. The organisms included in the bacterial RT-PCR were S. pneumoniae, N.

meningitidis and H. influenzae, and in the viral RT-PCR enteroviruses, mumps and herpes

simplex virus. Following initial laboratory validation we conducted a retrospective laboratory

based comparison of the RT-PCR assays with the diagnostic tests routinely used in our

laboratory.

Multiplex real-time polymerase chain reaction assays and diagnosis of meningitis in children
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Methods

The study complies with updated STARD (Standards for Reporting Diagnostic Accuracy)

guidelines intended to improve the transparency and completeness of the reporting of diag-

nostic accuracy studies.[27].

Development, optimisation and validation of the multiplex assays

We adopted a previously published real-time multiplex PCR for detection of S. pneumoniae, N.

meningitidis and H. influenzae targeting the lytA, ctrA and hpd genes respectively [28] and

developed a real-time multiplex PCR for the detection of enteroviruses, mumps virus and her-

pes simplex virus, based on previously described real-time singleplex assays that detected the

5’UTR region[8, 29], fusion protein[30] and UL30[31] genes respectively (S1 Table).

For the bacterial multiplex, we used SensiFAST™ Probe No-ROX kit (Bioline, London,

United Kingdom) and 2μl of DNA template, and for the viral multiplex iScript One Step

RT-PCR Kit (Bio-Rad Laboratories Inc., Hercules, CA, United States of America) with 2μl of

extracted nucleic acid. The concentrations of primers and probes for each target together with

the amplification conditions are listed in S2 Table. All samples were tested in triplicate on the

CFX96 Real-Time System (Bio-Rad Laboratories Inc., Hercules, CA, United States of

America).

We determined the analytical sensitivity of both assays[32] by replicate testing of a 7-dilu-

tion series of plasmid standards ranging from 1–1000 copies per reaction, under similar exper-

imental conditions. We determined the analytical specificity of both assays by testing a

collection of related bacterial and viral reference strains (S3 Table).

We added an exogenous internal amplification control plasmid (IAC) [33] into the bacterial

multiplex assay in order to assess the quality of CSF sample extraction and the efficiency of

amplification. We spiked varying concentrations of IAC into CSF and compared cycle thresh-

old (Cq) values of each bacterial target to those obtained in the absence of the IAC.

Study setting and patient selection

The Red Cross War Memorial Children’s Hospital (RCWMCH) is a 273-bed tertiary level pae-

diatric hospital in Cape Town, Western Cape province, South Africa. The hospital provides

emergency, general paediatric, specialised paediatric, paediatric surgical, and intensive care

facilities and serves as a referral centre for the Western Cape and surrounding provinces.

RCWMCH admits approximately 20 000 children per year, most of whom originate from

poor peri-urban communities in the Western Cape. Children with suspected meningitis pre-

senting to public sector primary care facilities within its drainage area are likely to be referred

to RCWMCH for investigation and management.

We collected residual CSF samples from consecutive children aged between 60 days and 12

years, who presented to the acute care or outpatient departments of the RWMCH between 1

November 2012 and 31 October 2013, who had a lumbar puncture performed according to the

attending clinician’s decision and whose CSF showed an abnormal cell count, defined as the

presence of any neutrophils or > 5 lymphocytes/mm3. Patients with prior head trauma or ven-

tricular peritoneal shunt (VP shunts) were excluded.

Ethics

The study was approved by the Human Research Ethics Committee of the Faculty of Health

Sciences, University of Cape Town, Cape Town, South Africa (HREC REF: 739/2013). The

need for written informed consent from the participants was waived as testing was performed

Multiplex real-time polymerase chain reaction assays and diagnosis of meningitis in children
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on residual CSF samples collected as part of routine clinical investigation. Results of the inves-

tigational tests were not made available to clinicians. Limited clinical information was col-

lected by retrospective record review as part of a related study (HREC REF: 223/2015) using a

standardised case record form. The requirement for written informed consent from the partic-

ipants was also waived for this study. Specifically for use in this study we obtained basic demo-

graphic data, the final clinical diagnosis documented at discharge, and whether antibiotics

were administered prior to lumbar puncture.

Sample processing

CSF samples were stored at 4˚C until completion of routine laboratory processing (typically

2–7 days to allow for after-requests by clinicians). Thereafter residual CSF samples were ali-

quoted into sterile 2ml cryogenic vials for storage at -80˚C pending nucleic acid extraction.

Conventional laboratory microbiology testing

Conventional laboratory testing was carried out at the National Health Laboratory Service

(NHLS) diagnostic laboratories serving RCWMCH. Cerebro-spinal glucose and protein con-

centrations were measured on the Beckman Coulter AU480 automated analyser using the

hexokinase G-6-PDH enzymatic method and colorimetric method respectively. Microscopy

including differential white cell count, and Gram stain was performed according to standard

protocols. For bacterial culture blood agar and boiled blood agar plates were inoculated and

incubated in 5% CO2 at 35˚C for up to 72 hours. Conventional ‘ ı́n house’ endpoint PCR for

enterovirus[34], herpes simplex virus 1 and 2[35] and mumps virus[36] was performed if spe-

cifically requested by the clinician. Laboratory staff did not have access to detailed clinical

information (apart from what was indicated on the laboratory request form) nor to results of

index multiplex tests.

CSF total nucleic acid extraction

Total nucleic acid was extracted from 400μl of CSF with the QIAsymphony virus/bacterial

DSP kit (QIAGEN, Valencia, CA) using the QIAsymphony SP (QIAGEN, Valencia, CA) auto-

mated platform. Total nucleic acid was eluted in 60μl of elution buffer and stored at -21˚C.

Specimens with smaller available starting volumes (a minimum volume of 140μl) were topped

up with ATL lysis buffer (QIAGEN, Valencia, CA) before extraction. An exogenous plasmid

control was spiked into each sample at 200 copies/extraction volume as an extraction and

internal amplification control (IAC). A volume of nuclease free water was included as the

extraction negative control.

Testing of CSF samples with multiplex real-time PCR assays

CSF samples were tested with the bacterial and viral multiplex RT-PCR assays as described

above. For both assays a positive result was defined as a Cq value� 35 and a negative result as

a Cq value > 35 or no amplification. Extracted nuclease-free water was included as a no-tem-

plate negative control. For each individual 96-well plate, there were 4 negative controls placed

strategically amongst the samples. For the positive controls, 200 copies/ml of each of the 3 bac-

terial targets, plus the IAC, were co-amplified in a single well, and 200 copies/ml of each of the

3 viral targets were co-amplified in a second single well. All samples were tested in triplicate on

the CFX96 Real-Time System (Bio-Rad Laboratories Inc., Hercules, CA, United States of

America). The results of conventional microbiology tests were available to the researcher per-

forming the multiplex RT-PCR assays.

Multiplex real-time polymerase chain reaction assays and diagnosis of meningitis in children
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Data analysis

For the PCR optimization, the analytical sensitivity of the bacterial and viral multiplex assays

was expressed as the lowest limit of detection (LOD) and was calculated using probit regres-

sion analysis (StatsDirect version 2.02). The mean Cq, standard deviation (SD) and coefficient

of variation (CV) were expressed for the tested replicates of bacterial and viral multiplex

assays.

Assuming a 50% increase in number of cases detected with the bacterial RT-PCR and based

on previous CSF culture numbers, we calculated that a sample size of 375 was needed to pro-

vide 95% confidence intervals of 85.9% and 100% around a point estimate of sensitivity of

100%.

We assumed that the clinician’s decision to perform a lumbar puncture, together with the

presence of an abnormal CSF, constituted a proxy for a suspected case of meningitis. Sensitiv-

ity and specificity of the bacterial RT-PCR were calculated, first using CSF culture as the refer-

ence standard and secondly using the. definitions of the World Health Organisation (WHO)

Coordinated Invasive Bacterial Vaccine Preventable Diseases (IB-VPD) Surveillance Network

[37], which classified patients as having suspected, probably or confirmed bacterial meningitis.

Using this WHO definition, cases were classified as confirmed bacterial meningitis by culture

or by identification with Gram stain of a bacterial pathogen (S. pneumoniae, N. meningitidis
and H. influenzae) in the CSF or blood of a suspect case. Data was analysed with 2 x 2 tables,

with calculation of 95% confidence intervals using the Wilson score method[38].

The results of the viral RT-PCR were compared to the results of in-house viral PCR testing

[34–36] and viral culture, where available. The results of both viral and bacterial RT-PCR

assays were compared to the final diagnosis at discharge as recorded in the patient’s clinical

records.

Results

Development, optimisation and validation of the multiplex assays

Optimisation of the viral multiplex PCR. The viral singleplex assays were successfully

multiplexed with comparable performance of both the singleplex and multiplex assays (S4

Table). The primers and probes of the viral targets showed minimal interference upon multi-

plexing. No cross-reactivity was observed between each primer and probe set, as seen by the

lack of amplification of the other viral targets. The tested replicates on the viral multiplex assay

showed good reproducibility and repeatability for all three targets resulting in low intra-assay

and inter-assay CVs of less than 2% (S4 Table).

Analytical sensitivity and specificity. The lowest limit of detection for the bacterial mul-

tiplex was 2 copies/reaction for S. pneumoniae and 1 copy/reaction for both H. influenzae and

N. meningitidis. (S5 Table). The viral multiplex detected 2 copies/reaction for both the herpes

simplex virus and mumps virus. For enterovirus detection, the LOD was 3 copies/reaction (S6

Table). The threshold Cq value of 35, which was subsequently used for the sample testing cor-

responded to 101 copies of DNA for each of the purified plasmid standards. The regression

curve analysis for both multiplex assays showed linearity over a span of the different concen-

trations of the plasmid standards (S1 and S2 Figs). No amplification was observed on testing of

the non-target bacterial and viral reference strains.

Incorporation of an internal amplification control into the bacterial multiplex assay.

Incorporation of the IAC at a concentration of 200 copies/reaction together with 10 copies/

reaction of each bacterial target had no significant effect on the Cq values of each bacterial tar-

get (S3 Fig and S7 Table).

Multiplex real-time polymerase chain reaction assays and diagnosis of meningitis in children
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Multiplex RT PCR test results

Over the 12 month period 3236 CSF samples from children at RCWMCH were submitted for

microbiological testing. Of these 516 met the inclusion criteria for the study and sufficient

residual CSF was available for testing with the multiplex RT PCR assays in 292 patients (Fig 1).

The median age of the children was 35 months (IQR 2–144) and 52.6% were male. Bacterial

target DNA was detected in 12 samples (4.1%) and viral target nucleic acids in 94 samples

(32%), Fig 2. Herpes simplex was not detected in any sample. Both the internal amplification

control (IAC) and positive controls amplified in all cases although there was some evidence of

relative PCR inhibition in some samples (median Cq value for IAC for samples in which bacte-

rial or viral target was identified = 28.5, range = 27.6–34.7). No amplification of negative con-

trols was observed. Enterovirus was mainly detected in the summer months between

November and February (Fig 3), whereas bacterial pathogens were detected sporadically in

small numbers (1–4 cases/ month) in seven months of the year.

Comparison of bacterial RT-PCR assay with routine microbiology results. Bacterial

pathogens were cultured from CSF in 4 samples, comprising S. pneumoniae (3 cases) and H.

influenzae (1 case). No other bacterial causes of meningitis such as Gram-negative bacilli or

Fig 1. Flowchart showing results of bacterial multiplex realtime-PCR compared to cerebrospinal fluid microscopy and culture.

https://doi.org/10.1371/journal.pone.0173948.g001
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listeria were isolated, although Mycobacterium tuberculosis complex was subsequently isolated

from CSF in 3 children.

Using the WHO definition, ten cases were classified as confirmed bacterial meningitis: 4 on

the basis of a positive CSF culture, 4 on the basis of a positive CSF Gram stain and 2 on the

basis of the isolation of a potential pathogen from blood in the setting of an abnormal cerebro-

spinal fluid cell count. (Tables 1 and 2). Of the ten cases, bacterial target DNA was detected in 6

samples, including the 4 culture positive samples and two of the cases with a positive CSF Gram

stain (Fig 1). The diagnosis in these 2 latter cases was supported by a positive blood culture in

one, and a very high CSF polymorph cell count of 2480 in the other. In all cases the organism

identified with RT-PCR was congruent with the CSF culture or CSF Gram stain morphology.

Fig 2. Results of bacterial and viral multiplex realtime PCR assays in cases of suspected meningitis in

children presenting to the acute care or outpatient departments of the Red Cross War Memorial

Children’s Hospital in Cape Town, South Africa, November 2012–October 2013 (n = 292).

https://doi.org/10.1371/journal.pone.0173948.g002

Fig 3. Monthly variation in detection of selected pathogens using bacterial and viral multiplex realtime PCR assays,

in cases of suspected meningitis in children presenting to the acute care or outpatient departments of the Red

Cross War Memorial Children’s Hospital in Cape Town, South Africa, November 2012–October 2013 (n = 292).

https://doi.org/10.1371/journal.pone.0173948.g003
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Four of the WHO confirmed cases had negative bacterial RT-PCR results: two with a posi-

tive CSF Gram stain (but negative cultures) and two with S. pneumoniae cultured from blood

only. Of the two with positive CSF Gram stains (Gram-positive diplococci reported in both)

there was no supporting microbiological evidence for a diagnosis of bacterial meningitis in

one child, and in the other, enterovirus was detected with the viral RT-PCR while CRP was 2.8

mg/L. The first of these children was discharged after 2 days to continue outpatient parenteral

antibiotic therapy. Of the two with S. pneumoniae isolated from blood only, one was an HIV

positive child with a high CSF cell count and high CRP in whom the initial lumbar puncture

was delayed for at least 12 hours after administration of antibiotics. The other child with S.

pneumoniae bloodstream infection (and CRP of 17 mg/L) was well enough to be discharged

from the acute care ward within 48 hours of admission and had to be recalled for treatment

once the culture result became available.

Table 2. Clinical history and CRP results of 10 cases classified as confirmed cases of bacterial menin-

gitis according to the definitions of the World Health Organisation (WHO) Coordinated Invasive Bac-

terial Vaccine Preventable Diseases (IB-VPD) Surveillance Network.

Study

number

RT-PCR a

target

Prior

antibiotics

Discharge

diagnosis

CRPb Clinical history

CSF Culture positive cases

20 S.

pneumoniae

Ndc Bacterial

meningitis

34.3

30 H. influenzae No Bacterial

meningitis

52.3

112 S.

pneumoniae

Yes Bacterial

meningitis

102

293 S.

pneumoniae

No Bacterial

meningitis

389.5

CSF Culture negative Gram stain positive cases

114 S.

pneumoniae

Yes Bacterial

meningitis

-

86 N.

meningitidis

No Bacterial

meningitis

244.9

78 negative No Bacterial

meningitis

4 5 months old, discharged after 2 days

to continue daily ceftriaxone for total

of 10 days

277 (enterovirus)d Yes (IV

ceftriaxone)

Bacterial

meningitis

2.8 6 months old, symptoms of fever,

diarrhoea and vomiting, transferred

next day to another hospital to

complete treatment, no subsequent

re-admission

CSF Gram stain and CSF culture negative, blood culture positive

98 negative Yes (IVe

ceftriaxone)

Bacterial

meningitis

224 HIV positive. Delay of at least 12

hours before lumbar puncture

performed.

164 negative No Bacterial

meningitis

17 7 months old, symptoms of fever,

vomiting and seizures. Initially

discharged, but re-called for

treatment when blood culture result

available

aRT-PCR Real-time polymerase chain reaction
b CRP C-reactive protein
cnd not documented
d enterovirus detected on viral RT-PCR assay
eIV intravenous

https://doi.org/10.1371/journal.pone.0173948.t002
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In addition, the bacterial RT-PCR detected 6 cases that were not confirmed by WHO crite-

ria. Details of these cases are presented in Tables 3 and 4. Three had a discharge diagnosis of

bacterial meningitis, while the remaining 3 patients were diagnosed as viral meningitis, gastro-

enteritis and upper respiratory tract infection respectively. Two of the unconfirmed cases had

a CSF cell count>100 and 3 (of 4 in whom this documentation was available) had received

antibiotics prior to lumbar puncture.

The Cq values for the bacterial target of the confirmed cases were significantly lower than

the Cq values of the unconfirmed cases, with a median of 21.7 versus 33.7 (p = 0.01). The three

patients with a discharge diagnosis other than bacterial meningitis had the highest Cq values

(� 34.5) of all patients with a positive bacterial PCR.

Using CSF culture as a reference standard, the sensitivity and specificity of the bacterial

RT-PCR were 100% (95% CI 51.0% -100%) and 97.2% (95% CI 94.6%– 98.6%) respectively,

while compared to the WHO IB-VPD Surveillance Network definition of laboratory con-

firmed cases, the sensitivity and specificity were 60% (95% CI 31.3%– 83.2%) and 97.9% (95%

CI 95.4% -99.0%) respectively. The positive and negative predictive values are shown in

Table 5. The agreement between bacterial RT PCR and CSF culture was 97.3% (284/292), and

Table 3. Laboratory results of 6 cases in which bacterial target DNA was detected with bacterial multiplex realtime- PCR, but which were not con-

firmed according to the definitions of the World Health Organisation (WHO) Coordinated Invasive Bacterial Vaccine Preventable Diseases

(IB-VPD) Surveillance Network.

Study

number

RT-PCR
atarget

IAC
bCq
cvalue

Bacterial

RT-PCR Cq

valuea c

Poly-

morphs

Lymph-

ocytes

Erythro-

cytes

Glucose Protein CSF d

Gram

stain

CSF d

culture

Blood

culture

Gram

stain

Blood

culture

culture

177 N. meningitidis 28.3 30.1 11 240 25 57.6 71 Negative No

growth

after 3

days

Negative No

growth

after 5

days

250 N. meningitidis 34.3 34.8 0 14 14 54 18 Negative No

growth

after 3

days

Negative No

growth

after 5

days

228 S.

pneumoniae

34.7 32.9 18 1 960 115.2 112 Negative No

growth

after 3

days

Negative No

growth

after 5

days

99 S.

pneumoniae

and

enteroviruse

33.1 31.7 (S.

pneumoniae)

34.6

(enterovirus)

95 36 310 70.2 38 Negative No

growth

after 3

days

Negative No

growth

after 5

days

296 S.

pneumoniae

35.4 34.9 1 9 390 79.2 22 Negative No

growth

after 3

days

Not taken Not

taken

8 S.

pneumoniae

31.5 34.5 1 1 0 70.2 14 Negative No

growth

after 3

days

Negative No

growth

after 5

days

aRT-PCR Real-time polymerase chain reaction,
bIAC internal amplification control,
cCq cycle threshold,
dCSF cerebrospinal fluid,
e both S. pneumoniae and enterovirus were detected in this sample.

https://doi.org/10.1371/journal.pone.0173948.t003
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between bacterial RT PCR and WHO definition of laboratory confirmed bacterial meningitis

96.6% (282/294).

Comparison of viral RT-PCR assay with routine virology results. Details of the 94 cases

detected by viral RT-PCR are provided in S8 Table. None of the cases positive by viral RT-PCR

had a bacterial cause confirmed on CSF culture, though enterovirus was detected in one

patient who was classified as having confirmed bacterial meningitis according to WHO criteria

based solely on a CSF Gram stain showing Gram-positive diplococci. Enterovirus was also

detected in an unconfirmed bacterial multiplex RT-PCR positive case (dual detection with S.

pneumoniae).

Based on clinician request, 9 samples had undergone in-house viral PCR testing and 1 had

been referred for viral culture (S9 Table). No requests were received for mumps virus PCR.

There were no discrepancies between these results and the RT-PCR testing.

Comparison with the discharge diagnosis. Table 6 summarises the results of the 2 multi-

plex RT-PCR assays according to the discharge diagnosis, which was based on information

derived from patient record review. Of the 292 suspected cases, 90 (30.8%) had a discharge

diagnosis of bacterial meningitis or partially treated bacterial meningitis, while 97 (33.2%) had

a discharge diagnosis of viral meningitis. Close to half of the patients in the categories of bacte-

rial, viral and partially treated bacterial meningitis (50.7%, 45.3%, and 36.8% respectively)

tested positive with the viral multiplex RT-PCR. Only 9/90 or 10.0% of patients diagnosed as

Table 4. Clinical history and CRP results of 6 cases in which bacterial target DNA was detected with

bacterial multiplex realtime- PCR, but which were not confirmed according to the definitions of the

World Health Organisation (WHO) Coordinated Invasive Bacterial Vaccine Preventable Diseases

(IB-VPD) Surveillance Network.

Study

number

RT-PCRa target Prior

antibiotics

Discharge

diagnosis

CRPb Clinical history

177 N. meningitidis Yes (IVd

ceftriaxone)

Bacterial

meningitis

26 7 year old, lumbar puncture

delayed 12 hrs after admission,

discharged 10 days later, no

subsequent re-admission, no rash

documented

250 N. meningitidis Yes (IMe

ceftriaxone)

Viral

meningitis

13.7 Received at least 2 days additional

antibiotics in hospital before

discharge, no subsequent re-

admission, no rash documented

228 S. pneumoniae Yes Bacterial

meningitis

77 3 month old with underlying biliary

atresia

99 S. pneumoniae

and enterovirus

Not

documented

Bacterial

meningitis

1.0 18 month old, after 1 day

transferred to another hospital to

complete treatment, no subsequent

re-admission

296 S. pneumoniae No Gastro-

enteritis

1.0 Treated in hospital with antibiotics

for 8 days, re-admitted 6 weeks

later with pneumonia and

investigated for tuberculosis

(results negative)

8 S. pneumoniae Not

documented

URTIc 1.7 Discharged after 1 day, no

subsequent re-admission

aRT-PCR Real-time polymerase chain reaction
b CRP C-reactive protein
c URTI upper respiratory tract infection
dIV intravenous
e IM intramuscular

https://doi.org/10.1371/journal.pone.0173948.t004
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bacterial meningitis or partially treated bacterial meningitis tested positive with the bacterial

RT-PCR.

Comparison of the CSF findings showed significantly higher polymorphonuclear and lym-

phocyte cell counts in the bacterial and viral multiplex-positive groups compared those in

whom no pathogen was detected: median CSF polymorphonuclear cell counts of 56.5, 40.5

and 2/mm3 respectively (p< 0.05) and median CSF lymphocyte counts 48, 42.5 and 9/mm3

respectively(p < 0.05). There was a significant difference in CSF protein concentration

between the bacterial positive group (0.77g/l) and the viral and no pathogen groups (0.28 g/l

Table 5. Sensitivity and specificity of bacterial multiplex realtime-PCR for the diagnosis of bacterial

meningitis compared to CSF culture and compared to laboratory-confirmed bacterial meningitis

cases according to the definitions of the World Health Organisation (WHO) Coordinated Invasive Bac-

terial Vaccine Preventable Diseases (IB-VPD) Surveillance Network[37].

CSF culture

Positive negative total

Bacterial multiplex realtime PCR positive 4 8 12

negative 0 280 280

total 4 288 292

Test performance %, (95% confidence intervals)

Sensitivity 100% (51.0%– 100%)

Specificity 97.2% (94.6% -98.6%)

Positive predictive value 33.3% (13.8% - 60.9%)

Negative predictive value 100% (98.7%– 100%)

Laboratory confirmed bacterial meningitis

according to the definitions of World Health

Organisation (WHO) Coordinated Invasive

Bacterial Vaccine Preventable Diseases

(IB-VPD) Surveillance Network.

Positive negative total

Bacterial multiplex realtime PCR positive 6 6 12

negative 4 276 280

total 10 282 292

Test performance %, (95% confidence intervals)

Sensitivity 60.0% (31.3% -83.2%)

Specificity 97.9% (95.4% -99.0%)

Positive predictive value 50.0% (25.4%– 74.6%)

Negative predictive value 98.4% (96.4%– 99.4%)

https://doi.org/10.1371/journal.pone.0173948.t005

Table 6. Analysis of multiplex RT-PCR results according to discharge diagnosis.

Discharge Diagnosis Multiplex RT-PCR results

Viral Bacterial Negative

Bacterial meningitis 71/292# (24.3%) 36 (50.7%) 9 (12.7%) 27 (38.0%)

Viral meningitis 97/292 (33.2%) 44 (45.3%) 1 (1.0%) 52 (53.6%)

Partially treated meningitis 19/292 (6.5%) 7 (36.8%) - 12 (63.2%)

Other* 105/292 (36.0%) 7 (6.7%) 2 (0.02%) 96 (91.4%)

*the diagnosis includes other infections or non-infectious conditions or is not specified or unknown
# 1 patient with a discharge diagnosis of bacterial meningitis had both S. pneumoniae and enterovirus

detected and is included in both viral and bacterial categories

https://doi.org/10.1371/journal.pone.0173948.t006
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and 0.25 g/l respectively) (p< 0.05). There were no differences in median red blood cell count

or glucose concentration.

Discussion

In this population of children presenting to a tertiary hospital and undergoing lumbar punc-

ture which revealed abnormal CSF cell counts, the use of a bacterial and a viral multiplex

RT-PCR together targeting 6 commonest pathogens gave promising results. Bacterial target

DNA was detected in 4.1% (12/292) of samples and viral target nucleic acids in 32% (94/292).

The sensitivity and specificity of the bacterial RT-PCR were 100% (95% CI 51–100%) and

97.2% (95% CI 94.6–98.6%) respectively, compared to CSF culture, while the results of the

viral RT-PCR compared favourably with the conventional virology results available in a small

number of cases. CSF cell counts were significantly higher in the bacterial and viral multiplex-

positive groups compared those in whom no pathogen was detected, while CSF protein was

raised in the bacterial multiplex-positive group only. Only 10% of children with a discharge

diagnosis of bacterial or partially treated meningitis tested positive with the bacterial multi-

plex-PCR while nearly a half of patients with a discharge diagnosis of bacterial, viral or partially

treated bacterial meningitis tested positive with the viral multiplex RT-PCR.

The 6 organisms targeted (S. pneumoniae, N. meningitidis, H. influenzae type b, enterovi-

ruses, mumps virus, herpes simplex virus) were chosen since they are the most common causes

of bacterial and viral meningitis in children beyond the neonatal period in our local South

African setting, and in some neighbouring countries [26] [39, 40]. In addition, enteroviruses

[41] and mumps virus [42] may present with a florid pleocytosis and neutrophil predominance

in CSF that can cause diagnostic confusion. HSV though rare as a cause of isolated meningitis,

is critical for detection in cases of meningo-encephalitis where early empiric treatment with

acyclovir is recommended. Availability of a RT-PCR would improve turn-around time com-

pared to the current in-house end-point PCR.

The proportions of bacteria and viruses detected by RT-PCR were consistent with previ-

ously described local epidemiology, including the increased prevalence of enterovirus over the

summer months [21] [7, 26]. Very low numbers of bacterial meningitis cases were detected in

the study, either by conventional or molecular testing. This may be partly due to the decreasing

burden of disease due to S. pneumoniae and H. influenzae type b following implementation of

successful vaccination programmes targeting these pathogens in 2009 (pneumococcal polysac-

charide-protein conjugate vaccine (PCV)) and 1999 (H. influenzae type b (Hib))[25] [22]

respectively. The low number of confirmed cases also suggests a very low threshold for the per-

formance of lumbar puncture in this paediatric population, most of whom will have been

referred from primary health care level. For practical reasons we based inclusion in the study

on the presence of an abnormal CSF cell count, rather than on clinical suspicion of meningitis.

It is therefore possible that in some children LPs were performed for other reasons, e.g. investi-

gation of epilepsy. This might have artificially reduced the prevalence rate of bacterial or viral

meningitis. We also did not adjust the CSF white cell count for the presence of red blood cells.

This could have resulted in the inclusion of cases not meeting the definition of suspect cases,

thereby contributing to low prevalence of bacterial meningitis.

The predominance of viral meningitis, comprising 32.2% of cases, was not unexpected, as

viral meningitis is the more common though frequently unrecognised cause of meningitis [7,

43]. Diagnostic tests for viral causes of meningitis are not performed routinely in our setting,

because of cost as well as delayed turn-around time and the labour-intensive nature of viral

culture and conventional PCR. Clinicians rarely request viral diagnostic testing, perhaps for

these reasons or perhaps because of a lack of awareness [4]. We were therefore only able to
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compare our viral RT-PCR results with the in-house end-point PCR in a small minority of

cases (9 patients), but no discrepancies were noted.

Based on the clinicians’ records 36% of children were considered to have a final discharge

diagnosis other than bacterial or viral meningitis. (This category included other infections as

well as non-infectious conditions or unknown or non-specified conditions.) Negative RT-PCR

results were obtained in 91.4% of children in this category. These observations would be in

keeping with local clinical practice where exclusion of the diagnosis of meningitis is an impor-

tant consideration.

The calculated sensitivity and specificity of the bacterial RT-PCR compared to CSF culture

were 100% (95% CI 51.0% -100%) and 97.2% (95% CI 94.6%– 98.6%) respectively and com-

pared to WHO laboratory- confirmed cases 60.0% (95% CI 31.3% -83.2%) and 97.9% (95% CI

95.4%– 99.0%) respectively. Unfortunately the confidence intervals for sensitivity were very

wide due to small numbers of positives. There was complete agreement in organism identifica-

tion between the bacterial RT-PCR and CSF culture.

Discrepancies between the bacterial RT-PCR and conventional microbiology results may

have been due to limitations in the conventional microbiology reference methods or in the

bacterial RT-PCR method. It is difficult to validate a new, potentially more sensitive test

method when no perfect ‘gold standard’ or reference method is available. CSF culture may

have limited sensitivity, especially if antibiotics have been administered prior to lumbar punc-

ture. In our study 6 samples testing positive with the bacterial RT-PCR were not confirmed

with conventional microbiological testing, but 3 of the 4 in whom this information was

recorded had received antibiotics prior to lumbar puncture. The sensitivity of Gram stain is

less affected by prior antibiotic therapy [11, 44], though it may be reduced if the delay to lum-

bar puncture is prolonged > 24 hours [45]. However, the specificity of Gram stain, being

dependent on operator performance, is also imperfect. Other studies have reported specifici-

ties of 98%- 99% [11, 46]. In our study where Gram stain was performed in a busy routine

diagnostic service, isolated false positive results may occur. Potentially false positive Gram

stain results seem likely in two patients in whom the diagnosis of bacterial meningitis was not

supported by other microbiological or clinical evidence, one of whom had enterovirus detected

on viral RT-PCR. This could account for the lower sensitivity of bacterial RT-PCR when using

the WHO definitions of laboratory- confirmed cases as a reference standard. Since the

RT-PCRs in this study were batched and performed retrospectively, we were unable to confirm

the accuracy of these discrepant Gram stains.Latent class analysis (LCA) modelling is a method

that combines results of multiple diagnostic tests in a statistical model to generate estimates of

disease prevalence while avoiding any assumptions about the accuracy of particular tests.

Using a LCA model, in patients with suspected meningitis, Lu et al showed that the sensitivity

of culture was inferior to that of bacterial multiplex RT-PCR or Gram stain [11].

False positive and false negative results can nevertheless occur in molecular diagnostic tests.

False positives may be due to lack of specificity of primers or probes used, or due to contami-

nation during specimen collection or laboratory testing. Traumatic or ‘bloody’ taps which are

relatively common in this hospital can also introduce organisms present in blood into CSF.

Given that 3 of the unconfirmed bacterial RT-PCR-positive cases had a discharge diagnosis

other than bacterial meningitis and had very high Cq values (� 34.5) suggests that it might be

prudent to retest specimens with Cq values� 34.0 or� 34.5 to exclude contamination.

Common causes of false negatives are limited analytical or clinical sensitivity, inhibition

(potentially due to presence of blood due to a traumatic tap), failure of amplification or detec-

tion due to unrecognised variation in target of interest, sampling errors (e.g. due to testing of

very small volumes), degradation of nucleic acids (especially RNA) or failure to test for the

causative pathogen [32, 47, 48]. In this study inclusion of an IAC in every sample minimised
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the possibility of inhibition, but the wide range of IAC Cq values for samples in which bacterial

or viral target was identified (27.6–34.7) suggests that a degree of inhibition could have

occurred in some samples. Ideally a larger prospective study that included careful review of

Gram stain results, as well as routine use of conventional viral diagnostic tests, is required to

fully resolve the issues of sensitivity and specificity.

The purpose of this test if introduced into routine practice would be to supplement other

diagnostic tests, with the potential for more rapid and more sensitive results. Gram stain

because of its immediacy, and culture because of its broad range for detection of pathogens

not included in the multiplex assay, must both still be carried out[11]. Given the serious nature

of bacterial meningitis and consequences of lack of treatment, the results of the multiplex

assays would have to be interpreted in light of the pre-test probability of disease and according

to the clinician’s judgement. The PPV and NPV for the bacterial multiplex assay compared to

CSF culture were 33.3% and 100% respectively (Table 5), but the high NPV may be due to the

low prevalence of disease in the population, and the low PPV due to the insensitivity of culture

in patients with prior antibiotic therapy.

Detection of a viral or bacterial cause of meningitis confirms the diagnosis and thus reduces

the need for further investigations. Detection of a specific bacterial cause may potentially

reduce duration of antibiotic therapy depending on the organism identified, while detection of

a viral cause permits discontinuation of empiric antibiotics. A negative result in the bacterial

assay may in certain circumstances prompt discontinuation of antibiotics. This is likely to be

particularly valuable in cases of prior antibiotic use where fears of false negative culture results

may lead to a tendency to over treat.

While the RT-PCR assays included in the study had limited coverage compared to some of

the commercial assays, it is likely that these assays have the potential to identify the majority of

meningitis cases at a much lower cost [19] [18]. Although currently RT-PCR assays are typi-

cally performed in large centralised laboratories, future developments in point of care testing

may facilitate the devolution of testing to smaller hospitals.

The potential for reduction of unnecessary antibiotic therapy is shown by the fact that 50%

of patients with a discharge diagnosis of bacterial meningitis actually had a viral pathogen

detected on RT-PCR. In addition, bacterial meningitis is usually treated with a lengthy course

of 7–10 days of broad spectrum intravenous antibiotics (ceftriaxone) and therefore more tar-

geted diagnosis would be a major gain for antibiotic stewardship. Additional benefits include

reduced hospitalisation, with attendant potential for reduction in hospital-acquired infections,

as well as more accurate and more rapid data for a public health response where indicated, and

more complete surveillance data[17, 49].

The assays could also be applied to an adult population where issues of prior antibiotic ther-

apy and lack of diagnostic tests for viral meningitis are similar concerns. However, since adults

with meningitis tend to present more commonly with typical clinical features as compared to

children, the pretest probability of meningitis is likely to be higher and molecular testing more

cost-effective, although enteroviral meningitis is much less common in adults outside of an

outbreak setting.

In summary these two multiplex RT-PCR assays are useful additional tests with a rapid

turn-around time that could assist in the diagnosis of community acquired meningitis in both

children and adults and could support antibiotic stewardship efforts.
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