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Memristive devices are novel electronic devices, which resistance can be tuned by an
external voltage in a non-volatile way. Due to their analog resistive switching behavior,
they are considered to emulate the behavior of synapses in neuronal networks. In
this work, we investigate memristive devices based on the field-driven redox process
between the p-conducting Pr0.7Ca0.3MnO3 (PCMO) and different tunnel barriers,
namely, Al2O3, Ta2O5, and WO3. In contrast to the more common filamentary-type
switching devices, the resistance range of these area-dependent switching devices can
be adapted to the requirements of the surrounding circuit. We investigate the impact
of the tunnel barrier layer on the switching performance including area scaling of the
current and variability. Best performance with respect to the resistance window and
the variability is observed for PCMO with a native Al2O3 tunnel oxide. For all different
layer stacks, we demonstrate a spike timing dependent plasticity like behavior of the
investigated PCMO cells. Furthermore, we can also tune the resistance in an analog
fashion by repeated switching the device with voltage pulses of the same amplitude
and polarity. Both measurements resemble the plasticity of biological synapses. We
investigate in detail the impact of different pulse heights and pulse lengths on the shape
of the stepwise SET and RESET curves. We use these measurements as input for the
simulation of training and inference in a multilayer perceptron for pattern recognition, to
show the use of PCMO-based ReRAM devices as weights in artificial neural networks
which are trained by gradient descent methods. Based on this, we identify certain trends
for the impact of the applied voltages and pulse length on the resulting shape of the
measured curves and on the learning rate and accuracy of the multilayer perceptron.

Keywords: PCMO, memristive devices, perceptron learning, resistive switching, multilevel switching

INTRODUCTION

Most modern computer architectures are based on the von Neumann principle, which separates
the data processing unit from the data storage. As the performance of processors increased strongly
over the last decades, the bandwidth for the communication between processor and data storage
became the limiting factor for the overall computational performance. This is called the von
Neumann bottleneck (Backus, 1978) (Wolf and McKee, 1994).

The limit is especially problematic for tasks, where simple operations are performed on large
sets of data, e.g., learning tasks in massively parallel systems mimicking brain-like functionalities
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or vector-matrix multiplications in artificial neural networks
(ANNs) during the inference step. The multiplication of the input
nodes of a layer with the weight matrix yields the output of
this layer. A possible strategy to overcome this von Neumann
bottleneck for ANNs is the usage of resistive arrays as weight
matrices (Xia and Yang, 2019). To achieve tunable weights,
one approach is the so-called memristive device, an electrically
tunable resistor. Previous works already show that memristive
crossbar arrays allow for efficient vector-matrix multiplication
(Cai et al., 2019). The use in ANNs was demonstrated on many
network types such as single-layer perceptrons (Alibart et al.,
2013; Prezioso et al., 2015) as well as multilayer perceptrons
(Moon et al., 2015; Burr et al., 2017; Babu et al., 2018; Go et al.,
2019; Wu et al., 2020) and convolutional neural networks (CNNs)
(Yakopcic et al., 2017). Many groups show that memristive
devices can already today replace conventional networks trained
in software for many applications. Li et al. report a recognition
accuracy of more than 97% on the MNIST dataset, which is
common for benchmarking of pattern recognition tasks. Also,
more complex tasks like face recognition have been demonstrated
(Yao et al., 2020). These similar network performances are
often achieved at higher-energy efficiencies and make memristive
device-based ANNs most useful for low-energy applications
at the edge and in the IoT sector (Chowdhury et al., 2018)
(Krestinskaya et al., 2020). A large variety of different types of
memristive devices have been proposed for neuronal networks
so far in the literature mimicking behavior of biological synapses
like, e.g., long-term potentiation and depression (LTP/LTD) and
even more complex aspects of synaptic plasticity like simple
forms of spike timing dependent plasticity (STDP), but no
optimal memristive device type has been identified yet. For a
given choice of materials, the ANN, the learning rule and the
update rule have to be adjusted to obtain best performance. In
this work, we propose an update rule for a specific memristive
device based on Pr0.7Ca0.3MnO3 (PCMO) after a thorough
investigation of its switching behavior and the influence of
different material stacks.

In memristive devices, information is stored by the change in
the resistance that can be switched by an applied bias in a non-
volatile manner. Different mechanisms and materials that show
resistive switching have been reported in literature (Simmons
and Verderber, 1967; Asamitsu et al., 1997; Sawa, 2006, 2008;
Tsymbal and Kohlsted, 2006; Jooss et al., 2007; Waser et al., 2009;
Herpers, 2014). In this work, we will address the mixed valence
manganite (PCMO) in combination with a tunnel oxide that has
been either deposited directly by physical vapor deposition or
that has been formed by the redox process with an oxidisable
metal top electrode. Combinations of PCMO with many different
metals are reported in literature so far: e.g., Al (Seong et al.,
2009a), Ta (Seong et al., 2009b), Ti (Seong et al., 2009b), W (Liu
et al., 2011), and others (Moon et al., 2014, 2015; Baek et al., 2017;
Go et al., 2019). It is proposed that the field-driven movement of
oxygen anions between the PCMO layer and the reactive metal
electrode is the underlying switching mechanism (Sawa et al.,
2004; Asanuma et al., 2009; Seong et al., 2009a).

PCMO is known for its area-type resistive switching
properties, namely that the change of the resistance happens

over the whole device area (Herpers, 2014; Bagdzevicius et al.,
2017). Since the current of the area-type switching devices
scales for both the high resistive state (HRS) and the low
resistive state (LRS) with the device area, the resistance
values can be adapted to the given circuit requirements.
This is not the case for the most common filamentary-type
memristive devices. Moreover, filamentary-type switching is
usually indicated by a sharp SET process. In contrast, area-
type switching devices exhibit a gradual SET and RESET
that enhances their ability for analog switching in comparison
with filamentary memristive devices. Due to their analog
switching behavior, PCMO-based resistive switching devices are
considered hardware representation for synapses in artificial
neural networks as described above. In particular, it has been
shown that they can emulate aspects of synaptic plasticity (Park
et al., 2012, 2013, 2015; Moon et al., 2014; Fumarola et al.,
2018).

In this work, we compare in detail the performance and
analog behavior of PCMO-based devices with different interface
configurations. In particular, we compare the more common
Al/PCMO devices with a natively formed Al2O3 oxide to
devices with a directly sputtered Ta2O5 and WO3 as interface
layer. For all devices, we can demonstrate analog switching
behavior. We demonstrate a STDP-like behavior on single PCMO
devices. This learning rule for spiking neural networks (SNN)
stems from neuroscience and neurophysiology. Furthermore,
we investigated in detail the impact of the material stack as
well as pulse length and height on the shape of the analog
stepwise SET and RESET curves. This stepwise change of
conductance mimics aspects of LTP/LTD of biological synapses.
We use the experimental data as input for simulations of the
training of a multilayer perceptron for pattern recognition and
reveal how the different electrical stimuli and the resulting
shapes of the stepwise SET and RESET measurement (SPM
and RPM) curves affect the learning rate and the accuracy
of the network based on a gradient descent learning rule,
which is a learning rule for conventional ANNs. Comparing
STDP and gradient decent methods, STDP only requires local
information processing between the two neurons adjacent to
the very synapse, while gradient descent methods take the
global error of the complete network into account. Here, we
present how both learning rules can be achieved with the same
memristive device.

EXPERIMENTAL

Sample Preparation
The memristive devices consist of a 25-nm-thick Pt bottom
electrode, a 20-nm PCMO film grown by pulsed laser deposition
(PLD), a 7-nm-thick interface layer, either Al, Ta2O5 or WO3
and a 25-nm-thick Pt top electrode as sketched in the insets of
Figures 1A–C. The Pt layer that serves as bottom electrode is
DC sputtered on top of a 5 nm Ta adhesion layer on a thermally
oxidized Si wafer.

The PLD growth of PCMO is performed with an O2 pressure
of 0.133 mbar at room temperature (RT). A laser fluence of
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FIGURE 1 | (A–C) I-V curves for three different materials, (B) Al/Al2O3, (C) Ta2O5, and (D) WO3, like it is indicated by the layer stack in the lower right corner. The
voltage is applied on the top electrode. For every device, three different sizes—100 × 100, 50 × 50, and 20 × 20 µm2—are measured. The red dotted line indicates
the read out voltage for the area scaling. The switching voltages differ between the three stacks: (A) Al2O3: 2.2 V/–3 V, (B) Ta2O5: ± 2.5 V, and (C) WO3: ± 2 V.
(D–F) Area dependence of the LRS and HRS. The resistance value is scaling with the device size, for all of the three materials, (D) Al2O3, (E) Ta2O5, and (F) WO3.
The slopes of the linear fit for all of the devices and the HRS and LRS are around –1 �/µm2. Slopes can be seen in Table 2.

TABLE 1 | Voltages for the conducted measurements.

Material Set voltage (V) Reset voltage (V) Read-out voltage (V) SPM voltages (V) RPM voltages (V) Read-out (V)

Al/Al2O3 −3.0 2.2 −0.5 −1.5 to −2.0 1.2 to 2.0 −0.3

Ta2O5 −2.5 2.5 −1.0 to −1.5 0.8 to 2.0

WO3 −2.0 2.0 −2.0 to −2.6 1.2 to 2.0

1.33 J/cm2 and a frequency of 5 Hz are used during PLD
growth. Around 2,800 pulses are needed to grow a 20-nm
amorphous PCMO layer. Afterward, the PCMO thin film is
annealed in N2 atmosphere at 650◦C for 2 min in order to
crystallize the PCMO layer.

The Ta2O5 and WO3 layers are deposited by RF sputtering at
RT. Both depositions are performed at 200 W with 5× 10−2 mbar
pressure and an Ar/O2 ratio of 3/2. Afterward, the sample is
transferred in situ into an e-beam evaporator to deposit the Pt
top layer which is used as top electrode. During the Pt deposition
in vacuum, the e-beam process heats the sample up to 180◦C. For
the Al device stack, a 7-nm layer is also deposited on top of the
PCMO layer by e-beam evaporation and capped in situ with the
Pt layer. During the short deposition of the Al layer, no significant
increase in temperature can be detected. Here also, a 25-nm Pt
capping layer is used.

The patterning of the top electrode and the active interface
layer of the devices is performed by optical lithography and
Ar ion-beam etching. The pad size varies between 100 × 100,
50× 50, 20× 20, and 10× 10 µm2.

Electrical Measurements
In preparation of the electrical measurements, the samples are
glued to a large sample carrier chip with Pt pads. The BE is
contacted to one of the Pt pads on the sample carrier using
aluminum wire bonding. Two different setups are used to
characterize the samples electrically, namely one to perform the
quasi-static current-voltage (I-V) measurements, the other one
to apply pulses to the devices. A Keithley 2611B is used to
measure the I-V characteristics of the devices. The connection
between the measurement unit and the device is performed
by soft tungsten needles. Every measurement starts with an
initialization curve: 0 V→2.5 V→–2.5 V→0 V. During this
initialization procedure, the oxide layers of the metal are
presumably homogenized (Arndt et al., 2017). Afterward, the
regular switching cycle can be performed: 0 V→RESET voltage
(positive)→SET voltage (negative)→0 V. The SET and RESET
voltages have to be adapted for the different interface layer
materials. In Table 1, the writing voltages that show the most
stable switching for the different interface layers can be found
along with the read voltage.
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The pulse measurements for the multilevel SPMs and RPMs
are performed with a Keithley 4200A. Different pulse lengths
between 1 and 100 µs are employed. A large variety of
combinations of SPM and RPM voltages are investigated. The
parameter ranges that are used for the different devices are
displayed in Table 1.

The STDP measurements are performed with an Arc One
from Arc Instruments. For all three device types, a pulse length
of 100 µs with a pulse voltage of 2 V/–2 V is investigated.

ELECTRICAL CHARACTERISATION OF
PCMO MEMRISTIVE DEVICES

Quasi Static I-V Measurements
In Figure 1A, the I-V measurements of a typical sample with
an Al interface layer can be seen. A clear hysteresis of the I-V
curve on both the positive and the negative branch is visible. The
SET takes place at negative voltages and the RESET at positive
voltages. For negative applied voltages, the difference between the
LRS and the HRS, called ON/OFF-ratio is higher. Concerning
the gradual switching of the area type switching devices, no
distinct SET or RESET voltage can be defined. Therefore, we
always choose a voltage pair that allows stable switching of the
devices without any change of the I-V curves during the repeated
switching, e.g., 2.2 and 3 V for RESET and SET, respectively,
in case of the Al devices. For simplicity reasons we will call
the maximum voltage in the different voltage directions SET
and RESET. During the RESET, the slope changes at 1.8 V.
A similar but smaller change in slope can be seen during the
RESET at −2 V. Furthermore, the RESET and SET are both
gradual, with no abrupt jumps into the HRS or LRS. The I-V
curves for different pad sizes all have the same shape with smaller
differences, like the opening on the positive side. For smaller
devices, the opening becomes smaller in the positive branch. This
effect is not observed for the negative branch.

The I-V curves of a device with a Ta2O5 interface layer are
shown in Figure 1B. This switching polarity is the same as for the
Al devices, and HRS and LRS are clearly separable on the negative
side. Also, a change in the slope of the I-V curve can be found
around –2 V. On the positive branch, no opening and no change
in slope can be seen.

The WO3 devices show a different shape of the I-V curve
compared with the Al and Ta2O5 devices. The positive and the
negative branches both show two clearly separable resistive states,
see Figure 1C. In contrast to the case of Al and Ta2O5 devices,
the I-V curves are very symmetric for positive and negative
polarities. In particular, the increase in current in the LRS state

TABLE 2 | Slope of the linear fit of the resistance vs. area plot for all the
different materials.

Material HRS (�/µm2) LRS (�/µm2)

Al/Al2O3 −1.09 ± 0.01 −1.12 ± 0.07

Ta2O5 −0.98 ± 0.18 −0.95 ± 0.05

WO3 −1.25 ± 0.18 −1.02 ± 0.22

with voltage in the negative branch is much higher, compared
with Figures 1A,B. For the WO3 devices, a stable switching curve
can be found with symmetric switching voltages at ± 2 V. At
around –1.8 V, a change in the slope can be seen at least for
the 50 µm × 50 µm and the 100 µm × 100 µm devices. For
the 20 µm × 20 µm devices a similar change in slope can be
surmised, but not clearly determined.

Each device state, HRS and LRS, for the Al, Ta2O5, and
WO3 interface devices are tested regarding their retention time.
Over a period of several days, no change in the states can be
determined. The samples are stored at room temperature and in
ambient atmosphere.

To prove that all of the devices show area type resistive
switching, we read out the resistance at –0.5 V since switching
effects can be excluded at this voltage and the resistance at this
voltage is plotted against the device area (see Figures 1D–F). The
read out is chosen to be on the negative branch due to a higher
ON/OFF ratio. A clear linear relationship between the device
resistance and the device area can be seen for the HRS and the
LRS for all of the devices with a slope around −1 �/µm2, as
expected by Ohm’s law. The exact values of the fitted slopes can
be found in Table 2.

Additionally, we studied the device-to-device (d2d) and
cycle-to-cycle (c2c) variability of the devices during the quasi-
static I-V measurement. For these measurements, we used the
20 µm × 20 µm devices. Figures 2A–C shows the combined c2c
and d2d Weibull distribution for the different devices, namely,
(A) Al/Al2O3, (B) Ta2O5 and (C) WO3. For the Al/Al2O3
interface layer, it can be seen that the HRS and LRS are clearly
separable over their whole resistance range. The spread of the
HRS and the LRS is half an order of magnitude. For the Ta2O5
interface layer (Figure 2B), the spread for the different devices
and cycles is smaller. However, due to the smaller ON/OFF ratio,
the overlap of the two states is around a few percent. For the WO3
devices, the variability plot (see Figure 2C) differs from the plot of
the other devices. It can be seen that the LRS shows a much higher
variability than the HRS. The variability of the HRS is as small
as for all of the other device types. Comparing all three device
stacks, the Al/Al2O3 devices show a higher ON/OFF ratio than
the Ta2O5 devices and a lower variability than the WO3 devices.

Spike Timing Dependent Plasticity
In STDP, the change of a synaptic weight between neurons
depends on the time difference between two spikes, the pre-
and post-synaptic neuron pulse. The memristive devices act as
synapses, and the pre- and post-synaptic pulse are applied at the
top/bottom electrode, respectively.

Figure 3 shows the relative change in conductance of the
three different memristive devices for different time delays
between the pre- and post-synaptic pulse. All devices show an
increase/decrease in conductance for a negative/positive time
delay between the pulses, respectively. The Al STDP curve
(Figure 3A) shows a symmetric increase or decrease of the
conductance for the time delay between the pulses compared with
the STDP curves of the Ta2O5 and the WO3 (Figures 3B,C).
The WO3 (Figure 3C) shows a clear asymmetry between the
increase and decrease of conductance. The maximum increase in
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FIGURE 2 | (A–C) The Weibull plot of the combined cycle to cycle variability (c2c) and device-to-device variability (d2d) for the three different stacks, (A) Al2O3,
(B) Ta2O5, and (C) WO3, indicated by the stack in the lower right corner. For each stack, 10 different devices with each up to 100 cycles have been investigated.

FIGURE 3 | Relative change of conductance for different time delays between the pre- and post-synaptic pulse during STDP measurement for the three different
devices. (A) Al/Al2O3, (B) Ta2O5, and (C) WO3.

conductance is around twice as high as the decrease. Therefore,
all three types of devices are suitable for the implementation in
SNNs based on the STDP learning rule.

Stepwise SET and RESET Pulse
Measurements
We perform stepwise SET and RESET pulse measurements by
applying the same voltage pulse multiple times to one device
without switching the device back into a predefined state. By
applying pulses with a lower voltage, compared with the voltages
used during the IV measurement, it is possible to tune the
resistance of the devices in a gradual way between the HRS and
the LRS and vice versa. The transition from the HRS to the LRS in
the SPM and the transition from the LRS to the HRS in the RPM
happen stepwise. With these measurements, we can show that it
is possible to write different resistance states into the investigated
devices, resembling the LTP/LTD behavior of biological synapses.

In Figure 4A, the SPM and RPM measurements of PCMO
with the Al/Al2O3 interlayer are depicted. The chosen voltage
for the SPM and RPM are 1.8 V/2.0 V and –1.5 V/ 2.0V,
respectively, at a pulse length of 100 µs. Every pulse was applied
50 times without going back to the initial state. The largest
resistance change for the SPMs and RPMs of the Al/Al2O3
interface device occurs during the first few pulses of a cycle.

For the positive voltage curves, the resistance saturates after
∼20 pulses for both voltages but with different saturation
level, a higher/lower resistance for the higher/smaller voltage,
respectively. Furthermore, the increase in resistance at the
beginning of the curve is higher with a higher pulse voltage and
smaller with smaller pulse voltage. After the steep increase in the
beginning, the resistance only slightly increases. The SPM curves
that are measured with positive pulse voltages saturate after ∼10
pulses. Both curves show a clear non-linear behavior.

The SPM and RPM curves of the Ta2O5 device are depicted
in Figure 4B. The RPM curve is shown for two different pulse
voltages, namely, 0.8 and 1.4 V, each with 100 µs pulse length.
The SPM pulses have a height of –1.0 or –1.5 V, also with a
pulse length of 100 µs. Again, both the RPM and SPM curve
characteristics are non-linear. The SPM curves saturate after∼10
pulses, similar to the Al/Al2O3, but the maximum resistance
reached is different. The larger negative voltage leads to a lower
resistance value, compared with the smaller negative voltages.
For the RPM curves, the resistance increases less with each pulse
for the 0.8 V pulses as for the 1.4 V pulses. Furthermore, the
obtained saturation resistance is also smaller and therefore the
ON/OFF ratio is smaller. Beside the smaller ON/OFF ratio, the
curve shows a more linear increase in resistance during the pulse
measurement with the smaller SET voltage compared with the
larger SET voltage.
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FIGURE 4 | Results of the SPM and RPM for the different devices. The RPM curve (red) and the SPM curve are plotted for the same material into the same
coordinate system. The SPM curve starts at higher pulse numbers and goes down to lower pulse numbers; the RPM curve can be read as normal. The pulse
voltages for the different stacks can also be seen in Table 1. (A) Al2O3, (B) Ta2O5, and (C) WO3. Every pulse has a length of 100 µs. For the shown curves, the fits
are shown in the plots.

In Figure 4C, measurements for the WO3 stack with
1.2 V/1.4 V and –2 V/–2.6 V for RPM and SPM, respectively,
are shown. All measurements are performed with a pulse length
of 100 µs. The RPM curves of WO3 are more linear compared
with the RPM curves of the Al and the Ta2O5 devices, and no
clear saturation can be seen for the shown RPM curves. The
SPM curves show a saturation after ∼20 pulses with a slight
resistance decrease afterward. Here, a clear separation between
the saturation levels for the different voltages can also be seen.

Behavioral Modeling of the Resistance
Changes of the PCMO Devices
To better analyze the impact of the material stack and applied
voltages on the shape of the SPM and RPM pulse measurements
and to use these measurements in the ANN simulations in
Section “Perceptron Learning of Mnist Dataset,” the evolution
of the resistance for the devices with an Al, Ta2O5, and WO3
interlayer is mathematically fitted. Similar to other approaches in
literature (Suri et al., 2015), a logistic function

y(n) =
ý

1+ exp(−α × n − c)
(1)

is employed, where y is the fitted resistance for the RPM curve
and conductance for the SPM curve. ý is the maximum value at
which the function saturates, and α and c determine the steepness
of the increasing swing. In the following, parameters concerning
the SPM fit are equipped with the index SPM and parameters
concerning the RPM fit with the index RPM. This formula shows
a strong saturation for high values of the pulse number n as
observed in our experiments and reasonably good fitting of the
measured resistance values. A fitted resistance value can therefore
be attributed to each measured resistance, leading to a total of 50
different resistance values for every SPM and RPM curves and
therefore in total 100 resistance levels for every material stack and
pair of SPM and RPM voltages. The different resistance levels are
not evenly spaced.

The fit function is used to determine the change of the
resistance of a memristive device upon the application of either
a SET or RESET pulse. For a SET pulse, the fit function for
the respective SPM curve ySPM(n) is inverted and the current
conductance (before the update pulse) of the device is used
to determine the pulse number ncurrent, which resembles this
conductance. Following to this, ySPM (n) is evaluated at ncurrent +

1 to yield the conductance of the device after the SET update
pulse. For a RESET pulse, the inverse of the RPM curve’s fit
function yRPM(n) and the current resistance yield ncurrent and
yRPM (ncurrent + 1) gives the resistance value of the device after
the update pulse.

Another common approach for a behavioral model in the
literature is fitting the resistance change [e.g., (Suri et al., 2015)]
instead of the actual resistance as it is proposed in this work.
However, this approach showed a similar fitting accuracy for the
data used here but a lower computational performance in the
TensorFlow environment.

The fit parameters ýSPM and ýRPM correspond to the
saturation value of the resistance in the SPM and RPM,
respectively. Therefore, the maximum ON/OFF ratio of a pair of
SPM and RPM curves can be calculated from these parameters.
The ON/OFF ratio strongly depends on the used material stack.
With the Ta2O5 interlayer samples, the lowest ON/OFF ratios
can be reached, while the WO3 samples show the highest values
and with an Al interlayer, intermediate values can be reached.
Additionally, higher SET and RESET voltages lead to a higher
maximum ON/OFF ratio in the pulse measurements, except for
the SPM with –2.6 V for the WO3 interlayer samples and the 1.6-
V RPM for the Ta2O5 interlayer samples. It can be found that an
increase of the SET voltage leads to a lower saturation resistance
in the SPM and a higher RESET voltage to a higher saturation
resistance of the RPM.

For the α parameter of the fit function (1), which resembles
the steepness of the initial change of the resistance, no clear
dependency on the applied voltage can be found, neither for the
SPM nor the RPM. Concerning the αSPM parameter for the fit
of the SPM, a clear separation between the different material
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FIGURE 5 | (A) RPM of the Ta2O5 devices with 1.6 V per pulse and different pulse lengths –1, 10 and 100 µs. (B) Resistance of the RPM plotted against the total
applied pulse length for three different pulse lengths with a pulse voltage of 1.6 V. (C) SPM curves of the Ta2O5 devices with the resistance plotted against the total
applied pulse length, with a pulse voltage of –2.5 V.

stacks can be observed, where the Al interlayer samples show
the highest, Ta2O5 intermediate and WO3 the lowest values. In
the fit of the RPM curves, a trend to increasing αRPM parameters
with an increasing reset pulse voltage can be observed. However,
the height of the increase is the largest for the Ta2O5 interlayer
samples and comparably small for the WO3 interlayer samples.

In conclusion for the fit parameters, in the most cases, a higher
SET voltage leads to a lower saturation resistance in the SPM
and a higher RESET voltage to a higher saturation resistance in
the RPM. αSPM, corresponding with the steepness of the initial
increase of the SPM, depends mostly on the material and not on
the SET voltage, while αRPM, for the RPM steepness, depends on
the RESET voltage.

Impact of Pulse Length on SET and
RESET Pulse Measurements
In order to study the impact of the pulse length on the shape
of the SPM and RPM curves, we vary the pulse length between
1 µs and 100 µs. Figure 5A shows that using shorter pulses
for the RPM, the maximum reached resistance after 50 pulses
is smaller, similar to what we have observed for smaller pulse
amplitudes (see Figure 4B). Moreover, Figure 5A implies that
the total change of the resistance only depends on the total time
of the applied pulses irrespective of the length of a single pulse.
For example, for the application of a single pulse of 100 µs or 10
pulses of 10 µs pulse length, the total applied time is the same
and the observed resistance change is the same. Figure 5B shows
the measured device resistance at –0.3 V, plotted against the total
applied pulse length for the Ta2O5 RPM curve starting in the LRS.
A clear trend of increasing resistance with increasing total applied
pulse time can be seen. Also the measurements with the different
pulse lengths show a continuous behavior. For the Ta2O5 devices,
this behavior is also depicted for the SPM curve in Figure 4C.
This proves that the total change in resistance is indeed only
dependent on the total applied time for Ta2O5. This behavior is
also observed for the Al and the WO3 devices (not shown here).

In summary, the combination of different pulse lengths and
pulse voltages makes the devices flexible in the resistance range

that can be used and the resistance change that one pulse triggers.
In addition to the former described current adaptability of the
devices by their sizes, this gives the opportunity to adapt the pulse
length to the network requirements.

Discussion of the Impact of Pulse Height
and Length on SPM/RPM
As described in the previous section, the final ON/OFF ratio that
can be reached after saturation increases with the pulse height.
The tradeoff is to find a voltage that allows a high saturation
ON/OFF ratio but without reaching the saturation immediately,
which would lead to a binary synapse. With respect to the pulse
length dependence (see Figure 5A), the reduction of the pulse
length results in a smaller increase in resistance and the final
ON/OFF ratio that can be reached after saturation increases only
with the pulse height and not with the pulse length. To avoid
switching the device completely with only one pulse, the voltage
and the applied pulse time has to be reduced. This way we can
reach a high number of intermediate resistance states.

In filamentary systems, the switching current is confined to the
filament resulting in high current densities and self-heating up to
800 K (Menzel et al., 2011). The increase in temperature leads to a
to a self-enhanced, abrupt SET process. In area type switching, the
current is distributed over the whole area resulting in low current
densities and a large dissipation area. Simulations confirm that
self-heating is not important in area type devices, and we neglect
its influence on the switching process (Menzel et al., 2019). As a
result, the velocity of the oxygen ions only depends on the force
of the applied electric field and the diffusion force. It does not
depend on the length of the applied voltage pulse.

We assume that the resistance changes with the amount of
oxygen in the tunnel oxide and in the PCMO. An oxygen ion
transfers from the tunnel oxide into the PCMO (or vice versa)
if it overcomes the distance to the interface between the two
materials. If we apply an electric field, oxygen ions begin to move.
The higher the distance each oxygen ion can travel, the more ions
can move in total from the tunnel barrier to the PCMO (or vice
versa) if the drift process takes place via vacancy sites. Therefore,
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the change in resistance is directly related to the total distance an
oxygen ion has moved.

This distance is the time integral of the velocity that only
depends on the total time a voltage is applied as long as the
velocity itself is not a function of the pulse length. This should be
the case if no Joule heating takes place. Therefore, the distance
the oxygen can be moved does not depend on the number of
pulses and their length. For example, one 100 µs pulse has the
same effect as ten 10 µs pulses (see Figures 4B,C).

PERCEPTRON LEARNING OF MNIST
DATASET

The presented devices allow for usage with two different
learning rules. The measurements presented in Section “Spike
Timing Dependent Plasticity” resemble a synaptic STDP behavior
and therefore suggest the use of the proposed devices for
Hebbian style learning in a spiking neural network. The second
approach uses the stepwise resistance change in the pulse
measurements presented in Section “Stepwise SET and RESET
Pulse Measurements”. The gradual nature of the resistance
change can be exploited in an artificial neural network, which is
trained by a gradient descent learning rule. This duality shows
the wide range of applications for the proposed devices in
neuromorphic systems, as these learning rules differ significantly
in the scope of processed information (local comparison of
pre- and post-synaptic activity for Hebbian learning and global
error minimisation for gradient descent) and the initial point
of their derivation (neurophysiology for Hebbian learning and
mathematical optimisation theory for gradient descent). In the
following, an exemplary ANN trained by a gradient descent
learning rule is shown.

To investigate the use of PCMO resistive switching devices as
presented above as weights in an ANN, we conduct simulations
of multilayer perceptrons in a TensorFlow (Abadi et al., 2016)
environment in Python. Furthermore, the impact of the different
material stacks and the hyperparameters SET/RESET pulse
voltage and pulse length on the learning and recognition accuracy
are analyzed. To compare and benchmark the results of our
network, the common dataset of hand-written digits MNIST
is used for training of the network and validation of the
recognition performance.

Gradient-Descent Learning of the MNIST
Dataset
The investigated perceptron network consists of four layers of
neurons with the second and third being hidden. The input layer
has 784 neurons, the first hidden layer 250, the second hidden
layer 125 and the output layer 10 neurons. This structure is
chosen to make the network comparable with similar memristive
networks in the literature. Similar to previous works, a matrix
structure of PCMO-based ReRAM devices is assumed as the
weight layer between two neuron layers (Xia and Yang, 2019).
A more detailed description of the network can be found in the
Supplementary Material. The weights are initialized randomly
from the range the employed SPM and RPM curves provide.

In order to determine whether a SET or RESET pulse must be
applied to a ReRAM device, a form of gradient descent learning
using the backpropagation algorithm is employed.

In the forward pass, a sample image is presented to the input
of the network with the grayscale values of each pixel being
converted to an input voltage. By Ohm’s and Kirchhoff’s Law,
this vector of input voltages is transformed to a vector of output
currents by the memristive weight matrix. A Rectified Linear Unit
(ReLU) function determines the input voltage to the next weight
layer from these currents.

The gradient for the gradient-descent algorithm is calculated
in the backward pass of the total network error E for every
weight as ∂E

∂gi,j . This calculation is executed within the TensorFlow
framework. The calculated gradients for every weight are
accumulated within each epoch. In every training epoch, a subset
of 60,000 samples from the MNIST dataset is shown to the
network, resulting in a batch size of 60,000. Previous works by
Gao et al. (2020) showed that larger batches can lead to a better
recognition performance. With this large batch size, only one
update cycle per epoch is performed.

In the update operation of the PCMO devices we propose
here, either a gradual SET, RESET, or no pulse can be applied
to a device. The pulse height for SPM and RPM are fixed.
Therefore, only the sign of the accumulated gradient would
determine whether a device receives a SET or RESET pulse
for update. With this sign update rule, an infinitesimal small
gradient would have the same effect as a large gradient, what
can be expected problematic for the training of the network.
Therefore, the set of updated conductances is restricted to only
the largest positive gradient and the smallest negative gradient in
every layer. Another benefit of such a very sparse update matrix
in a matrix-shaped weight layer is that it is much more time
consuming to update a large number of conductances than to
infer the whole network. Using a matrix structure of the PCMO
devices, the inference of a complete layer takes one step, whereas
the update of device is performed sequentially. The very low
number of updated devices on the other hand leads to a large
number of learning epochs necessary to reach the maximum
recognition accuracy.

After each learning epoch, a validation subset of 10,000
samples from the MNIST dataset, which is different than the
learning set is shown to the network, and the fraction of correctly
recognized numbers is calculated as the recognition accuracy
after this epoch. To investigate the impact of the PCMO-based
ReRAM devices in this network, we also performed a benchmark
test with the described network structure and learning rule, but
floating point weights instead of resistive switching weights. In
this benchmark, the network showed a maximum recognition
accuracy of 96.3%.

Results of Multilayer Perceptron
Simulations With PCMO-Based
Memristive Switching Weights
For all combinations of measured SPMs and RPMs, multilayer
perceptron simulations are conducted for 6,000 epochs.
As described in Section “Stepwise SET and RESET Pulse
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FIGURE 6 | Results of the neural network simulations. (A) Recognition accuracy of the simulated network depending on the fitted ON/OFF ratio and the steepness
of the SPM fit function. (B) Network recognition accuracy on a subset of the MNIST dataset. Red: Al interlayer. Blue: Ta2O5 interlayer. Yellow: WO3 interlayer. (C)
Recognition accuracies of similar networks with ReRAM devices from literature depending on the ON-OFF ratio of the used ReRAM devices (Moon et al., 2015; Suri
et al., 2015; Ambrogio et al., 2016; Babu et al., 2018; Fumarola et al., 2018; Go et al., 2019; Wu et al., 2020; Yin et al., 2020). (D) Learning curves for PCMO
devices with Al and Ta2O5 interlayers with 100 µs (red) and 1 µs update pulses.

Measurements,” the material stack of the PCMO devices and
choice of the voltage for the SET and RESET pulses in the pulse
measurements lead to significantly different evolutions of the
resistance in these measurements. This also has an influence
on the maximum accuracies that can be achieved using these
resistance curves for ANNs. The maximum accuracies of all
simulations are plotted in Figure 6A. The x-axis shows the fitted
maximum resistance in the SPM and RPM curves. The higher
this value, the higher also the measured ON/OFF ratio in the
pulse measurements is. As discussed in Section “Spike Timing
Dependent Plasticity,” in most cases, a higher ON/OFF ratio
can be reached by choosing higher voltages for the SPM and

RPM. On the y-axis, the steepness value from the fit of the SPM
αSPM is shown. This parameter is mostly dependent on the used
material stack (see Section “Stepwise SET and RESET Pulse
Measurements”).

The lowest accuracies resulting from the training simulations
can be found in the lower left corner for low ON/OFF ratio and
low steepness of the SPM curve. Many of these simulations yield
accuracies below 70%, and for the data points in black no learning
at all with accuracies around 10% is even reached, which would
be like a random drawing. However, for higher values of the αSPM
parameter around 0.25, the maximum accuracy increases to 75%
to 80%, even for comparably low ON/OFF ratios. This means
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that an initially steeper increase of the conductivity of a weight
leads to an increase in recognition accuracy. This observation
appears contrary to previous observations that a more linear
update behavior of the resistance is beneficial for the recognition
accuracy (Cai et al., 2020). Burr et al. (2017) attribute this to the
non-reversibility of a weight update that follows from a strong
non-linearity. However, the difference here can be explained by
the different update rules. With the large batch size and sparse
update matrix used in this work, updates on the same device
mostly happen in the same direction and update pulses with
different polarities on the same device rarely occur. Therefore,
the non-reversibility of a weight update is not an issue.

Another path to higher accuracies is a higher ON/OFF ratio.
For a low αSPM of around 0.1, the accuracy increases from low
to higher ON/OFF ratios. The same trend can also be found for
high values of the RPM steepness factor αSPM of about 0.4. The
ON/OFF ratio has two effects here. Since all pulse measurements
consist of an equal number of pulses, a higher ON/OFF ratio
means that the difference between the resistance steps is larger, as
long as the curve reaches the saturation within the same number
of pulses. On the other hand, a low ON/OFF ratio of, e.g., 3 means
that three OFF switched devices contribute the same activation to
a neuron in the subsequent layer as one ON switched device. For
higher ON/OFF ratios, e.g., of 10, 10 devices can be in the OFF
state with one ON switched device still having a relatively high
impact on the activation of the next neuron layer. The ability of
a device to differentiate the activation of the next neuron layer
decreases with decreasing ON/OFF ratio.

As described in Section 2.4, αSPM parameter strongly depends
on the material stack. Therefore, a separation between the
materials can also be observed in Figure 6A, with the WO3
interlayer samples for low, the Ta2O5 interlayer samples for
intermediate and the Al interlayer samples for high values of
αpot. For each material, the complete learning curves for those
pulse measurement voltages resulting in the highest maximum
recognition accuracy are displayed in Figure 6B. After 6,000
training epochs, the network using the PCMO devices with the
Al interlayer reaches the highest recognition accuracy with 82%.
The network using the Ta2O5 interlayer devices, which initially
shows a faster increase of the recognition accuracy, exhibits a
saturation at a lower level of 76%. The WO3 interlayer devices
lead to a much lower learning speed but a similar recognition
accuracy of about 76%.

To benchmark the performance of the proposed network
and memristive devices, the maximum accuracy reached can be
compared with similar networks. In Figure 6C, a comparison
of previous works on ANNs with memristive devices training
MNIST is provided separated by the maximum ON-OFF ratio of
the used devices on the x-axis. Most networks here have a similar
layer and neuron-per-layer count as the network proposed in this
work. The maximum accuracy of 82% reached in our simulations
can be found in the lower left corner of Figure 6C, which means
a 14% higher error rate compared with the same network with
ideal floating point weights, as described above. It can be seen that
this value is comparable with other networks using memristive
devices with a similar ON-OFF ratio, which is still lower than
accuracy values one would expect from conventional ANNs in

software. To achieve higher recognition accuracies, the ON/OFF
ratio must be increased further. With an ON/OFF ratio of around
30, Wu et al. (2020) showed an accuracy of about 95%. Even
higher accuracies can be reached using memristive devices as
storage for weights in a fashion of digital numbers instead of
analog weights (Moon et al., 2015) (Babu et al., 2018).

As described in Section “Stepwise SET and RESET Pulse
Measurements,” by varying the length of the applied pulses in
the SPM and RPM, short pulses lead to slower and longer
pulses to a faster progression on the SPM or RPM curve,
respectively. Figure 6D shows a comparison of the learning
of the MNIST dataset with long pulses of 100 µs (red) and
short pulses of 1 µs (blue) using PCMO devices with Al and
Ta2O5 interlayers. Initially, for both interlayers, the accuracy
for the network using the long pulses increases faster. In the
end, both saturate at about the same values, 82% for the Al
interlayer devices and 78% for the Ta2O5 interlayer devices.
In the simulation with the latter devices, for the long pulses,
the recognition accuracy oscillates at high pulse numbers. This
is not the case for the short pulses. In conclusion, the use of
shorter update pulses can lead to a more stable, but slower
learning process. A gain in accuracy is not reached. However,
in conventional perceptron networks, the learning rate is an
important factor for a successful learning and has a large impact
on the convergence and accuracy of the network. In this work,
we present one approach to implement a variable learning rate
for resistive switching ReRAM devices by changing the pulse
length. Such adaptive learning rates are not only beneficial for
artificial neural networks like perceptrons but can also be used in
brain-like learning systems to realize more biologically plausible
learning rules from neuroscience.

In conclusion for the neural network simulations, PCMO
ReRAM devices with Al, Ta2O5 and WO3 interlayers can be used
as weights in ANN learning to MNIST dataset. For devices with
an Al interlayer, the highest recognition accuracy of about 82%
could be achieved. A parameter optimisation showed how the
shape of the resistance evolution curve of pulse measurements
affects the maximum accuracy. A high steepness of the SPM and
the maximum ON/OFF ratio were identified as most important to
reach the highest accuracy values. While the steepness of the SPM
depends mostly on the material stack used, the ON/OFF ratio can
be maximized by choosing greater voltages for the SPM and RPM.
Finally, the concept of a variable learning rate was implemented
using different pulse lengths and the effect on the learning speed
and accuracy investigated.

CONCLUSION

In this work, we compared the performance of area-dependent
memristive PCMO devices with Al interlayer, where Al2O3 is
formed naturally at the interface with devices where Ta2O3
and WO3 have been deposited intentionally. All investigated
devices show area-dependent switching and exhibit a STDP-
like behavior.

Furthermore, for all three types of devices, we performed
SPMs and RPMs. The shape of the SPM and RPM curves differs
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significantly for the different materials. In particular, the WO3
stack showed a better linearity than the other two types of
devices. Moreover, we showed that we can adapt the SPM and
RPM curves with the pulse parameters. By reducing the pulse
height and the pulse length, we could adapt the step width of
the resistance change and the ON/OFF ratio. Additionally, we
showed that the amount of resistance change during the SPM or
RPM depends on the total time a voltage is applied irrespective of
the number of pulses.

For the neural network simulations, the application of directly
deposited Ta2O5 and WO3 layers does not lead to an increase
in recognition accuracy or increased learning speed compared
with the Al interlayer devices despite of the better linearity
of the SPM and RPM curves of the WO3. A hyperparameter
optimisation shows the influence of the pulse lenght and height
on the SPM and RPM curves and the influence of their shape
on the maximum accuracy. The ON/OFF ratio and the SPM
steepness are identified as the most crucial for high accuracies.
Furthermore, it was shown that using shorter update pulses leads
to a slower initial increase of the recognition accuracy but a more
stable learning process, with less oscillations. Based on this, we
propose a new approach to implement a variable learning rate for
resistive switching ReRAM devices by changing the pulse length
that might be interesting for perceptron networks in the future.

In conclusion, we demonstrated how two fundamentally
different learning rules for neural networks, STDP in SNN and
gradient descent learning in ANN, could be realized in the same
memristive devices.
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