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Abstract

Genomic information reported as haplotypes rather than genotypes will be increasingly important for personalized
medicine. Current technologies generate diploid sequence data that is rarely resolved into its constituent
haplotypes. Furthermore, paradigms for thinking about genomic information are based on interpreting genotypes
rather than haplotypes. Nevertheless, haplotypes have historically been useful in contexts ranging from population
genetics to disease-gene mapping efforts. The main approaches for phasing genomic sequence data are molecular
haplotyping, genetic haplotyping, and population-based inference. Long-read sequencing technologies are
enabling longer molecular haplotypes, and decreases in the cost of whole-genome sequencing are enabling the
sequencing of whole-chromosome genetic haplotypes. Hybrid approaches combining high-throughput short-read
assembly with strategic approaches that enable physical or virtual binning of reads into haplotypes are enabling
multi-gene haplotypes to be generated from single individuals. These techniques can be further combined with
genetic and population approaches. Here, we review advances in whole-genome haplotyping approaches and
discuss the importance of haplotypes for genomic medicine. Clinical applications include diagnosis by recognition
of compound heterozygosity and by phasing regulatory variation to coding variation. Haplotypes, which are more
specific than less complex variants such as single nucleotide variants, also have applications in prognostics
and diagnostics, in the analysis of tumors, and in typing tissue for transplantation. Future advances will
include technological innovations, the application of standard metrics for evaluating haplotype quality, and
the development of databases that link haplotypes to disease.
Introduction
Technological progress has enabled the routine rese-
quencing of human genomes. These genomes include
rare variants at high frequency [1,2] that are the result
of exponential human population growth over the past
hundred generations [3]. These variants can affect single
nucleotides or larger genomic ranges by substitution, in-
sertion, deletion, or change in copy number. Combina-
tions of variants are present in cis on the same physical
molecule or in trans on homologous chromosomes.
This set of cis and trans relationships between the vari-
ants, known as the phase of the variants, affects the
interpretation and implications of the relationships be-
tween genotypes and phenotypes, including disease phe-
notypes [4-6]. To simplify the discussion, we define a
haplotype in general terms as a contiguous subset of the
information contained in a molecule of DNA (Box 1).
* Correspondence: jroach@systemsbiology.org
Institute for Systems Biology, Terry Avenue North, Seattle, WA 98109, USA

© 2014 Glusman et al.; licensee BioMed Centr
12 months following its publication. After this ti
License (http://creativecommons.org/licenses/b
medium, provided the original work is properly
creativecommons.org/publicdomain/zero/1.0/)
An example of a haplotype by this definition, grounded
on molecular observation, is the actual sequence inherited
from one parent and spanning one or more genes in a
specific genomic region of interest. A corollary of this def-
inition is that the longest possible haplotype, the ‘chromo-
some haplotype’, is the full sequence of a chromosome
that an individual inherited from one parent. Haplotypes
have a number of important roles and applications that
are listed in Box 2.
Analysis of haplotypes falls generally into three categor-

ies: 1) elucidating the ‘haplotype block’ structure of the
genome, 2) employing haplotypes as genetic markers, and
3) understanding haplotypes as functional units [7]. As
the number of observable genetic variants increases, so
does the number of observable haplotypes. This increase
in observed variants is largely the result of rare variants
assayed by whole-genome sequencing (WGS). As a result,
there are now many observed haplotypes with frequencies
too small to estimate using population-based inference
methods. Recent technological advances have enabled the
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Box 1. Glossary

Base-quality score: A measure of the accuracy of each

individual nucleotide (‘base’) call determined by an automated

sequencing platform for a DNA molecule. Specifically, this measure

estimates the probability of error for each nucleotide called,

enabling the discrimination of correct and incorrect nucleotide

assignments in a DNA sequence across different sequencing

platforms. As first defined by Ewing and Green, the quality score

(q) assigned to a single base-call is q = -10 × log10(p), where p is

the estimated error probability of that call.

Chromosome haplotype: The longest possible haplotype. The full

sequence of a chromosome that an individual inherited from one

parent, possibly altered later by somatic mutations.

Completion criterion: A target for the fraction of alleles

determined by assaying a defined set of positions. For example, a

haplotype may be 99.99% complete if the set of defined positions

are those on a genotyping array of one million markers (for

example, 999,900 called genotypes/1,000,000 SNPs), but that same

haplotype reported for all variable positions of a genome that

varies at only a third of these million sites but also at a million

other sites would be only 25% complete (333,300/1,333,333

variable positions). Haplotyping methods make trade-offs among

cost, accuracy, length and completeness.

Genetic haplotyping: The process of inferring the phasing of

variants observed in ordered genotypes according to the

principles of Mendelian segregation of alleles in pedigrees.

Haplotype: A set of co-inherited alleles occurring on a single

strand of DNA.

Haplotype assembly: The computational process of ‘stitching’

together shorter, overlapping fragments of DNA sequences into

a single, long haplotype tract. This stitching process relies on

overlapping sequences containing one or more SNVs and

requires a reference genome to map the reads.

Haplotyping: (also known as phasing) The process of

determining haploid DNA sequences (haplotypes) from

unordered (unphased) genotype data.

High-frequency phase error: Errors in the reconstruction of a

haplotype resulting from mis-assignment of an isolated allele

(single-site) in the DNA sequence.

Identical-by-descent: Identical copies of an allele or segment

of DNA that two individuals have inherited from a shared

common ancestor.

Low-frequency phase errors: Errors in the reconstruction of a

haplotype resulting from mis-assignment of blocks of adjacent

alleles in the DNA sequence.

Molecular haplotyping: The direct observation of alleles on a

single molecule of DNA.

Population-based haplotyping: The process of assigning the

most likely order of common alleles along each haploid segment

of DNA according to the frequency of observation in a large

sample set. This method constructs haplotypes from unordered

genotype data.

Quality metrics: A system of standardized formal measures

required to reliably quantify the accuracy and precision of a

technique, which in the context of this review is the

reconstruction of the true haplotype.

Switch-error rate: The proportion of heterozygous sites in each

reconstructed haplotype that are mis-assigned relative to the het-

erozygous site that directly precedes it. It is also defined as one

minus the switch accuracy.
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determination of haplotypes by direct observation of
molecular data and from genetic information, and with
decreased reliance on population-based statistical estimation.
Historically, it has been difficult to distinguish between

the homologous haplotypes of autosomes inherited from
each of the parents. For that reason, allele information
from each pair of autosomal chromosomes is typically
comingled into one sequence of information: the unphased
genotype sequence. Phasing (or haplotyping) describes
the process of determining haplotypes from the geno-
type data. Until recently, cost, lack of data, and computa-
tional intractability has limited the availability of phased
whole-genome haplotypes [4].
There are three basic methods for phasing: molecular,

genetic, and population analysis. Molecular haplotyping
is rooted in the analysis of single molecules (Figures 1
and 2, Table 1). If the molecule haplotyped is shorter
than a chromosome, molecular haplotyping can be followed
by haplotype assembly. Increasingly clever methods are
being deployed to exploit high-throughput parallelization,
combining data from measurements of many single
molecules to build longer haplotypes. Genetic haplo-
typing requires pedigrees and can yield chromosome-
length haplotypes [8]. Population haplotyping requires
models of the population structure of haplotypes and
can only phase common variations. These three approaches
can also be combined to create hybrid strategies. As a gen-
eral rule, these methods can be used to phase any combin-
ation of single nucleotide variants (SNVs; commonly
called single nucleotide polymorphisms (SNPs) when they
are frequent enough in the population), insertions and de-
letions (indels), and copy number variants (CNVs). SNVs
and short indels are typically easier to phase because they
can be observed within individual sequence reads. Larger



Box 2. Biological and medical importance of
haplotypes

� Haplotypes can be used to study human migration,

evolutionary selection and population structure [95-97].

They can be used for admixture mapping [98], imputation of

regions lacking genotype information [44,99,100] and to

improve the power of genetic association [101-104].

Haplotypes are critical for identifying identical-by-descent

(IBD) regions that are shared between pairs of individuals

[42,68,74].

� Haplotyping can aid the detection and correction of

erroneous or missing sequencing data - for example, by

detecting inconsistencies between the genotypes within a

family [8,64]. Detecting and resolving such errors may prove

crucial for medical interpretation of individual genomes,

particularly when considering rare (or ‘private’) variants that

affect the expression or function of medically important

genes.

� Diploid haplotypes may display different functional profiles

depending on the combination of functional elements [30].

Haplotypes are therefore essential for fundamental

understanding of the roles of genetic regulation, epigenetic

regulation, and chromatin modification in the human

genome, and their phenotypic consequences. Haplotyping

can enable the detection of compound heterozygosity, which

is increasingly recognized as an important cause of genetic

disease [64,84-86]. Functional cis-acting regulatory elements

are known to alter gene expression and can cause disease

[87-89]. Allele-specific expression and imprinting are also

mediated by haplotypes [105,106]. Chromosome-length

haplotypes are essential for assessing the functional

consequences of distantly located variants and their

interactions.

� Haplotyping is valuable in diagnosing loss of heterozygosity

in cancer [91] and for establishing haplotypes of the major

histocompatibility complex (MHC) that are important for

autoimmunity and for organ transplantation [92,93].

� Haplotyping can determine the parental origins or

occurrence of de novo mutations [107].
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variants, such as CNVs, are typically assessed using geno-
typing arrays [9,10].
In this review, we describe in detail the three main

methodologies for phasing variants and their integration
into combination strategies, and we provide quality
metrics (Box 3). Finally, we provide an overview of the
applications of whole-genome haplotyping in genomic
medicine.

Molecular haplotyping
Molecular haplotyping involves the direct observation of
alleles on a single molecule. These molecules are often
single sequence reads, ranging in size from tens of bases
to thousands of bases. When two variants are observed
in the same physical read, or in paired reads derived
from the same molecule, they can be directly phased.
Therefore, same-read molecular haplotyping gains power
with sequencing read length, and the major source of
error is the sequencing error rate. Although often over-
looked because of its simplicity, sequencing is the most
common form of molecular haplotyping. Other forms of
molecular haplotyping include restriction fragment analysis,
optical mapping, and coded fluorescence hybridization
approaches [11].
Long-range binning can be achieved by physical separ-

ation of the two haploid genomes prior to sequencing.
Binning methods are able to resolve private and rare
haplotypes and can be used to generate personalized
genome-resolved haplotypes. Sequencing isolated sperm
cell genomes [12] is one simple approach, but applicable
only to males. Chromosome isolation methods do not
require sequencing coverage to the depth needed to
resolve possibly heterozygous positions [10]. Whole-
chromosome sorting methods include microdissection,
fluorescence-activated cell sorting (FACS) and microfluidics.
Chromosomes are individually tagged or separated into
pools that tend to contain at most one copy of a chromo-
some. These are genotyped or sequenced to generate
whole-chromosome haplotypes. Microdissection involves
arresting cells in metaphase and spreading the chromo-
somes to isolate them [13]. FACS separates individual
chromosomes, which are then amplified and tagged before
sequencing [14]. The ‘direct deterministic phasing’ method
uses microfluidic devices to capture a single metaphase
cell and partition each intact chromosome [10].
Semiconductor-based nanotechnologies are being ap-

plied to assay single DNA molecules, deriving very
long-range haplotype information. NabSys (Providence,
RI, USA) tags DNA molecules with probes that are spe-
cific to particular chromosomal locations and passes
single molecules of DNA with bound tags through
solid-state nanodetectors to identify the locations of
bound tags [15]. BioNano Genomics (San Diego, CA,
USA) labels DNA using nicking endonucleases and fluo-
rescently labeled nucleotides, then visualizes single mole-
cules in linearized nanochannels [16]. Both technologies
yield de novo genome-wide maps, informing structural
variation and haplotypes. Nevertheless, no current tech-
nology captures all variants in the genome; for example,
most are unable to assay trinucleotide repeats. These
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Figure 1 Overview of the three methods for phasing whole-genome sequence data. Phasing is achieved by (1) molecular methods,
(2) genetic analysis, or (3) population inference. Molecular methods focus on individual samples and involve either (a) processing genomic DNA
prior to sequencing or (b) leveraging the single-molecule characteristic of each physical read. Genetic analysis and population inference process
sequenced genomes from pedigrees and population cohorts, respectively.
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technologies are changing rapidly, and Buermans and
den Dunnen [17] have provided a recent review of the
types of variants assayed by some of these technologies.
The principles and methods of haplotyping described
here will apply even as methods change. In some cases,
combining a technology that assays large variants (for ex-
ample, BioNano) with one that assays SNPs (for example,
pairwise end sequencing) may best address a particular
need.

Haplotype assembly
Any set of two or more overlapping haplotypes can be as-
sembled into a single haplotype. Typically, after generation
of many individual molecular haplotypes, sequence assem-
bly is used to identify overlapping sequences and thus to
infer a longer haplotype [18-20]. The haplotypes being as-
sembled may be derived from heterogeneous data sources
but haplotype assembly is most commonly based on a set
of molecular haplotypes [21-23], so we will discuss this
prior to the discussion of genetic and population-inferred
haplotypes.
Assembly of molecular sequences from fragments pre-
dates the ability to sequence DNA. Assembly was origin-
ally employed for determining the sequence of proteins
[24]. Before the Human Genome Project (HGP), genome
maps were assembled from restriction-fragment haplo-
types [25]. During the HGP, haplotype reconstruction
relied on the assembly of matched-end sequences of
clones. As the HGP wound down, for economy of scale,
there was a general shift away from long-read towards
short-read sequencing. This shift increased the difficulty
of haplotype assembly directly from shotgun reads, and
resulted in a revival in algorithms for haplotype assem-
bly. Lancia et al. [26] describe the ‘SNPs haplotyping
problem’ by looking at the fundamental constraint
shared by the group of algorithms that solve this prob-
lem: that all sequence reads must be partitioned into
exactly two bins. These algorithms generally allow for
sets of raw reads to be constrained to co-occur in the
same bin. Such constraints arise either from paired end
data or from pooling strategies. Clever experimental de-
signs have maximized the utility of these constraints,
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Figure 2 The properties of phasing methods. The level of confidence in phasing and the achievable range of phased sequence length both
vary depending on the method used. Molecular methods provide direct observations from single molecules and therefore the level of
confidence in the results is high. The phased sequence length that can be achieved by these methods has a wide range, which depends on the
method employed. Molecular observations can be assembled into haplotypes (dashed arrows), adding moderately to the range of phased
sequence length, and potentially introducing inference error. Genetic analyses infer phase by leveraging the property of Mendelian segregation
and can phase entire chromosomes. Population inference methods are probabilistic and limited to the generation of short-range
haplotype blocks.

Glusman et al. Genome Medicine 2014, 6:73 Page 5 of 16
http://genomemedicine.com/content/6/9/73
particularly those that use statistical or molecular tech-
niques to bin reads from a particular haplotype.
In 2007, Levy et al. [27] used single sequence reads to-

gether with some mate pairs to build long-range haplo-
types for an individual genome, with haplotypes reaching
several hundred kilobases. In 2009, McKernan et al. [28]
used a ligation-based sequencing assay to phase a single
genome physically into blocks averaging several kilobases.
In 2011, Kitzman et al. [29] produced 350 kb haplotype
blocks by subpooling a fosmid library. Suk et al. [30] also
used fosmid pool-based sequencing to assemble variants
into haplotypes of approximately 1 Mb, up to a maximum
length of 6.3 Mb; fosmids were tiled into contiguous mo-
lecular haplotype sequences based on sequence overlaps
[31]. In 2013, Kaper et al. [32] also used a dilution, ampli-
fication and sequencing approach to compile haplotypes
of several hundred kilobases in length.
Extreme dilution of genomic DNA can generate long-

range haplotypes without requiring the sorting of meta-
phase chromosomes or cloning. These methods recreate,
with twists, the basic method used to sequence the human
genome: local haplotypes (in the order of tens of kilo-
bases) are first carefully sequenced and then strung to-
gether by aligning overlaps. Dilution methodologies allow
long fragments to be shotgun sequenced with short reads
[18]. If these long fragments overlap with a sufficient
fingerprint [33], then haplotypes up to 1 Mb may be
achieved by chromosomal walking [34]. The number of
DNA molecules in a pool is small enough that there is
little chance that repeated or duplicate sequences will
occur within a pool. Therefore, DNA dilution methods
simplify both de novo assembly and mapping reads to
a reference genome. Nevertheless, these methods can
be confounded by the local presence of repetitive se-
quences. Commercialization of dilution methodologies
now includes Complete Genomics’ ‘long fragment read’
(LFR) [35] and Illumina’s Moleculo technology [36]. For
LFR, long parental DNA fragments are separated into
distinct pools and sequenced using pairwise end se-
quencing. Moleculo implements statistically aided,
long-read haplotyping (SLRH) by further phasing initial
contigs with population information using the Prism soft-
ware (Table 2).
Several algorithms exist to assemble reads into haplo-

types (Table 2). HASH (haplotype assembly for single
human) uses a Markov chain Monte Carlo (MCMC) al-
gorithm and graph partitioning approach to assemble
haplotypes given a list of heterozygous variants and a set
of shotgun sequence reads mapped to a reference gen-
ome assembly [21]. HapCut uses the overlapping struc-
ture of the fragment matrix and max-cut computations
to find the optimum minimum error correction (MEC)



Table 1 Overview of whole-genome haplotyping methods

Method Minimal cohort Advantages Limitations*

Molecular Single and paired-end
physical reads

Individual Haplotype is directly observed from
sequence data

Produces short haplotypes, even after
assembly

Simple

Can resolve private and rare haplotypes

Can phase de novo variants

Chromosome sorting,
clone-by-clone, dilution,
proximity ligation

Individual Haplotype is directly observed from
sequence data

May be labor intensive, time-consuming and
expensive, therefore

Highly accurate difficult to translate to large sample sizes

Can resolve private and rare haplotypes

Can phase de novo variants

Can resolve long-range and
chromosome-length haplotypes
(depending on method)

Ideal for generating personalized
genome-resolved haplotypes

Haplotype assembly Individual Leverages molecular haplotype
information from WGS data and/or from
sorted chromosomes, clones

Assembly requires variants in overlapping
sequence reads

Works well when molecular haplotypes
are long (that is, from cosmid or BAC)

Limited by the accuracy and availability of
suitable reference data

Generate short-range haplotypes

May introduce phase errors

Genetic
analysis

Trios, nuclear
families

Can accurately phase high-throughput
short-read sequencing reads

Cannot resolve sites where all family members
are heterozygous

Low error rate

Precisely maps recombinations and
inheritance states

May not be possible to ascertain family
members

Enables detection of sequencing errors

Can phase private and rare alleles

Can phase entire chromosomes

Suitable for clinical applications

Population
inference

Unrelated
individuals, duos,
trios

Cost-effective Can only phase common variants

Facilitates haplotype imputation in
samples with low-density microarray
panels

Difficult to impute private variants or rare
haplotypes

Useful when family members cannot be
ascertained

Limited by the accuracy and availability of
suitable reference data

Large sample sizes increase accuracy Generates short-range haplotypes

Good for large samples of unrelated
individuals

Sample size impacts haplotype frequency
estimations

Incorporation of family duos and trios
improves accuracy

Methods are probabilistic and accuracy must
be balanced against computational costs

*All of these methods are limited by the accuracy of the sequence data.
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solution for haplotype assembly [22]. There are many other
sequence assembly algorithms, reviewed elsewhere [54,55].
Duitama et al. [31] reviewed eight algorithms for the ‘SNPs
haplotyping problem’ with binned reads as input. They
concluded that, under a reasonable compromise between
accuracy, completeness, and computational resources,
ReFHap (Reliable and Fast Haplotyping) [37] yields the
best results for a low-coverage fosmid pooling approach,
which they term single individual haplotyping (SIH). More
recent algorithms claim improvements on parameters such
as speed and accuracy (for example, H-BOP [38]) or focus
on improving performance in the presence of high error



Box 3. Quality metrics

Improvements in genome sequencing were enabled by the introduction of quality metrics such as completion criteria and base-quality

scores [108,109]. Haplotyping typically uses relatively few formal metrics. Use of standard metrics for haplotyping will lead to algorithmic

improvements, and will aid in deciding which algorithms should be used for particular purposes. The best method and metrics for

haplotyping will depend on the application. For the purpose of assaying compound heterozygosity within a gene, switch errors (Box 1)

between genes are irrelevant, but local switch errors are crucial. Conversely, for the purpose of detecting IBD blocks, a pair of adjacent

local switch errors is inconsequential but long-range switch errors are crucial. Therefore the number of switch errors and their locations

with respect to each other and the genome are important metrics.

The completeness of a haplotype reconstruction is also important, that is, how many positions are phased. Completeness statistics

require that reported haplotypes include specification of the domain of positions under consideration, which might be the entire

genome or could be restricted to commonly variable positions, positions observed to vary within a family, positions on a commercial

genotyping panel, or a sparse set of markers such as short tandem repeats. Occasionally, the domain is chosen to be the set of all

heterozygous markers in a data set (for example, [10]). Error metrics computed on this domain are useful for comparing multiple

parameterizations of algorithmic approaches to the same data set, but have limited utility for comparisons between datasets. This is

because the set of heterozygous positions is dependent on many factors, such as underlying quality of the reference genome, parameters

in genotype-calling algorithms, data pre-processing that might eliminate poor-quality reads or genotype calls, and the amount and character

of repetitive sequence in the targeted region or genome.

A common metric is the switch-error rate, sometimes known as phase error, switch accuracy, or recast (reformulated) as switch distance.

Switch error is a tabulation of the number of times a reported haplotype ‘jumps the tracks’ between two true haplotypes [45,110,111]. On the

basis of mother-father-offspring trio comparisons, the 1000 Genomes Project Consortium reported a switch error every 300 to 400 kb on

average [63]. In its usual form, the switch-error rate is identical for a single base error (two switches very close together) or for two switches

on different arms of a chromosome (two switches very far apart). If there is a single base error, the chromosomal haplotype is nearly perfect,

but if the switches occur on different arms of a chromosome, the resulting haplotype is severely marred. In 2011, we introduced the

concept of a smoothed switch error, and a declining relationship of switch error as a function of lowering the high-frequency cutoff [8].

Therefore, we can employ switch error in a continuous manner by varying resolution for the smoothing of switch errors, with a set of metrics

analogous to those for sequence assembly [108]. Low-frequency switch errors represent phenomena that are different from those

represented by high-frequency switch errors, both in terms of the utility of the data and in troubleshooting the causes of error (Figure 3).

The density and quality of markers both affect switch errors. For example, statistics can be skewed by reporting switch error

across a small set of markers selected for the highest data quality. However, inclusion of all of the homozygous markers will

increase the switch-error denominator and reduce the metric. Therefore, switch error is often reported on the basis of only

those markers that are heterozygous in a particular analysis, leading to a high dependence on the particulars of SNP selection

during either data acquisition or algorithm pre-processing. We recommend computing switch errors in conjunction with

completeness metrics. Reasonable standards include the set of all positions in the reference genome, specific releases of the

HapMap project, or particular commercial genotyping panels. Use of several different reference sets is important because not all

markers are equivalently easy to phase. For example, common SNPs are more likely than rare SNVs to be heterozygous in all

family members, at which point they become impossible to phase by genetic methods.

A metric that is related to switch error is the fraction of all pairs of markers in proper phase with each other (regardless of adjacency).

Matsumoto and Kiryu [39] proposed a measure for haplotyping accuracy - the fraction of correctly phased pairs - that is based

on the pairwise consistency of markers. We strongly endorse this metric, which we call the ‘complete switch error’ (cse), as it is

robust to manipulation by parameterization and penalizes global effects more than local effects. We also recast cse specifically for

evaluating a haplotype for compound heterozygosity by using it to calculate the excess fraction of the pairs of heterozygous

variants in a particular gene that are correctly phased. This ‘phase accuracy’ metric is 2*cse-1 and represents the likelihood that any two

heterozygous alleles in a diploid gene are correctly phased with respect each other. Perfect phasing produces a phase accuracy of 100%. A

single switch error in the middle of a gene would drop phase accuracy to zero, as would a switch error between every pair of markers. With

completely random phasing, half of all pairs of variants are correctly phased relative to each other, and thus the lowest likely operational

value for phase accuracy is zero, although we note for the sake of mathematical robustness that with a very small number of variants, discrete
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effects could reduce the phase accuracy to below zero. Averaging phase accuracy across all genes encompassed by a study (for example, all

known genes) produces a genome-wide metric for evaluating a haplotyping algorithm.

The exact choice of reference sequence is an additional parameter that affects haplotyping quality, particularly with respect to

completion. The MHC locus, and in particular the HLA-DR region, is notorious for being poorly represented in current reference

genomes. Therefore, if one is evaluating a haplotype across HLA-DR, the choice of a reference sequence that does not contain HLA-DR

will falsely elevate phase-completeness statistics.

How can we know the error in a haplotype if we do not know the truth for certain? Frequently, molecular haplotyping will be the most

accurate method. Genetic haplotyping is accurate but will have errors resulting from de novo mutations, and is particularly unreliable for

cancer genomes. Population-based phasing is the least reliable approach, but offers the most probable phasing when other information is

unavailable. Therefore, the best results are obtained by combination methods that integrate all available molecular-phasing evidence and

genetic haplotyping where the samples are available, and supplement these with population inference as needed. Comparisons of different

methods applied to the same genomes is time consuming and expensive but remains valuable in lieu of a gold-standard methodology,

which is currently lacking for whole-genome haplotyping.
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rates [39,56]. MixSH shows good performance as evaluated
by pair consistency, a version of a metric described in Box
3 [39].
The process of assembly may introduce phase errors

at the joins between component haplotypes, and so
should best be done when the overlaps between frag-
ments can be inferred with high confidence. Such confi-
dence can be gained both by identification of unique
overlapping fingerprints or by physical separation of the
original molecules. Haplotype assembly has worked very
well when the underlying haplotypes are long, such as
those determined by sequencing a clonal source such as
a cosmid or bacterial artificial chromosome (BAC) [14,29].
We therefore expect to see increasing development of
technologies that generate sequence reads in the range of
many thousands of bases to facilitate haplotype assembly.
These long sequences will be generated by strobe sequen-
cing, nanopore sequencing, and perhaps other technolo-
gies [57,58].
The existence of chromosome territories in the nucleus

can also be exploited for long-range haplotyping. In an in-
novative approach, pairs of reads that are likely to come
from the same haplotype are generated by cross-linking
chromatin sites that are potentially distant along a
chromosome but spatially close within the nucleus. This
technique is known as ‘Hi-C’, and was simultaneously
exploited by three different groups for sequence assembly
[59-61]. Selvaraj et al. [62] focused on haplotyping using
Hi-C (which they term ‘HaploSeq’), and in their initial
report using low coverage sequencing they phased ap-
proximately 81% of sequenced alleles.
Disparate sources of haplotyping information and

markers can also be assembled. For example, the 1000
Genomes Project Consortium recently produced an in-
tegrated haplotype map of SNPs, small indels and lar-
ger deletions derived from SNP arrays or from exome
and whole-genome sequencing [63].
Genetic analysis
The principles of Mendelian segregation of alleles in
pedigrees can be used to deduce the phasing of variants
observed in ordered genotypes. At the simplest level of a
family trio (both parents and one child), very simple
rules indicate which alleles in the child were inherited
from each parent, thus largely separating the two haplo-
types in the child. The remaining (not inherited) paren-
tal haplotypes can then be reconstructed using a simple
exclusion rule. As the locations of recombinations are
not known, the inferred parental haplotypes will have a
phase error at each recombination. These low-frequency
phase errors (Box 1) will have little effect on short-range
haplotypes but will scramble chromosomal haplotypes.
In the context of a family quartet (two full siblings and

their parents), whole-genome sequences from high-
throughput paired-end short-reads can generate complete
chromosomal haplotypes for all family members [8,64].
The method can be extended to larger pedigrees by tiling
or MCMC approaches [65]. Tiling can accumulate small
errors with each tile, and so MCMC and similar ap-
proaches are likely to be the best methods for pedigrees
spanning more than four generations. Haploscribe is a
suite of software scripts that phase whole-genome data
across entire chromosomes by genetic analysis [8]. Hap-
loscribe implements a parsimony approach to generate
meiosis-indicator (inheritance state) vectors and uses a
hidden Markov model (HMM) to deduce haplotypes
spanning entire chromosomes. These haplotypes are
nearly 100% accurate and potentially suitable for med-
ical diagnostics.
The rule-based nature of genetic phasing has a useful

property: some family genotypes are not consistent with
the expected patterns of inheritance, and are thus
highlighted as probable sequencing errors or, rarely, as
de novo mutations [64]. Mendelian inheritance errors
(MIEs) are sites in which the genotype of a child is



Table 2 Summary of selected software available for whole-genome haplotyping

Method Software Summary Reference(s)

Molecular - haplotype assembly HapCut (OSS) A combinatorial approach implementing a max-cut-based algorithm
and optimized minimum error correction (MEC) solution

[22]

Single Individual Haplotyper (OSS) A collection of algorithms including RefHap, a heuristic algorithm
for sorting reads into haplotype bins

[31,37]

H-BOP (OSS) Heuristic algorithm for optimizing a combination of the MEC
and Maximum Fragments Cut models

[38]

MixSIH (OSS) Probabilistic mixture model [39]

HASH (OSS) Markov chain Monte Carlo algorithm [21]

Genetic analysis Haploscribe (OSS) Implements a parsimony approach to generate inheritance state
vectors and a hidden Markov model to deduce haplotypes

[8]

Population inference Beagle (OSS) Phased input data are used to build a local haplotype cluster
model, which is sampled using a hidden Markov model.
Iterations and the Viterbi algorithm are used to select the ‘most
likely’ haplotype

[40]

fastPHASE (OSS) Enhancement of PHASE. Implements a haplotype-clustering
model with a fixed number of clusters and hidden Markov
model assumptions for cluster membership. Expectation-maximization
methods are incorporated for parameterization

[41]

GERMLINE (OSS) Implements a hashing-algorithm approach to identifying
whole-haplotype segment sharing

[42]

IMPUTE2 Pre-phasing, imputation and haplotype sampling strategy
incorporating a Monte Carlo algorithm and Markov model
calculations

[43]

MaCH Implements a Markov Chain algorithm for genotype imputation
and haplotyping

[44]

PHASE (OSS) Implements Bayesian haplotype reconstruction [45]

SHAPEIT Implements hidden Markov model sampling [46,47]

SNPTools (OSS) A population imputation pipeline that generates genotype
likelihoods using a binary sequence map-specific binomial mixture
model. Haplotypes are then sampled using a hidden Markov model

[48]

WinHAP (OSS) Scalable sliding windows are used to optimize haplotypes and a
parsimony approach iteratively restricts the number of solutions

[49]

Combination strategies HARSH (OSS) Sampling within a probabilistic model combining read data with
a reference panel of haplotypes. Successor to Hap-SeqX

[50]

SHAPEIT2 Adds short-read molecular information to population inference [51]

Prism Combines haplotype assembly and population inference [36]

PPHS Implements a phylogeny model to estimate haplotype frequencies
recursively using the expectation maximization algorithm

[52]

FamilyQuartet (OSS) Integrates physical, genetic and population phasing [53]

Abbreviations: OSS open source software, MEC minimum error correction.
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inconsistent with inheritance from one or both par-
ents. In state consistency errors (SCEs), the genotype of
each child is consistent with both parents but the combin-
ation of offspring genotypes is inconsistent with the pre-
vailing inheritance state around that locus, as determined
from neighboring sites.
Genetic analysis enables the phasing of rare alleles that

cannot otherwise be accomplished by reference to
population-based data. Phasing information obtained
through the sequencing of the genomes of family mem-
bers maps recombinations and inheritance states at high
resolution, highlighting the regions of the genome where
causal variants segregate. The resulting haplotypes are
highly accurate and complete. Nevertheless, genetic ana-
lysis cannot phase positions in which all family members
are heterozygous. Furthermore, it is not always feasible to
recruit the required participants for family-based studies.
In the absence of a family context, molecular haplotyping
is an excellent choice because it does not require DNA
samples from other family members. We predict that, in
the next decade, molecular haplotyping will largely sup-
plant the need for genetic analysis.
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Dewey et al. [66] employed family inheritance-state
analysis to control sequencing error and inform haplotype
phasing to quantify genome-wide compound heterozygos-
ity from high-throughput sequencing data. To define the
inheritance states of neighboring SNVs in the family quar-
tet, Dewey et al. first used a heuristic algorithm that
binned allele assortments, followed by a HMM in which
the hidden states corresponded to the four possible inher-
itance states in the quartet and the two error states de-
scribed by Roach et al. [64]. A combination of pedigree
data and statistical phasing based on inheritance state ana-
lysis was then used to infer phase for the majority of posi-
tions in each child’s genome. For uniformly heterozygous
positions, the minor allele was assigned to the paternal
and maternal chromosome scaffolds using pair-wise pre-
computed population linkage disequilibrium (LD) data
from the SNP Annotation and Proxy Search (SNAP) data-
base [67]. These algorithms successfully determined
genome-wide, long-ranging phased haplotypes in the
family quartet. Phased variant data were also used to de-
termine parental contribution to each child’s disease
risk in the context of thrombophilia.

Population inference
Population analysis leverages shared ancestry informa-
tion to infer the most likely phasing of variants. The ref-
erence population can range from the very large (for
example, the global human population), to the narrowly
defined (for example, an isolated community). Because
population relationships may be distant or cryptic, meth-
odologies for population analysis are statistical and not
deterministic. Also, because many more meioses separ-
ate all of the genomes in a large population, the length
of haplotypes determined by population analysis is typic-
ally limited to thousands or tens of thousands of bases.
Population inference methods work well on genotyping
panels, which are compilations of common SNPs. As
marker density increases, brute-force algorithms become
less tractable, and algorithms such as those based on
HMMs are employed [68]. Discerning private and rare
haplotypes by population-based methods is highly challen-
ging. Population analysis cannot phase de novo mutations,
rare variants or structural variants. If a rare variant is
assigned to a haplotype by other methods, however, its
presence on a haplotype determined by common SNPs
can be probabilistically inferred [69].
Parsimony approaches such as Clark’s algorithm [70]

attempt to find the minimum number of unique haplo-
types in a data set. The accuracy of this method depends
on the assumption that markers are tightly linked and
largely assignable to common haplotypes. Therefore, such
algorithms over-predict common haplotypes. Coalescent-
based methods and HMMs are also commonly employed
to model population haplotype frequencies. The software
programs PHASE [45], fastPHASE [41], MaCH [44], IM-
PUTE2 [43], SHAPEIT [71], and Beagle [40] implement
such methods (Table 2). These methods estimate parame-
ters iteratively, so they work well with a small number of
genetic markers residing on a short haplotype block.
SHAPEIT (segmented haplotype estimation and imput-

ation tool) scales linearly with the number of variants,
samples and conditional haplotypes used in each iteration
and can be run efficiently on whole chromosomes [46,71]:
it was applied to generate a haplotype map of 38 million
SNPs for phase 1 of the 1000 Genomes Project [63,69].
This program is versatile for population-based studies as it
is able to handle data from combinations of unrelated in-
dividuals, duos and trios. SHAPEIT2 [51] adds the ability
to incorporate molecular information from sequence
reads, incorporating calls and base-quality scores in a
probabilistic model. It works best for high-coverage se-
quence. O’Connell et al. [72] have incorporated SHA-
PEIT2 into a general haplotyping workflow that can also
detect state consistency errors in pedigrees [64].
Wang et al. [48] developed a population imputation

pipeline, SNPTools, to phase low-coverage data obtained
from phase 1 of the 1000 Genomes Project. SNPTools
statistically models sequence data, scores polymorphic
loci, and generates genotype likelihoods using a Binary
sequence map (BAM)-specific Binomial Mixture Model
(BBMM). The genotype likelihoods can then be integrated
into SNPTools’ imputation algorithm or other algorithms
such as Beagle to estimate phased genotypes and haplo-
types. SNPTools’ haplotype imputation algorithm employs
a four-state constrained HMM sampling scheme that as-
sumes that the individual haplotype is a mosaic of the four
parental haplotypes. WinHAP estimates multi-SNV haplo-
types from large-scale genotype data [49]. This software
simplifies the 2SNP algorithm, using pairs of heterozygous
SNVs to generate initial haplotypes and subsequently to
construct a linear tree that makes it possible to infer a so-
lution for the haplotype phase [73]. These haplotypes are
then improved by applying scalable sliding windows. Last,
parsimony is used to iteratively restrict the number of
haplotypes.
The accuracy of population haplotyping can be im-

proved by modeling population substructure and detect-
ing cryptic relatedness. Such issues may be overcome by
exploiting algorithms originally conceived for identical-
by-descent (IBD) detection [74]. Programs such as fas-
tIBD [40] and GERMLINE [18] leverage population level
IBD to define haplotypes [75]. The extent of shared IBD
between a pair of individuals depends on the number of
generations since their last common ancestor as recom-
bination and mutation increase genetic diversity. GERM-
LINE directly matches portions of haplotypes between
individuals from phased genotype data. FastIBD uses a
HMM approach for IBD detection of shared haplotypes
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from unphased genotype data. IBD segments are identi-
fied by modeling shared haplotype frequencies that ac-
count for background levels of LD.
Most of the available algorithms for population infer-

ence of haplotypes from WGS require careful balancing of
computational speed and accuracy. They also rely on the
availability of well-characterized, population-matched ref-
erence datasets [76]; these need to be large enough to
sample rare variants. Population-based phasing methods
are probabilistic, limited to generation of short haplotype
blocks, and will incorrectly phase rare combinations of
variants, exactly those combinations most likely to be
medically important. Moreover, haplotypes derived from
algorithms that include population inference are likely to
have an error rate that is unacceptably high for medical
purposes.
If an individual is a member of a completely charac-

terized isolated population, the accuracy of population-
based haplotypes can be very high. Such haplotyping
has been demonstrated by Kong et al. [77] for the Ice-
landic population. Use of such databases in combination
with methods to phase de novo mutations and haplo-
types resulting from recent recombinations could both
permit increased haplotype quality and reduce the need
for genetic and molecular haplotyping in patients from
these populations.

Combination strategies
Combinations of molecular, genetic and population-
based methods may work better than any single approach,
by combining strengths and minimizing weaknesses
(Table 2). HARSH evolved from Hap-seqX, combining
haplotype assembly with a reference population dataset
to predict haplotypes from WGS data [50,78]. Prism,
mentioned earlier, is another recent hybrid algorithm
[36]. PPHS (Perfect Phylogeny Haplotypes from Sequen-
cing) is another combination approach that combines
population and molecular analysis by using raw sequence
data to construct a phylogenetic tree for every short re-
gion [52]. The phylogeny model assumes that there are no
recurrent mutations or recombination within each short
sequence region. For each set of SNPs in a given window,
the algorithm reconstructs a local phylogenetic tree by
expectation maximization and assigns haplotypes to in-
dividuals. The results for each window are then stitched
together using the output of Beagle as a guide. Combin-
ation strategies such as these may increase the accuracy
of population inference methods by leveraging the infor-
mation provided by sequence data, or may supplement
genetic analyses with population data, as described by
Dewey et al. [66]. A combination of genetic, physical
and population-based approaches in a quartet yielded
complete genome phasing, including phasing of 99.8%
of fully heterozygous variants [53].
Clinical applications of whole-genome
haplotyping
Local haplotyping has been and will remain important
for genomic diagnostics. The immediate impact of whole-
genome haplotyping will be to provide all local haplotypes.
Local haplotypes are well known for the major histocom-
patibility complex (MHC) and several other loci, including
the ApoE4 haplotype of the ApoE locus. MHC haplotypes
are important for predicting graft compatibility and for
prediction of the risks and protectivity of many pheno-
types, notably type 1 diabetes [79]. In many cases, the
causative variant is not known, and the observed haplo-
type serves as a proxy for assaying the unknown single
variant that lies in or is linked to that haplotype. In
other cases, such as ApoE4, multiple coding variants
must lie on the same haplotype within a single coding
sequence in order to effect a particular phenotypic change.
Family-based haplotyping to identify compound heterozy-
gosity as a cause of recessive Mendelian disease is also
fairly routine. Fetal and newborn diagnostics will also
benefit from haplotyping. Spearheading such an approach
in 2012, Kitzman et al. [80] inferred haplotypes of a hu-
man fetus using haplotype-resolved genome sequencing of
the mother, shotgun sequencing of the father, and deep se-
quencing of maternal plasma.
Pathogenic rare variants will be a significant source of

concern when practicing genomic medicine. Thus, an
important clinical application of haplotypes will occur at
the largely unseen analysis stage - in improving variant
calling and avoiding false alarms. Already, software tools
such as Platypus (www.well.ox.ac.uk/platypus) are being
developed to produce improved base calling as informed
by haplotypes [63].
As knowledge and methods improve, understanding

the functional interactions between regulatory elements
and coding regions will permit medical decision-making
that is based not only on the predicted effects of variants
on the function of a protein, but also on combining sep-
arate predictions of (a) the functions of the two proteins
produced by the two alleles of the encoding gene, and
(b) the effects of the two cis-regulators of these two pro-
teins. For example, if one of the cis-regulators markedly
increases expression while the other decreases expres-
sion, and one protein is defective while the other is nor-
mal, then one combination of cis-regulators with the
protein-coding alleles will produce wellness whereas the
other combination will produce disease [4].

Conclusions and future directions
High-throughput short-read sequencing enabled rapid
advances following the HGP. Unfortunately, haplotyping
got left by the wayside, as the long reads characteristic
of the HGP gave way to cheaper short reads. Now a
combination of new strategies and new technologies is

http://www.well.ox.ac.uk/platypus
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enabling the determination of personal haplotypes that
will soon be economical for more routine medical use.
The new strategies that we have discussed enable the
use of cheap short reads for inferring longer haplotypes,
typically by physically or computationally placing these
reads into haplotype bins. Some new technologies, such
as Hi-C, facilitate this binning process, whereas other
new technologies will enable the generation of cheaper
long reads.
Considering the garbage-in-garbage-out principle, and

that most current algorithms perform near perfectly on
error-free data, improving sequencing error rate is prob-
ably the most critical factor for improving haplotypes [81].
In other words, to improve haplotypes for use in genomic
medicine, a focus on phasing algorithms and methodolo-
gies is not necessarily the greatest requirement, but rather
a focus on improving the input data. More phase errors
can arise with whole-genome data than with genotyping
chip data. The SNPs included in genotyping chips tend
to be selected for Hardy-Weinberg equilibrium, and so
any SNP with a heterozygote frequency that is unex-
pected in relation to the allele frequencies is excluded.
Such pre-selection is not done for WGS data. The abil-
ity to phase WGS data can be confounded by reference
sequence errors, reference gaps and centromeres, and
long interspersed nuclear elements (LINEs) [8]. Methods
are needed for filtering out these regions or for handling
them in a probabilistic framework with appropriate confi-
dence statistics. In conjunction with improvements in se-
quence quality, the generation of long sequence reads (of
True haplotypes
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10,000 bases or longer) is another key factor for haplotype
improvement [18,19,82]. Reduction of sequencing error
will have the greatest impact on high-frequency switch
error, whereas improvements in read length will have a
greater impact on low-frequency switch error (Boxes 1
and 3, and Figure 3). Because of the importance of com-
pound heterozygote analysis and within-gene phasing for
medical applications, high-frequency switch errors must
be minimized. Commoditization of haplotyping will also
be necessary, and as this occurs, the costs of the various
approaches will become less opaque. Other commodity
technologies, such as sequencing, are best performed in
high-throughput operations because such facilities offer a
concentration of expertise, economy of scale, standard op-
erating procedures, and rigorous quality control. Clinical
haplotype databases will need to be developed in parallel
with haplotype commoditization, much like the ClinVar
database for individual variants associated with disease [83].
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pound heterozygosity in identifying disease risks and
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haplotypes of detrimental variations within a gene. We
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of diseases, including the gene that encodes protein C in
cerebral palsy [84], Charcot-Marie-Tooth neuropathy [85],
and the gene encoding lysyl-tRNA synthetase in periph-
eral neuropathy [86]. Currently, much clinical screening
for compound heterozygosity is done with exome sequen-
cing, but we predict a shift towards WGS as costs drop.
As the understanding and annotation of regulatory vari-
ants continues to improve, we will see an increasing num-
ber of reports of cis-acting regulatory elements that alter
gene expression and cause disease. Examples that have
already been reported include a mutation in a RET enhan-
cer that increases Hirschsprung disease risk [87,88] as well
as mutations that affect thalassemia, hemophilia, hyper-
cholesterolemia, and pyruvate kinase deficiency [89]. In-
creasingly, the phase of these regulatory elements with
respect to the coding variants will be part of routine diag-
nostics. For example, Ludlow et al. [90] described a pa-
tient with a mutation in the promoter of one allele of
GP1BB (encoding platelet glycoprotein Ib beta) and a de-
letion of the other allele, which together resulted in
Bernard-Soulier syndrome [90].
DNA diagnostics and prognostics that have clinical ap-

plications in oncology are expanding rapidly. For example,
particular haplotypes of GNMT (encoding glycine N-
methyltransferase) differently predispose individuals
to prostate cancer [91]. In many oncological applications,
genetic and population phasing is of little value because
of the large number of somatic mutations that may be
present in tumor cells. Molecular phasing will therefore
be the primary tool in this area, and algorithms that allow
for multiple ploidy states will be important in handling
the complexities of tumor genomes; currently most haplo-
type assembly algorithms assume diploidy. The MHC/
HLA (human leukocyte antigen) locus is the most import-
ant haplotype influencing disease; and an understanding
of the value of MHC haplotypes is therefore nothing new
[92,93]. It has traditionally been difficult to use molecular
techniques that avoid low-frequency switch errors be-
tween genes of the MHC. Applications of some of the
new long-range haplotyping techniques, particularly those
capable of de novo assembly of regions of personal ge-
nomes within the MHC that are not in the reference gen-
ome, are likely to allow better utility of MHC typing for
research, prognostics, diagnostics, and tissue transplant-
ation [93]. The genomic medicine of the future will rely
on accurately mining patient sequence data to identify dis-
ease, wellness and actionable genes [6]. Genomics must
move beyond simple single allelic and genotypic tests of
association and familial-segregation to explain pheno-
types. At the simplest level, whether two detrimental
variants that affect ‘the same gene’ lie in cis or in trans
may spell the difference between a healthy carrier
and a diseased compound heterozygote. The paradigm
of medical understanding must be shifted from ‘the
function of a gene in an individual’ to ‘the functions of
each allele of each gene in an individual’. To achieve
this, we must transform the conceptualization of the
genome in the minds of both clinicians and researchers
from one that contains 22 autosomes and two sex chro-
mosomes to one that contains 44 autosomes and two
sex chromosomes, each with its own haplotype. Individ-
ual genome sequencing is being applied at all stages of
life, from preimplantation, prenatal and neonatal diag-
nosis, to ‘no phenotype’ personalized genomics [94].
Whole-genome haplotypes will improve the precision of
personalized predictive, preventive and participatory
medicine.
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