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Abstract: Diabetes mellitus (DM) results from the inability of the pancreas to produce sufficient
insulin or weakened cellular response to the insulin produced, which leads to hyperglycemia.
Current treatments of DM focus on the use of oral hypoglycemic drugs such as acarbose, alpha-
glucose inhibitors, sulphonylureas, thiazolidinediones, and biguanides to control blood glucose levels.
However, these medications are known to have various side effects in addition to their bioavailability,
efficacy, and safety concerns. These drawbacks have increased interest in the anti-diabetic potential
of plant-derived bioactive compounds such as oleanolic and maslinic acids. Although their efficacy
in ameliorating blood glucose levels has been reported in several studies, their bioavailability and
efficacy remain of concern. The current review examines the anti-diabetic effects of oleanolic, maslinic,
asiatic, ursolic, and corosolic acids and their derivatives, as well as the progress made thus far to
enhance their bioavailability and efficacy. The literature for the current review was gathered from
leading academic databases—including Google Scholar and PubMed—the key words listed below
were used. The literature was searched as widely and comprehensively as possible without a defined
range of dates.

Keywords: anti-diabetic; bioavailability; diabetes mellitus; medicinal plants; oleanolic acid; penta-
cyclic derivatives

1. Introduction

Medicinal plants, also known as medicinal herbs, have been a significant source of
bioactive compounds to treat various diseases. They possess a range of preventative
and pharmacological properties such as anti-diabetic, anti-hyperlipidemia, anti-microbial,
anti-cancer, anti-hypertensive, antioxidant, and hepatoprotective properties [1,2]. Such
complementary medicine is still extensively practiced today, especially by the African
people [3,4]. About 80% of South Africans and the world’s population still rely on medicinal
plants for the management of different ailments due to their availability, low cost, potential
efficacy, low toxicity, and transient side effects compared to synthetic medications [5,6].
Interestingly, medicinal plant-derived products and biopharmaceuticals are now used by
western societies [7]. Their use through much of human history in managing physical
and mental ailments has been an outcome of the invaluable knowledge and experiences
acquired by natives through cultural practices.

Bioactive compounds, such as terpenoids, alkaloids, carotenoids, and flavonoids [8,9]
present in medicinal plants exert their therapeutic effects by inhibiting α-amylase, α-
glucosidase, pancreatic lipase, and scavenging free radicals [10–12]. Furthermore, several
other bioactive compounds have been isolated from medicinal plants such as Indianthus
virgatus, Mangifera indica, Allium sativa, Olea europaea, and Centella asiatica. These isolated
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compounds such as oleanolic acid, ursolic acid, betulinic acid, and maslinic acid possess
anti-diabetic activities [1,13,14].

Pentacyclic triterpenes and their derivatives are among the most widely researched
anti-diabetic compounds. Oleanolic acid has shown a dose-dependent inhibitory activity
on α-glucosidase and α-amylase [15]. Further study revealed that the anti-diabetic effects
of oleanolic acid were through the inhibition of salivary α-amylase and pancreatic lipase
activities in individuals with impaired fasting blood glucose levels. Oleanolic acid has
been reported to increase insulin response, inhibition of protein-tyrosine phosphatases
to improve insulin response, and glucose uptake [16]. Findings have indicated that the
hypoglycemic activities of maslinic acid and related pentacyclic triterpenes exerted their
effects through the inhibition of glycogen phosphorylase (GP) and protein tyrosine phos-
phatase 1B (PTP1B) [17]. Corosolic acid exhibits anti-diabetic effects in humans by reducing
plasma glucose levels after a glucose challenge [18]. The current review aims to provide
a comprehensive list of medicinal plants that have been found containing appreciable
concentrations of pentacyclic derivatives possessing anti-diabetic effects, as well as give an
up-to date account and evaluation of research progress achieved to improve the efficacy
and bioavailability of these bioactive compounds (pentacyclic derivatives).

2. Methods of Data Collections

This current study is review, which used data from experimental findings and clinical
trials on the anti-diabetic activity, bioavailability, and efficacy of pentacyclic triterpenes.
This was obtained using search engines such as Google Scholar and PubMed. To conduct a
comprehensive review on the medicinal plants, this review was not limited by the time of
publication or a selected period. This in part was due the paucity of clinical trial studies
on triterpenes which would be limited by a time range. Duplicates were removed and
abstracts were read for relevance. Thereafter all irrelevant journal articles were removed.
Two researchers with experience in the topic then read through the remaining articles
and book chapters and excluded all articles and book chapters that did not meet the
research criteria. The search was done using keywords such as anti-diabetic, pentacyclic
triterpenes, bioavailability of triterpenes, pentacyclic triterpenes bioavailability, efficacy of
triterpenes, nanoemulsions, medicinal plants, Syzygium aromaticum clove, Xylopia aethiopica,
Gypsophila oldhamiana, Phyllanthus amarus, oleanolic acid, maslinic acid, asiatic acid, maslinic
acid derivatives, corosolic acid, corosolic acid derivatives, ursolic acid, diabetes mellitus,
triterpene nanoemulsions, asiatic acid and glycogen phosphorylase, corosolic acid on
weight gain, and asiatic acid derivatives. Data search was done in English, although no
restrictions were included. All articles which met the selection criteria were selected and
used to conduct the literature search.

3. Discussion
3.1. Phyto-Derived Triterpenes for the Management of Diabetes Mellitus
3.1.1. Triterpenes

Triterpenes belong to the largest group of biologically active plant products known
as terpenes. They are primarily found on plant surfaces such as stem bark or leaf and
fruit waxes [19]. Their concentration in different plants is affected by various factors,
such as different seasons, species, and geographical location [20]. Chemically, triterpenes
contain six isoprene units [(CnHn)6: C30] and can exist as monocyclic, dicyclic, tricyclic,
tetracyclic, and pentacyclic derivatives. Many triterpenes occur in free form, while others
exist as glycosides (saponins), esters, or both. There are about 100 different skeletal types
of cyclic triterpenes, which form the majority of natural triterpenes [21]. Triterpenes are
formed through the isoprenoid pathway by the formation of squalene (the simplest form of
triterpene) from two molecules of farnesyl pyrophosphate joined tail-to-tail [22]. Naturally,
triterpenoids exist as pentacyclic or tetracyclic structures, and the pentacyclic triterpenes
can be grouped into lupanes (betulin, lupeol, and betulinic acid), oleananes (oleanolic
and maslinic acids), and ursanes (asiatic, ursolic, and corosolic acids) [14]. Triterpenes
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are lipophilic in nature, with a lipophilic component (triterpenoid aglycone) attached to a
hydrophilic component. They can be acylated or glycosylated (triterpenoid saponins) [23].
The anti-glycation activity of twelve triterpenoid saponins isolated from the root bark ex-
tract of Aralia taibaiensis was evaluated to corroborate the anti-diabetic activity of the crude
extract [24]. Diabetes can result from chronically high levels of glucocorticoids through the
enzymatic action of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Some triter-
pene saponins isolated from Barringtonia acutangula have shown anti-diabetic activity by
interacting with the active site amino acid residues of 11β-HSD1 and targeting other protein
molecules involved in insulin insensitivity pathways [25]. Considerable attention has been
given to triterpenes as potential sources for the development of active pharmacological
agents. This is due to several bioactivities of phyto-derived triterpenes, and the exponential
increase of commonly known incurable non-communicable diseases such as DM. Several
reports have documented the pharmacological activities of triterpenes, which include anti-
diabetic, anti-platelet aggregation, and anti-inflammatory [26], anti-hyperlipidemia [27],
anti-microbial [28], and anti-cancer activities. The anti-diabetic activity of Aesculus turbinata
mediated through the inhibition of glucose absorption was attributed to the presence
of triterpenoid saponin [29]. Cloves from Syzygium aromaticum possess a wide range of
medicinal properties such as antioxidant, anti-diabetic, and anti-microbial activities at-
tributed to the presence of some bioactive constituents such as eugenol, steroids, tannins,
alkaloids, flavonoids, hydroxycinnamic acids, and oleanolic and maslinic acids [30,31].
Additionally, the anti-hyperglycemic activities of oleanolic and maslinic acids derived
from Syzygium aromaticum cloves have been reported [32–34]. Triterpenes lower blood
glucose concentrations in part by inhibiting the conversion of glycogen phosphorylase
to glucose-1-phosphate. Glucose-1-phosphate is later converted to energy in the muscles
and glucose-6-phosphatase in the liver, thus suppressing glucose release. Therefore, the
inhibition of glycogen phosphorylase is a good therapeutic target for type 2 DM (Figure 1).
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Figure 1. Mechanism of action of maslinic acid as a glycogen phosphorylase inhibitor. The triter-
pene play a rate limiting step in glycogenolysis by catalyzing the breaking down of glycogen into
glucose-1-phosphate by breaking the α-1,4-glycosidic bond [35] (This diagram was creacted with
BioRender.com).

3.1.2. Diabetes and Biochemical Targets of Triterpenes

Diabetes mellitus is a metabolic disease caused by insufficient insulin secretion and/or
insulin resistance, leading to high blood glucose levels [14]. Insulin insensitivity and
deficiency compromise the blood regulatory mechanisms in patients with diabetes, thereby
leading to hyperglycemia—a characteristic feature of DM [36]. Uncontrolled hyperglycemia
can result in diabetic complications such as nephropathy, neuropathy, retinopathy, dia-
betic wound, stroke, and cardiovascular diseases [37]. As a result, treatments involving
pharmaceuticals primarily focus on controlling hyperglycemia by increasing insulin sensi-
tivity, insulin secretion, and through the inhibition of carbohydrate digestive enzymes [38].
Several studies, both in vitro and in vivo, have shown the anti-diabetic activities of triter-
penes, including pentacyclic triterpenes [39]. Furthermore, these compounds have been
reported to have high antioxidant activities that help prevent the accumulation of ad-
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vanced glycated end-products, which have been implicated in the development of diabetic
complications [39].

Pentacyclic triterpenes exhibit anti-diabetic effects through several target pathways.
Some triterpenes, 2,3-seco-20(29)-Lupene-2,3-dioic acid, α-amyrin-3O-β-(5-hydroxy) ferulic
acid, and pistagremic acid, obtained from the leaves and twigs of Fagus hayatae (Fagaceae),
the root bark of Euclea undulate (Ebenaceae), and galls of Pistacia chinensis var. inte-
gerrima, respectively, have been reported to exhibit anti-diabetic activities through the
inhibition of α-glucosidase (Figure 2a) [40–42]. Docking studies on pistagremic acid further
revealed that the compound possessed the specific shape and size for the formation of a
hydrogen bond at the active site of α-glucosidase [42]. The α-glucosidase inhibitory activity
of euscaphic acid (IC50: 0.67 mM) and p-coumaroylursolic acid (IC50: 0.62 mM) obtained
from the roots of Sanguisorba tenuifolia (Rosaceae) compared to acarbose (IC50: 0.79 mM)
have been reported [43]. The synergistic effect of ursolic and oleanolic acids extracted from
Phyllanthus amarus (Euphorbiaceae) on porcine pancreatic α-amylase, had an IC50 value of
4.41. µM [44]. In the diabetic state, the accumulation of sorbitol in tissues such as the retina,
lens, kidney, and nerves, resulting from the action of aldose reductase, an enzyme that
converts glucose to sorbitol in the polyol pathway, may lead to diabetic complications [45].
Some triterpenes such as maytenfolic acid, 3β,22α-dihydroxyolean-12-en-29-oic acid, and
kotalagenin 16-acetate extracted from the roots of Salacia oblonga, were found to inhibit
aldose reductase (Figure 2b) [46].
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A ursane-type of triterpene and triterpenic acids isolated from leaves of Rhododen-
dron brachycarpum and leaves and stems of Phoradendron reichenbachianum have been
reported to form hydrogen bonds at the PTP1B (a negative regulator of insulin signalling
pathway) binding sites, thereby increasing insulin response [47]. The inhibition of GP has
been reported as a potential target for the control of hyperglycemia. Oleanolic acid and
hederagenin isolated from Gypsophila oldhamiana have been reported as some of the most
active inhibitors of GP. This activity was attributed to the presence of a hydroxyl group at
C-3 and CH2OH at C-23 in the oleanane structure [48]. Furthermore, corosolic, maslinic, asi-
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atic, and tormentic acids obtained from Potentilla biscolor, have shown inhibitory activity
on GP (Figure 2c) [49,50].

Docking studies have been carried out on several triterpenes to determine their
binding modes. Ficusonolide, a triterpene lactone isolated from Ficus foveolata, showed
strong interaction when docked into the active sites of PTP1B, dipeptidyl peptidase-IV, α-
amylase, and α-glucosidase [51]. Another computational study reported lupeol’s allosteric
inhibitory activity on PTP1B. The hydrophobic nature of lupeol (with one hydroxyl group)
has been suggested to play a critical role in its interaction by targeting the allosteric
hydrophobic sites of PTP1B [52]. The protein–ligand interactions of oleanolic, ursolic,
moronic, and morolic acids were adjacent to the active sites of PTP1B and stabilized by
hydrogen and Van der Waals bonds [53]. Oleanolic acid from Xylopia aethiopica fruit
showed a weak binding affinity for α-glucosidase and α-amylase, possibly due to the
absence of hydrogen bond interaction. However, this may not affirm the weak inhibitory
activity of oleanolic acid on the two enzymes, because computational analysis sometimes
differs from in vitro studies [54].

3.1.3. Anti-Diabetic Activities of Triterpenes

The discovery of potent bioactive compounds from plant materials has gained atten-
tion as different groups of chemical compounds such as triterpenes have shown multiple
pharmacological activities including anti-diabetic activity. Malviya [55] has previously
reported the anti-diabetic efficacy of compounds such as terpenoids obtained from plants
compared to conventional anti-diabetic agents. Furthermore, the blood glucose-lowering ef-
fect of triterpenoids is mediated through the regulation of glucose transport, glucose uptake,
glucose absorption, insulin secretion, and increased glycogen synthesis, thereby ameliorat-
ing diabetic vascular dysfunction, diabetic retinopathy, and kidney disease [32,56,57].

Triterpenoids isolated from Scleroderma aurantium (3,25-Dihydroxy-22-acetoxyl-lanosta-
8,23-diene) and Agrimonia pilosa have been reported to exhibit hypoglycaemic effects by
scavenging free radicals and inhibiting α-glucosidase, thereby preventing glucose ab-
sorption and oxidative stress which has been implicated in the pathogenesis of diabetes
mellitus [58,59]. The anti-diabetic activity of Calotropis procera mediated through the inhibi-
tion of pancreatic lipase activity has been attributed to the presence of terpenoid in the root
extract [60]. Ursolic and oleanolic acids isolated from dried stems of Bouvardia terniflora
have been reported to exhibit blood glucose-lowering effects in normal and alloxan-diabetic
mice [61]. Furthermore, a triterpene isolated from Viburnum odoratissimum has been re-
ported to stimulate glucose absorption in insulin-resistant HEPG2 cells, thereby preventing
hyperglycemia [62].

The neuroprotective effect of oleanane-type triterpenoid extracted from Momordica
cymbalaria root was investigated in diabetic peripheral neuropathy. The triterpenoid ame-
liorated neuronal degeneration and showed significant antioxidant activity by stimulating
insulin sensitivity in streptozotocin (STZ)-induced diabetic rats, thereby enhancing cel-
lular glucose uptake [63]. The authors of [64] reported the hypoglycemic activities of
oleanolic and maslinic acids via the inhibition of α-amylase, α-glucosidase, sucrase, and by
regulating the activities of glucose transporters. Ursolic acid has been reported to show
anti-diabetic activity by facilitating glycogen storage, glucose utilization in diabetics, and
by regulating the activities of α-amylase and α-glucosidase [56,65]. A previous study
by [32] reported the ameliorative effect of maslinic acid on diabetic renal disease by control-
ling blood glucose levels and altering the pathway involved in the formation of advanced
glycation end products (AGEs).

Many triterpenes such as oleanolic acid extracted from Momordica charantia have
shown significant anti-diabetic, antioxidant, and anti-hyperlipidemic activities in rats
through the improvement of β-cell regeneration, glucose utilization, and inhibition of
carbohydrate metabolism enzymes [66]. Fruit extracts of M. charantia showed a slight
hypoglycemic effect on nine type 2 diabetic patients without a significant change in in-
sulin levels [67]. One hundred diabetic patients who were administered M. charantia



Molecules 2021, 26, 7243 6 of 21

homogenized vegetables showed improvement in blood glucose control. Furthermore, the
postprandial and fasting blood glucose levels of thirty diabetic patients were significantly
reduced after the administration of two tablets of M. charantia for one month (three times
daily) [68]. Clinical application of Cyclocarya paliurus’s extract, a plant with oleanane- and
ursane types of pentacyclic triterpenes, showed significant hypoglycemic effect when ad-
ministered to diabetic patients for four weeks (three times daily) [69]. In vivo investigations
on the extract have also shown inhibitory effects on α-glucosidase and lipase. The leaves
extract of Gymnema sylvestre, rich in triterpenes, was given for 20 months as a supplement
(400 mg daily) to 22 diabetic patients using conventional oral hypoglycemic drugs. Due to
the significant improvement in blood glucose levels and higher insulin levels, five patients
suspended the use of conventional drugs and continued only with the extract [70].

However, the clinical application of triterpenes remains limited due to solubility,
stability, bioavailability, and efficacy issues. Although researchers have explored ways
to improve the dissolution and efficacy of these compounds by synthesizing natural
chemical derivatives. Nonetheless, the biological activity and efficacy of these compounds
is a complex process, which considers the bioavailability at the site of action—a critical
problem that remains a challenge in drug development. In this regard, the synthesis
of nanoemulsions, an oil-based delivery system, may provide a potent mechanism for
enhancing the solubility, absorption, an =d distribution of these inherent hydrophobic
compounds [71].

3.1.4. Triterpenes Nanoemulsion in the Management of Diabetes Mellitus

The clinical application of several bioactive compounds including triterpenes found to
have medicinal properties such as anti-diabetic, anti-cancer, anti-inflammatory, antioxidant,
hepatoprotective, neuroprotective, and nephroprotective activities have been limited due
to poor solubility and low bioavailability [72]. Hence, the pharmacokinetic parameters
such as solubility, stability, and bioavailability of several triterpenes with anti-diabetic
activities can be improved by utilizing a suitable nanocarrier for improved therapeutic
efficacy.

The anti-diabetic activity of Gymnemic acid, a triterpenoid glycoside found in
Gymnema sylvestre has been reported by [73]. Although the mechanism of action includes
the inhibition of intestinal glucose absorption, lowering glucose, and increasing insulin
levels in diabetic patients’ plasma [74], its pharmacological actions are limited by its low
solubility in an aqueous solution. To improve the efficacy of glipizide, a nanosuspension
was synthesized and evaluated on STZ-induced rats. The glipizide nanoemulsion showed
significant blood glucose-lowering effects in the rat model [75].

In another study, ursolic acid loaded in nanoparticles demonstrated significant dose-
dependent anti-diabetic activity by facilitating glucose uptake through the synthesis of
glucose transporter isoform 4 (GLUT4) [76,77]. Insulin’s capacity to control blood glucose
levels through the regulation of gluconeogenesis and glycogen synthesis is compromised
by high levels of lipids and triglycerides in the liver [77]. In the same study, ursolic
acid-loaded nanoparticles exhibited significant anti-hyperlipidemic activity, thereby ame-
liorating insulin resistance. The poor solubility and fluctuating bioavailability of betulin,
a known naturally occurring anti-diabetic triterpene, led to the evaluation of betulin-
loaded nanoparticles. The betulin nanoparticles increased the bioavailability and in vivo
anti-diabetic activity of betulin compared to the natural compound [78].

The medicinal properties of glycyrrhizin, a triterpenoid saponin found in Glycyrrhiza
plants, have been determined by many researchers as reported by [79]. Glycyrrhizin
was loaded in nanoparticles to improve its pharmacological properties. When compared
to metformin, a conventional anti-diabetic drug, glycyrrhizin loaded in nanoparticles
showed considerable anti-diabetic and anti-hyperlipidemic activities in type 2 diabetic
rats [80]. In another investigation, thymoquinone-loaded nanoparticle was combined
with glycyrrhizin-loaded nanoparticles to see how they compared to the single formula-
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tion [77,81]. Significantly, the combined formulations’ in vivo anti-diabetic efficacy was
improved.

3.2. Oleanolic Acid

Oleanolic acid (3β-hydroxy-olean-12-en-28-oic acid) is a natural product from the
oleanane group found in a variety of plants in the form of a free acid or triterpenoid
saponin [15]. Oleanolic acid is prevalent in the Oleaceae family, and the olive (Oleae
europaea), the plant species after which the compound was named, has been the principal
source of commercial oleanolic acid [82,83]. This pentacyclic triterpenoid has been iso-
lated from more than 1620 foods and medicinal plants [82,84]. The efficacy of oleanolic
acid to prevent acute chemically-induced liver damage, fibrosis, and cirrhosis caused by
chronic liver disorders has established its hepatoprotective activity [85]. This compound
(Figure 3a) is used in China as an over-the-counter oral drug for the management of liver
diseases [86,87]. Furthermore, the authors of [87] reported that oleanolic acid showed
antioxidant properties by elevating the expression of thioredoxin peroxidase and catalase
and increasing the synthesis of glutathione—an endogenous antioxidant—through a direct
chemical reaction with free radicals.
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Interestingly, oleanolic acid intake does not result in the production of fat cells, making
it a better option than other anti-diabetic medicines, which are typically adipogenic [88].
A prior study investigated the anti-diabetic effects of oleanolic acid and metformin when
used separately, compared with their combined effect. Compared to monotherapy, the
synergistic impact resulted in a considerable drop in blood glucose levels and enhanced
liver function in diabetic mice [88]. Because insulin resistance is a central trait of type
2 DM, oleanolic acid therapy increased insulin sensitivity by boosting the expression of
insulin receptor and glucose transporter proteins in HepG2 cells [89]. The authors of [87]
reported that treating obese diabetic rats with oleanolic acid for two weeks increased
insulin sensitivity, reduced gluconeogenesis, and reduced liver and body weight.

There has been increased interest in the medicinal properties of derivatives of oleanolic
acid due to their several biological activities, including glucose-lowering effects in animal
models, antioxidant, anti-inflammatory, anti-cancer, and hepatoprotective effects [84,90].
The anti-diabetic effect of novel oleanolic acid derivatives (Figure 3b, Table 1) was in-
vestigated, and one, designed by [91], showed significant inhibitory activity on GP and
improved glucose absorption. Because GP catalyzes the conversion of glycogen to glucose,
inhibiting the enzyme can lower blood glucose levels by lowering hepatic glucose synthesis.
The dihydroxy-olide derivative of oleanolic acid has shown anti-diabetic activity through
the inhibition of α-glucosidase.
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Table 1. Bioavailability and Efficacy of Some Pentacyclic Derivatives.

Derivatives Structural Activity
Modification Activity

IC50 from Lead
Compound to

Derivative
Bioavailability Reference

Oleanolic acid derivative
(3β-{2-[4-(2-naphthalen-1-yl)

acetoxymethyl-1H-1,2,3-triazol-1-yl]
acetoxy} olean-12-en-28-oic acid

GP inhibitor Reduces hepatic
glucose synthesis 14 to 5.4 µM N/A [91]

Oleanolic acid-derivative (dipeptide
diester prodrug) N/A Increased stability

and permeability N/A enhanced [92,93]

Maslinic acid-derivative
( 1,4-dibromo-butane at carbon 28) GP inhibitor Lowers blood

glucose levels 28 to 7 µM N/A [94]

Asiatic acid-derivative (Benzyl ester) GP inhibitor Lowers blood
glucose levels 17 to 3.8 µM N/A [18,95]

Ursolic acid-derivative
(2α-hydroxyurs-12-en-28-oic acid) GP inhibitor Reduces hepatic

glucose synthesis 15 to 1.2 µM N/A [96]

Corosolic acid-derivative (2β,
3α-Dihydroxyurs-12-en-28-oic acid) GP inhibitor Reduces hepatic

glucose synthesis 20 to 1.1 µM N/A [17,18]

Corosolic acid-derivative
(CO(CH2)4CH at carbon 2, H at

carbon 3, H at carbon 28)
GP inhibitor Reduces hepatic

glucose synthesis 20 to 3.26 µM N/A [97]

GP: Glycogen phosphorylase; N/A: Not available.

The pharmacokinetic properties of two amino acid/dipeptide diester prodrugs con-
taining a propylene glycol-linked to oleanolic acid were compared with ethylene glycol-
linked amino acid/dipeptide diester prodrugs of oleanolic acid. The study showed that
part of the propylene glycol-linked amino acid/dipeptide (Figure 3c, Table 1) had increased
permeability, stability, and bioavailability [92,93]. The authors of [92] further reported the
improved solubility and bioavailability of oleanolic acid in vitro and in vivo with reduced
cytotoxicity when stabilized with nanosuspensions compared to the natural drug. Fur-
thermore, the solubility of oleanolic acid and five of its derivatives (prodrugs) after oral
administration to rats was evaluated to be 0.012, 25, 33, 3.7, 3.1, and 12 µg/mL, respec-
tively [92]. When compared to oleanolic acid, the prodrugs appeared to be more aqueous
soluble.

Clinical Studies on Oleanolic Acid and Its Derivatives

It is important to note that clinical trials have been carried out using triterpenes as
parent compounds. To date, none of the triterpene derivatives that inhibit glycogen phos-
phorylase inhibitors have gone through to human clinical trials. A clinical trial conducted
in China demonstrated that the administration of OA on hyperlipidemic patients for four
weeks three times a day lowered total cholesterol, triglycerides without affecting HbA1c
(%) and insulin fasting insulin [98]. OA was also shown to improve insulin resistance
and regulated glucose metabolism [98]. This made OA a promising agent for fatty liver
disease, which often presents before the manifestation of type diabetes mellitus. One study
limitation is that the dose of OA was not specified, and the formulation is not precise as OA
is known not to dissolve properly in water [98]. A BEACON, randomized control trial, was
conducted on 2185 type 2 diabetic patients with stage 4 chronic kidney disease which was
estimated by glomerular filtration rate (GRF) and on the placebo group [99]. The diabetic
patients with kidney disease received OA derivative bardoxolone methyl [CDDO-methyl
Ester (20 mg)] daily. Bardoxolone methyl (Figure 4) is synthesized by modifying the Carbon
-3 hydroxyl, the ring-C double bond, and the Carbon-28 carboxylic acid [100]. The clinical
trial results indicated a slight significant decrease in the systolic blood pressure compared
to the placebo group. However, the mean diastolic pressure increased when compared with
the baseline, while the blood pressure decreased in the placebo group. The bardoxolone
methyl group significantly increased the heart rate, which was undesirable and resulted in
the termination of the clinical trial [99]. The study results also indicated that bardoxolone
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had no effects on end-stage renal failure and death related to the cardiovascular effects
after four weeks of treatment [99].
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Another clinical trial was conducted to investigate the safety of bardoxolone methyl
(20 and 80 mg) on 179 healthy subjects by evaluating the corrected QT intervals (QTc). On
the contrary, administration of bardoxolone methyl for six consecutive days showed no
cardiovascular adverse effects as it did not significantly affect the QT intervals indicating
no adverse cardiovascular effects. A recent study by Lewi et al. performed secondary
data analysis of the BEACON clinical trial to investigate the effects of bardoxolone methyl
on the hepatic enzymes deLe [101]. The study findings showed increased aminotrans-
ferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase after
four weeks; however, there was a downward trend after 48 weeks. Cell culture studies
were done to elucidate further whether the increase in hepatic enzymes was due to toxicity.
The study showed that ALT and AST isoforms’ mRNA expression was associated with
Nuclear factor-erythroid factor 2-related factor 2 (NRF-2). NRF-2 expression is linked with
cellular protection as it induces antioxidants, anti-inflammatory effects, thus providing
hepatoprotection instead of hepatotoxicity [102]. Taken together, normal QT prolongations
and NRF-2 expression may be the markers of toxicity to be considered for drug develop-
ment. Furthermore, clinical studies are done globally to investigate Alport syndrome in
type 2 diabetic patients with chronic kidney disease (CKD) in Japan.

3.3. Maslinic Acid (MA)

Maslinic acid is a natural oleanane-type pentacyclic triterpenoid found primarily
(approximately 80%) in the fruits and leaves of Olea europaea L. and in Cornus kousa, Ulmus
pumila, and Junillia Aspera [103–106]. Maslinic acid (Figure 5a) has shown anti-diabetic,
anti-inflammatory, anti-microbial, anti-viral, and antioxidant properties [107–110]. This
triterpene has been studied to exhibit anti-diabetic effects in muscle and liver cells of rats by
inhibiting GP and stimulating tissue growth [111,112]. The authors of [113] also reported
that the anti-diabetic of maslinic acid activity was through the inhibition of hepatic GP to
bring about a reduction in blood glucose levels.

Maslinic acid has previously been reported to have anti-cancer activities by induc-
ing apoptosis through maslinic acid-mediated reactive oxygen species [112]. The oral
administration of maslinic acid resulted in weight loss and reduced food intake, resulting
in improved insulin sensitivity and blood glucose levels in mice [114]. Furthermore, a
study showed that the oral administration of maslinic acid resulted in poor bioavailability,
which was attributed to its hepatic first-pass metabolism or poor gastrointestinal tract
absorption [115].
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3.3.1. Maslinic Acid Derivatives for Increased Inhibition of Glycogen Phosphorylase

Glycogen phosphorylase is an important enzyme that catalyzes the breakdown of
glycogen to glucose for energy production [116]. Maslinic acid is a moderate inhibitor
(IC50: 30 µM) of GP; this had more research geared towards synthesizing derivatives to
improve its efficacy and potency. A study identified various active sites for maslinic acid
(MA), with carbon-28 being the active site corresponding to GP inhibition [94]. Based on
this discovery, a series of derivatives were synthesized and investigated against rabbit
glycogen phosphorylase. Maslinic acid and most triterpenes are hydrophobic in nature,
making them difficult to dissolve in water. A series of hydrophilic compounds were added
to carbon 28 to enhance the hydrophobicity of MA. This led to a significant decrease in
potency with IC50 values of 153, 51, and 580 µM, most of which had lower efficacy than
caffeine (IC50: 144 µM) [94]. This discovery led to the addition of hydrophobic functional
groups on carbon 28 to synthesize 1,4-dibromo-butane (Figure 5b, Table 1), which improved
the potency of MA (IC50 of 7 µM). Molecular docking studies lead to a conclusion that
MA binds to the inhibitor site I of the GP enzyme. Much more in vivo studies are needed
for the evaluation of hydrophobic compounds on in vivo animal models. To improve the
bioavailability of these hydrophobic compounds, the synthesis of nanoparticles may be a
viable route.

3.3.2. Clinical Studies on Maslinic Acid

There is a surprising lack of human clinical trials that investigate anti-diabetic proper-
ties of MA. Most clinical trials evaluated the effects of MA on arthritis, inflammation, its
use as a nutritional supplement. An open-label clinical trial was done on the elderly with
an average age of 70.7 ± 10.1 to investigate the effects of daily consumption of MA (30 mg)
on chronic knee pain [117]. The daily administration of MA improved the quality of life of
the elderly by preventing knee pain, possibly due to the anti-inflammatory effects [117].
The NUTRAOLEUM study in Spain evaluated the pharmacokinetics following olive oils
(OO) consumption with a high and triterpene content [118]. The enrichment of OO with
the triterpenes (OA and MA) improved endothelial function, which is vital as endothe-
lial dysfunction is considered an early sign of atherosclerosis [118]. These effects were
mainly attributed to MA due to its high bioavailability compared to OA [118]. There is
indeed a paucity of clinical trial studies evaluating MA and MA derivatives as antidiabetic
compounds.

3.4. Asiatic Acid (AA)

Asiatic acid is a pentacyclic triterpenoid naturally found in Centella asiatica in two
forms; free triterpene and asiaticoside (an active saponin). This compound has shown
anti-diabetic, anti-alzheimer, anti-angiogenic, anti-inflammatory, anti-hepatitis C virus
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(HCV), antioxidant, anti-cancer, hepatoprotective, and neuroprotective activities [119–121].
Asiatic acid has been made commercially available under the trade name Madecassol® in
Canada and some European Union countries due to its dermatological properties [122].
This triterpene (Figure 6a) has shown anti-cancer potential by inducing apoptosis and sup-
pressing cancer cell proliferation and modulating apoptosis regulators such as glioblastoma
multiforme (GBM), B-cell CLL/lymphoma 2 (BCL-2), and caspases [121]. The analgesic
and anti-inflammatory effects of asiatic acid have been reported [123]. The overexpression
of antioxidant enzymes such as superoxidase dismutase, catalase, glutathione peroxidase,
and inducible nitric oxide synthase may be linked to its mechanism of action [121]. Another
report suggested that asiatic acid’s anti-inflammatory activity might be associated with its
inhibitory effects on cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), interleukin-1 (IL-1),
and tumor necrosis factor α (TNF-α) [124].
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genic and apoptotic activities of asiatic acid when loaded in solid lipid nanoparticles [129]. 
Asiatic acid's cytotoxic efficacy against neoplasm P388D1 and melanoma Malme-3M cells 
has been investigated, resulting in better anti-cancer activity [130,131]. 
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Asiatic acid has shown anti-diabetic and anti-obesity activities by enhancing insulin
secretion and reducing the production of fatty acids in adipose tissue, respectively. The
effect of asiatic acid on body weight is connected to its ability to inhibit the activity of
pancreatic lipase and amylase, thereby driving weight loss [125]. Asiatic acid has been
reported to exhibit anti-diabetic activities by inhibiting the production of free radicals linked
to the development of diabetes embryopathy, nephropathy, and neuropathy [95,126,127].
Asiatic acid has been reported to lower blood glucose levels in STZ-induced diabetic rats.
Furthermore, in STZ-induced diabetic rats, asiatic acid has been shown to considerably
increase insulin levels, decrease lipid peroxidation, and improve the antioxidant system.
This triterpene has been shown to improve glucose absorption in insulin-deficient STZ
diabetic rats’ skeletal muscles [128]. A study reported better anti-carcinogenic and apoptotic
activities of asiatic acid when loaded in solid lipid nanoparticles [129]. Asiatic acid’s
cytotoxic efficacy against neoplasm P388D1 and melanoma Malme-3M cells has been
investigated, resulting in better anti-cancer activity [130,131].

Although asiatic acid and its derivatives have shown a wide spectrum of biological
actions, their medicinal effects remain limited due to poor bioavailability [121]. The authors
of [132] investigated the bioavailability of asiatic acid. The study found that asiatic acid is
rapidly metabolized by liver enzymes in rats, implying that it has a low oral bioavailability.
Another study that evaluated the oral bioavailability of asiatic acid and asiaticoside in
12 healthy male and female adults, found that asiatic acid had a quicker maximal blood
concentration. In contrast, asiaticoside had a greater sustained bioavailability. This further
suggested that Madecassol®’s quick and long-lasting activity is due to the combined
therapeutic effects of asiatic acid and asiaticoside [133]. To date, no clinical trials have been
conducted on asiatic acid as an anti-diabetic agent.
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Glycogen Phosphorylase Inhibitor Derivatives

Many natural triterpenes and their derivatives have been known to exert their hypo-
glycaemic effects by inhibiting glycogen phosphorylase, α-amylase, and α-glucosidase.
At least six possible regulatory binding sites have been identified in GP, and several
structurally modified GP inhibitors have been identified and studied to improve the dis-
solution [18]. The study by [18], which investigated the inhibitory activity of asiatic acid
(IC50: 17 µM) on GP, was followed by the synthesis and evaluation of 24 derivatives on GP.
In some cases, the addition of a hydrophilic group at carbon-28 had no positive effect on
the synthesized compounds, which explains the hydrophobic nature of most pentacyclic
triterpenes. However, among the synthesized compounds, the asiatic acid benzyl ester
(Figure 6b, Table 1) had the highest inhibitory activity (IC50: 3.8 µM) on GP when compared
to other tested derivatives, and the lead compound with IC50 of 17 µM [95]. Furthermore,
the structural activity relationship study of the derivatives revealed that asiatic acid with a
2α-OH function had greater activity against GP than the derivative with a 2β-OH func-
tion [134]. Although research on the structural modification of pentacyclic triterpenes to
improve the solubility is interesting, the formulation of nanoemulsions to enhance the
bioavailability and efficacy of these hydrophobic compounds needs to be considered.

3.5. Ursolic Acid (UA)

Ursolic acid is a naturally occurring triterpenoid molecule found in foods, fruits, and
plants. Rosemary, lavender, apple fruit peel, organum, thyme, berries, and flowers have
all been found to contain ursolic acid. Ursolic acid has been shown to exhibit a variety of
biological actions, and it is considered the most promising triterpene of the triterpenoid
family. This compound (Figure 7a) has shown anti-cancer, anti-diabetic, hepatoprotective,
anti-inflammatory, anti-obesity, cardioprotective, antioxidant, and anti-apoptotic prop-
erties and has been utilized as a component in health products and cosmetics because
it is moderately non-toxic [85,135–138]. Ursolic acid has anti-cancer characteristics by
modulating apoptotic signalling in cancer cells, suppressing carcinogenesis, and assisting
in the clearance of damaged cells [139–141].
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Figure 7. Chemical structure of (a) ursolic acid and (b) ursolic acid derivative (2α-hydroxyurs-12-en-28-oic acid). The
ursolic acid derivative (b) exhibited a 17-fol inhibition of the glycogen phosphorylase. The antidiabetic effects are attributed
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An ursolic acid derivative from Cynomorii Herba reduced the weight of high-fat
diet-induced obese mice, possibly through the reduction of blood glucose levels [142].
Furthermore, ursolic acid and its supplements have shown anti-diabetic properties by
inhibiting pancreatic α-amylase and uncoupling protein 3/AMPK-dependent pathways,
resulting in reduced body weight and free fatty acid levels in high-fat obese rats [143–145].
Another research examined how ursolic acid affected some patients’ body weight and
glucose tolerance, finding that it reduced body weight, body mass index, and insulin resis-



Molecules 2021, 26, 7243 13 of 21

tance [146]. This is relevant since increased body weight contributes to the development of
DM. When ursolic acid was encapsulated in nanoemulsions, refs. [147,148] found that its
anti-inflammatory, permeability, and anti-carcinogenic activities were enhanced. Despite
the wide range of biological activities of ursolic acid, it is poorly soluble in water and has
poor bioavailability [85].

3.5.1. Glycogen Phosphorylase Inhibitor Derivatives

Since studies have shown that lowering hepatic glucose output can help control
hyperglycemia, several GP inhibitors have been designed and evaluated for the treatment
of type 2 diabetes [96]. The GP inhibitory activities of some synthetic compounds including
2α-hydroxyurs-12-en-28-oic acid (Figure 7b, Table 1) were evaluated. The 3-deoxy-2-keto
derivative with IC50 of 24.2 µM showed less inhibitory activity on rabbit muscle GPa
when compared to ursolic acid, which had IC50 of 15.3 µM [96]. Interestingly, in the same
series of 35 synthesized 3-deoxypentacyclic compounds, 2α-isomer of 2-isoursolic acid (2α-
hydroxyurs-12-en-28-oic acid) had the highest activity with IC50 of 1.2 µM when compared
to other synthesized compounds and the lead compound. Structural–activity relationship
study showed that displacement of the 3-OH group to carbon-2 of pentacyclic triterpenes
may enhance GP inhibition as observed in 2-isoursolic acid (IC50: 5.5 µM) compared to
ursolic acid with IC50 values of 15.3 µM. Furthermore, the addition of hydrophobic groups
at carbon-2 and carbon-28 may not be effective for improving GP inhibition, making the
nanoemulsions a suitable approach for enhancing the bioavailability of these compounds.

3.5.2. Clinical Studies on Ursolic Acid

A randomized, double-blind, placebo-controlled clinical trial was performed on 24 pa-
tients between 30 and 60 to investigate the effects of UA (150 mg) on metabolic syndrome,
insulin sensitivity and inflammation [146]. The inflammatory markers, interleukin-6 and
C-reactive protein were analyzed using the ELISA technique [146]. The administration
of UA resulted in the remission of metabolic syndrome by lowering body weight, waist
circumference, fasting glucose, and insulin sensitivity [146]. However, study showed no
effects of UA on inflammatory markers. On the contrary, a randomized clinical trial done
on postmenopausal women (n = 61) indicated that supplementation of UA (450 mg/day)
combined with physical exercise had no effects on metabolic syndrome parameters [149].
Although metabolic syndrome parameters were not affected, an 8-week treatment with
UA improved systolic blood pressure, insulin resistance, and HOMA-IR [149]. From these
clinical trials, it is evident that UA has moderate anti-diabetic properties in humans, posing
translational discrepancies from animal studies.

3.6. Corosolic Acid (CA)

Corosolic acid, also known as 2α-hydroxyursolic acid, is a ursane-type triterpenoid
found in Lagerstroemia speciosa L, Eriobotrya japonica, Weigela subsessilis, Potentilla discolor
Bunge, Orthosiphon stamineus, and Schisandra chinensis [143,150,151]. This compound
(Figure 8a) is known to regulate several biological processes in colorectal, cervical, and
ovarian cancer through the activation of kinases and biological oxidative damage [151–153].

A decrease in fasting and postprandial blood glucose levels in human subjects has
been reported to corroborate corosolic acid’s anti-diabetic activity [154,155]. Corosolic
acid had the highest activity on α-glucosidase compared to oleanolic acid, arjunolic acid,
asiatic acid, maslinic acid, and 23-hydroxyursolic acid [156]. Another anti-diabetic study
evaluated two extracts of Lagerstroemia speciosa leaves containing 1% corosolic acid
(Glucosol) in a type 2 diabetes mellitus clinical trial for two weeks. The results showed
a 30% decrease in blood glucose levels when the soft gel was administered compared to
20% of the hard gelatin. This shows that the soft gel formulation had better bioavailability
than the powdered formulation [157]. Furthermore, animal models evaluated the effects of
corosolic acid on hypercholesterolemia and hepatic steatosis in type 2 diabetes. The results
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showed that corosolic acid had a 32% and 46% inhibitory effect on the mean blood and
liver cholesterol levels, respectively [158].
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3.6.1. Glycogen Phosphorylase Inhibitor Derivatives

Since early studies have reported corosolic acid to be a natural inhibitor of GP, recent
studies are increasingly focusing on identifying and developing structural GP inhibitors. A
diastereoisomer of corosolic acid, 2β,3α-dihydroxyurs-12-en-28-oic acid (Figure 8b, Table 1),
has been reported to have a higher GP inhibitory activity with IC50 of 1.1 µmol/L compared
to corosolic acid (IC50: 20 µmol/L). Structural–activity relationship study suggested that
the configuration of the 2,3-dihydroxy A-ring possibly improved the GP inhibitory activity
favoring the 2β,3α-configuration than the 2α,3β-configuration [17,18]. Another study
on the structural modification of corosolic acid, which majored on the carbon-24 A-ring,
reported the significant inhibitory activities of three corosolic acid derivatives on rabbit
muscle GPa with IC50 of 3.26, 5.1, and 7.31 µM, compared to the parent compound (IC50:
20 µM) [159].

3.6.2. Clinical Studies on Corosolic Acid (CA)

Fukushima et al. conducted the first double-blinded study to investigate antidia-
betic effects of corosolic (CA) in humans [97]. This study consisted of 31 participants
divided into placebo and CA treated group (10 mg) for a 3-hour oral glucose tolerance test
(OGTT). CA reduced blood glucose concentrations from 60 to 120 minutes and showed
statistical significance at 90 minutes, thus corroborating the hypoglycemic effects seen in
streptozotocin-induced diabetic rats at higher doses [97,160]. The moderate hypoglycemic
impact of CA on human clinical trials indicate the need to consider derivatives such as 2β,
3α-Dihydroxyurs-12-en-28-oic acid) as a potential anti-diabetic derivative with improved
efficacy.

Table 1 indicates the structural activity relationship of the derivatives of some pen-
tacyclic acids. In drug formulation, water solubility and bioavailability of bioactive com-
pounds are crucial in enhancing drug efficacy. While most pentacyclic triterpenes are
poorly soluble in water, their synthesized derivatives, by the addition of a hydrophobic
side chain in most cases, have displayed high water-solubility and improved efficacy, as
shown by the derivatives’ inhibitory effect on GP when compared to the parent pentacyclic
triterpenes.
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4. Conclusions

Indeed, pentacyclic triterpenes have received much attention considering their wide
range of therapeutic properties, particularly anti-diabetic. This review broadens our
understanding of the work done so far to improve the efficacy of pentacyclic triterpenes
in the control of blood glucose levels and related complications. The effort to synthesize
pentacyclic triterpenes has mostly ended in in vitro studies where effective derivatives are
not taken further into animal studies and then translated to human trials. There are two
categories of derivatives presented in this review, those that are glycogen phosphorylase
inhibitors and those that are not. Improving the efficacy of triterpenes as phosphorylase
inhibitors requires the insertion of hydrophobic compounds, thus worsening solubility
and efficacy. Bioavailability is particularly an essential issue in pentacyclic triterpene
research, as the triterpenes act on the brush border and target the liver, kidney, and
skeletal muscles. We, therefore, propose a solution to develop lipophilic nanoparticles for
both oral and dermal delivery of the triterpenes to improve solubility, absorption, and
efficacy. The derivatives that are not phosphorylase inhibitors have shown promising
results. Bardoxolone methyl has been an extraordinary derivative with improved kidney
ameliorative effects compared to the parent compound OA. While there are unexplainable
findings, animal and cell culture work can substantiate mechanisms behind human clinical
trials. To improve the translational research, it is recommended that researchers do a
complete report on both positive and negative effects of the drugs underdevelopment from
the invitro and animal testing stage. Toxicity studies should include the impact of the drugs
on the QTc intervals and NRF-2 expression on rodents before human trials. Therefore,
further studies should investigate the hindrance behind translating animal research to
human clinical trials and how to improve the delivery of hydrophobic triterpenes and
related derivatives to improve efficacy.
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