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Abstract: The coronavirus disease 2019 (COVID-19) pandemic has put into evidence 
another pandemic – obesity. Currently, several studies have documented the association 
between obesity and COVID-19 severity. The mechanisms underlying the increased risk of 
complications and mortality in obese patients with COVID-19 are of diverse nature. 
Inflammation plays a central role in obesity. Metabolic alterations seen in obese patients 
are related to an inflammatory response, and several studies report elevated levels of 
circulating inflammatory cytokines in obese patients. Also, deregulated expression of adipo-
kines, such as leptin and resistin, increase the expression of vascular adhesion molecule 1 
and intercellular adhesion molecule 1 that contribute to increased vascular leukocyte adhe-
siveness and additional oxidative stress. Additionally, it is now recognized that the chronic 
impairment of systemic vascular endothelial function in patients with cardiovascular and 
metabolic disorders, including obesity, when intensified by the detrimental effects of SARS- 
CoV-2 over the endothelium, may explain their worse outcomes in COVID-19. In fact, 
vascular endothelial dysfunction may contribute to a unfavorable response of the endothe-
lium to the infection by SARS-CoV-2, whereas alterations in cardiac structure and function 
and the prothrombotic environment in obesity may also provide a link to the increased 
cardiovascular events in these patients. 
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Obesity, COVID-19 and Inflammation
The coronavirus disease 2019 (COVID-19) pandemic has put into evidence another 
pandemic – obesity, an increasing threat to societies around the world.1 The first 
studies of COVID-19 did not provide body mass index (BMI) data,2 and the 
association between disease severity and obesity was not perceived initially. 
Subsequent data from several countries, however, cast light on this association,3,4 

and several studies have documented the association between obesity and COVID- 
19 severity.4–7 Currently, obesity may be considered a true independent risk factor 
for COVID-19 mortality.8

The mechanisms underlying the increased risk of complications and mortality in 
obese patients with COVID-19 are many, and of diverse nature (Figure 1). Obesity 
is associated with several disorders, related to defective homeostasis of the dys-
functional adipose tissue, in which local and systemic chronic inflammation, oxi-
dative stress, altered release of cytokines, and impaired immune response play 
important roles9–11; all of these have been demonstrated to be associated with 
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higher risk and worse prognosis of infectious diseases in 
this patient population.12–14

Inflammation plays a central role in obesity.15 Obesity 
promotes profound changes in the structure and function 
of adipose tissue, as adipocytes undergo hypertrophy and 
hyperplasia, increasing oxygen need, which remains unmet 
due to the insufficient vascularization relative to the 
enlarged adipose tissue. This leads to tissue hypoxia and 
immune cell infiltration that perpetuates local 
inflammation.16–18 Insulin resistance is also a link between 
obesity-related metabolic disorders and inflammation, as 
the remodeling of the adipose tissue leads to activation of 
NLRP3-inflammasome, which ultimately impairs of the 
insulin-signaling pathway and insulin resistance, a key 
factor in the development of the metabolic syndrome.19

Additionally, mitochondrial dysfunction in adipocytes 
may be a cause of adipose tissue inflammation and insulin 
resistance. The defective mitochondrial function and 
decreased fatty acid oxidation in adipocytes increase 

triglyceride accumulation, adipocyte enlargement and con-
sequent adipose tissue hypoxia; this, in its turn, leads to 
accumulation of hypoxia-inducible factor-1α (HIF-1α), 
which promotes adipose tissue inflammation and 
fibrosis.20 This continuous inflammatory cycle also con-
tributes to a neuro-immuno-endocrine dysregulation in the 
context of the metabolic syndrome.21 The inflammatory 
state affecting obese individuals is called metabolic 
inflammation or metainflammation, in which there is also 
an increased influx of M1 macrophages occurring, as well 
as decreased M2 macrophages and Treg cells in the visc-
eral adipose tissue22 through chemotactic signaling, via 
MCP-1 and IL-8 released by adipocytes.23

The excessive intake of carbohydrates is an important 
trigger for these processes.24 In addition, peripheral 
inflammation and various pro-inflammatory signals in the 
nucleus accumbens, including reactive gliosis, increased 
expression of cytokines, antigen-presenting markers and 
transcriptional activity of NFкB25 contribute to the 

Figure 1 The mechanisms underlying the increased risk of complications and mortality in obese patients with COVID-19 based on the association of low-grade 
inflammation, adipose tissue dysfunction and endothelial dysfunction: In obese patients with COVID-19 or SARS-CoV-2, as well as, the bacterial endotoxins (LPS) of the 
intestinal bacterial translocation promote the activation of TLR4 in favor of the MyD88-dependent pro-inflammatory pathway. The activation of NF-κB is linked to the 
production of TNF-α, IL-1β, IL-6, IL-12 and other cytokines, contributing to the activation of NLRP3 inflammasomes and increased expression of ECA2. In the adipose tissue 
of patients with COVID-19, there is an increase in the expression of ECA2, promoting greater entry of SARS-CoV-2, making this tissue a viral reservoir. Metabolic 
inflammation in obese patients is characterized by dysfunctional adipose tissue, with mitochondrial dysfunction and decreased fatty acid oxidation, causing an amount of 
inflammatory cells showing an increase in the influx of M1 macrophages and chemotactic signaling, via MCP-1 and release of IL-8 by adipocytes, associated with an increase in 
reactive oxygen species. Associated with this process of immune activation, obese patients with COVID-19 have systemic microvascular dysfunction and a predisposition to 
thrombus formation that is exacerbated by higher levels of circulating inflammatory cytokines, such as TNF-α, IL-1β and IL-6, worsening the outcomes in COVID-19.
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activation of the innate immune response, mainly through 
activation of Toll-type receptors (TLR), specifically TLR- 
4, considered an intersection of dysfunctional metabolism 
and activated immunity in obesity.26 NF-κB is a molecular 
hub for pro-inflammatory gene induction both in innate 
and adaptive immune responses since it is highly regulated 
and regulates the expression of a vast array of genes.27 

Among many different immune effects, NF-κB activation 
is linked to the production of TNF-α, IL-1β, IL-6, IL-12 
and other cytokines, and is also involved in NLRP3 
inflammasome regulation and activation of CD4+ 

T-helper cells.28 It is noteworthy that there is evidence 
that the virus can bind and activate TLR4 signaling in 
favor of the proinflammatory MyD88-dependent and con-
tributing to increased expression of ACE2 and promoting 
greater viral entry.29

Obesity and Vascular Endothelial 
Dysfunction
Macrovascular Endothelial Dysfunction
The chronic impairment of systemic vascular endothelial 
function in patients with cardiovascular and metabolic 
disorders, including hypertension, obesity, diabetes mel-
litus, coronary artery disease and heart failure, when 
intensified by the detrimental effects of the severe 
acute respiratory syndrome coronavirus (SARS-CoV-2) 
over the endothelium, may explain their worse outcomes 
in COVID-19.30–33 Regarding obesity, a community- 
based clinical trial (n=521; mean follow-up of 8.5 
years) showed that increases in weight, body mass 
index, waist circumference and body-fat percentage 
over time were associated with worsening of microvas-
cular endothelial function, assessed by flow-mediated 
dilation in the brachial artery.34 Most subjects (84%) 
were overweight or obese at baseline; those who lost 
weight over time had improved vascular endothelial 
function.34

In fact, vascular endothelial dysfunction and increased 
arterial stiffness are thought to contribute to a unfavorable 
response of the endothelium to the infection by SARS- 
CoV-2, whereas alterations in cardiac structure and func-
tion and the prothrombotic environment in obesity could 
provide a link for the augmented cardiovascular events in 
these patients.35 Moreover, fast increasing evidence from 
basic science, imaging and clinical observations suggest 
that COVID-19 could be considered as a vascular 
disease.36,37

Microvascular Endothelial Dysfunction
Obesity is accompanied by functional and structural sys-
temic microvascular dysfunction,38 and endothelial- 
dependent microvascular vasodilation is severely impaired 
in obesity.39–41 Endothelial-dependent capillary recruit-
ment, induced either by reactive hyperemia or by shear 
stress, is blunted in obese subjects, compared to non-obese 
counterparts.42,43 In the clinical setting, endothelial func-
tion and reactivity can be assessed using different technol-
ogies that evaluate microvascular flow and tissue perfusion 
coupled to physiological or pharmacological stimuli,44,45 

to activate different vasodilator pathways resulting in 
increased microvascular conductance. The most com-
monly used provocations are the administration of 
endothelial-dependent vasodilators by transdermal 
iontophoresis,46–48 thermal hyperemia49,50 and post- 
occlusive reactive hyperemia.51–53 In this context, the 
cutaneous microcirculation is now considered as an acces-
sible and representative vascular bed for the assessment of 
systemic microcirculatory reactivity.45,54–56 A reduced 
vasodilation response to these different stimuli is indica-
tive of microvascular endothelial dysfunction and is also 
considered to be predictive for cardiovascular and meta-
bolic diseases and clinical prognosis.57–60

In patients with established cardiovascular disease, the 
reduction of microvascular endothelial-dependent vasodi-
lation (ie, endothelial dysfunction) is associated with 
increasing BMI, even after adjustment for treated diabetes 
mellitus, hypertension, hypercholesterolemia, and 
smoking.61 In that study, BMI was classified in three 
different intervals: <25, 25-to 30 and >30 kg/m2.61 

Moreover, Csipo et al showed that weight loss (reduction 
of BMI from 31.8 to 27.5 kg/m2, accompanied by 
a reduction of serum cholesterol, LDL, triglycerides, and 
increased HDL) after a low-carbohydrate, low-calorie diet, 
resulted in improvement of microvascular endothelial 
function in geriatric obese (class 1) patients,62 assessed 
by laser speckle contrast imaging in the skin, after post- 
occlusive reactive hyperemia. Additionally, endothelial 
function of resistance arterioles of the gluteal subcuta-
neous tissue is impaired in non-diabetic subjects with 
moderate levels of obesity (BMI 34.7 ± 4.0 kg/m2), in 
association with systemic inflammation. In women, BMI 
was significantly associated with high-sensitivity 
C-reactive protein.63

Regarding mechanisms of microvascular dysfunction, 
using a new methodology of microdialysis in the skeletal 
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muscle, La Favor et al showed a significant increase in 
superoxide anions, as well as in NADPH oxidase subunit 
expression, associated with microvascular endothelial dys-
function in obese subjects relative to lean and overweight/ 
mildly obese subjects.64 Interestingly, 8 weeks of aerobic 
exercise training resulted in decreased H2O2 levels and 
improved microvascular endothelial function in the muscle 
tissue of obese subjects.64 The study therefore linked 
NADPH oxidase, as a source of reactive oxygen species, 
to microvascular endothelial dysfunction in obese indivi-
duals, with amelioration induced by aerobic exercise.

Microvascular dysfunction has been considered to be 
a pathophysiological link between overweight/obesity and 
cardiometabolic diseases, including arterial hypertension, 
insulin resistance, and glucose intolerance.43,65–69 

Acknowledged mechanisms include changes in the secre-
tion of adipokines, leading to increased levels of free fatty 
acids and inflammatory mediators, and decreased levels of 
adiponectin, all of which may impair endothelial insulin 
signaling.70–73 It is also of note that there are changes at 
the level of the microvascular network in obesity, invol-
ving a reduction in the number of arterioles or capillaries 
within vascular beds of various tissues (such as the skele-
tal muscle and skin), which is defined as vascular (capil-
lary) rarefaction.74–77 In fact, obese individuals have both 
structural and functional alterations in skin microcircula-
tion that are proportional to the increase in the degree of 
global and central obesity, arterial pressure levels and with 
the degree of insulin resistance.42 In non-diabetic, 
untreated hypertensive patients, reduced capillary density 
has also been related to obesity and other cardiometabolic 
risk factors.78 In addition, in adults and also in prepubertal 
children, visceral adiposity measured with magnetic reso-
nance imaging is inversely associated with endothelial- 
dependent skin capillary recruitment, and is accompanied 
by increased plasma levels of inflammatory markers.79

Impaired left ventricular diastolic function and higher 
risk of heart failure in obese individuals has been sug-
gested to be associated with myocardial microvascular 
dysfunction.80 In obese patients undergoing coronary 
artery bypass graft surgery, coronary microvascular den-
sity is significantly lower, compared to non-obese patients, 
and accompanied by increased body mass index 
and percent body fat together with increased left ventricu-
lar filling pressures.80 Moreover, in patients with suspected 
coronary artery disease, increasing body mass index is 
associated with reduced microvascular endothelial func-
tion, even after adjustment for treated diabetes mellitus, 

hypertension, hypercholesterolemia, and smoking.61 

Interestingly, the study evaluated microvascular endothe-
lial function three different technologies, including periph-
eral arterial tonometry, laser Doppler flowmetry and digital 
thermal monitoring.61

Reduced skeletal muscle capillary density and micro-
vascular reactivity in obese subjects improved after 4 
weeks of either sprint interval training, or moderate-inten-
sity continuous training, together with increased endothe-
lial eNOS content.81

It has also been shown that bariatric surgery improves 
microvascular dysfunction in obese patients who were free 
of metabolic syndrome after surgery, in association with 
postoperative increases in HDL-cholesterol levels and 
decreases in oxidized LDL levels.82

Another clinical study investigated microvascular 
endothelial function – using flow-mediated dilation in 
arterioles isolated from subcutaneous adipose tissue – in 
young women presenting with obesity (age: 33 ± 2 years, 
body mass index: 33.0 ± 0.6 kg/m2).83 The results showed 
that a 6-week low-carbohydrate diet, associated or not 
with caloric restriction, improve endothelial-dependent 
microvascular function through increases in nitric oxide 
bioavailability.83 On the other hand, this nutritional inter-
vention did not affect macrovascular endothelial function, 
evaluated using brachial artery flow-mediated dilation.83

Regarding putative pathophysiological mechanisms, 
a study by Dimassi et al84 in young individuals with 
obesity (BMI >30 kg/m2, n = 69), compared with controls 
with normal weight, suggested that the expression of cir-
culating microparticles containing endothelial nitric oxide 
synthase (eNOS) is significantly reduced in obesity indi-
viduals with endothelial-dependent microvascular dys-
function characterized using cutaneous laser Doppler 
flowmetry.84

Multiple Pathways for COVID-19 
Severity in Obese Patients
Low-grade inflammation is the common feature that 
encompasses all the high-risk patients for developing 
severe COVID-19. Obesity is associated with a fivefold 
increased risk of developing SARS in SARS-CoV-2 
infected individuals, and the well-documented increased 
susceptibility of obese patients to develop severe forms of 
COVID-19 may be linked to the elevated systemic meta-
bolic inflammation in these patients.19 Metabolic altera-
tions seen in obese and in diabetic patients are related to 
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an inflammatory response,85,86 and several studies report 
elevated levels of circulating inflammatory cytokines such 
as TNF-α, IL-1β and IL-6 in obese patients.87 

Furthermore, visceral fat shows significant univariate asso-
ciation with the need for intensive care in COVID-19 
patients,15 and deregulated expression of adipokines, 
such as leptin and resistin, increases the expression of 
vascular adhesion molecule 1 (VCAM-1) and intercellular 
adhesion molecule 1 (ICAM-1) that contribute to 
increased vascular leukocyte adhesiveness and additional 
oxidative stress.88 To further complicate the scenario, adi-
pose-derived mesenchymal stem cell (ASCs), a specialized 
cell population in adipose tissue, are functionally compro-
mised in obesity and changes its regulatory protective 
activity to a pro-inflammatory profile increasing its ability 
to secrete TNF-α, IL-8, IL-6 and MCP-1.89,90 Therefore, 
ASCs from obese patients may not be able to modulate the 
immune response and tissue repair in SARS-CoV-2 infec-
tion contributing to more severe tissue injury.10

SARS-CoV-2 uses its viral spike (S) protein to invade 
target cells, such as epithelial cells, through binding to 
angiotensin-converting enzyme 2 (ACE2) after proteolytic 
activation by transmembrane protease serine 2 
(TMPSS2).91 Others enzymes like furin, trypsin and elas-
tase may also activate the S protein and facilitate cellular 
entry by the virus.92–94 Interestingly, adipose tissue highly 
expresses ACE2 and the expression is even higher in 
visceral adipose tissue.95 Of relevance, ACE2 expression 
is upregulated in obesity.96 Also, another suggested recep-
tor for SARS-CoV-2, dipeptidyl peptidase 4 (DPP4), is 
expressed in adipose tissue and is upregulated in 
obesity.97,98 Finally, CD147, the alternative receptor for 
SARS-CoV-2, is positively correlated with an increase in 
body mass index.99 Taken together, the evidence of high 
expression of different SARS-CoV-2 receptors in adipose 
tissue may be the basis for increased severity of COVID- 
19 in obese patients involving at least two different possi-
bilities: First, infection of adipocytes with SARS-CoV-2 
may exacerbate the innate immune response through 
pathogen recognition receptors in an already inflamma-
tion-primed tissue, increasing the magnitude of the 
response. Second, adipocytes may function as a reservoir 
for the SARS-CoV-2 and therefore may fuel the inflam-
matory response in adipose tissue and elsewhere in the 
organism by releasing viral NA and antigens that, by 
reaching the circulation generate ripple inflammatory 
effects across the organism. Importantly, these two possi-
bilities are not mutually exclusive and may well combine 

their pathophysiological potential towards a deregulate 
systemic inflammatory response with widespread tissue 
injury and consequent organ dysfunction. It is important 
to add that as the pandemic evolves, new mechanistic 
interactions may unravel. For instance, new virus variants 
with mutations at the receptor-binding domain of the 
S protein may change the infectivity of the virus by chan-
ging its interactions with cellular receptors. In Brazil, 
a variant designated as P1, with multiple mutations in the 
S protein, was recently identified and is seemingly more 
infective than previous lineages of the virus.100 How this 
variant may interact with adipocytes increasing infectivity 
to these cells or potentiating the formation of an adipocyte 
reservoir of the virus causing a more severe disease in 
obese individuals is yet unknown. What is known is that 
a second wave caused by this new P1 variant is promoting 
devastating effects in Brazil with apparently higher mor-
tality and a faster progression of the disease.

Severe COVID-19 is characterized by a massive pro-
duction of pro-inflammatory mediators, in special cyto-
kines. Frequently, the term “cytokine storm” is called up 
to describe the massive production of cytokines that occurs 
in viral infections (including SARS-CoV and MERS-CoV) 
, in sepsis and more recently, in severe COVID-19.101 

Increased levels of IL-6, TNF-α, IP10 are commonly 
found in patients with severe COVID-19.102 It is reason-
able to propose that obese patients who already have an 
underlying chronic inflammation when infected with 
SARS-CoV-2 are prone to develop a more intense and 
deregulated response, and in doing so, developing 
a severe presentation of the disease. In addition, dysfunc-
tional metabolism, endothelium, and overall immune 
response would further contribute to an unfavorable evo-
lution of the disease in the obese patients. The questions 
about the molecular mechanisms behind this dispropor-
tional response remain unanswered, but our knowledge 
about this disease is growing in an unprecedented velocity 
and we may soon have the answer. However, a few possi-
bilities may be put forward (Figure 1).

As stated above, obesity is characterized by the induc-
tion of a low-grade chronic proinflammatory state and 
NF-κB is described as a key factor in the low-grade 
inflammation state in atherosclerosis and 
hypertension.103,104 Also, the NF-κB pathway is involved 
in insulin resistance, a condition frequently seen in obese 
patients, and in β-cell dysfunction.105 In addition, free 
fatty acids can also promote inflammation and activate 
the NF-κB and JNK1 pathways.106 All those pieces put 
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together may point to NF-κB being a key player in obese 
patients with COVID-19. Importantly, cell culture experi-
ments combined with system biology approach showed 
that overexpression of Nsp1 during infection with SARS- 
CoV-2 strongly increases signaling through the nuclear 
factor of activated T cells (NFAT) and increases cytokine 
production and immune-dependent pathogenesis. Both 
NF-κB and NFAT pathways share common regulation 
signals, such as Foxp3 and Foxd1, and a similar mechan-
ism of activation against infection.107

We must also consider that binding of SARS-CoV-2 to 
ACE2 leads to receptor internalization and high cytosolic 
levels of angiotensin II, which is a recognized activator of 
NLP3 inflammasome in the lung108 and other tissues. The 
NLRP3 inflammasome regulates pyroptosis through gas-
dermin D, along with the release of cytosolic contents into 
the extracellular spaces. The release of alarmins, ATP, 
ROS, cytokines, chemokines, LDH and viral particles 
elicits an immediate reaction from surrounding immune 
cells, inducing a pyroptotic triggered reaction further fuel-
ing inflammation. Interestingly, different studies have 
reported elevated levels of LDH, a cytosolic enzyme that 
is measured for monitoring pyroptosis in patients with the 
severe form of COVID-19.109 On the other hand, diet- 
induced alterations in the gut leading to increased gut 
permeability to bacterial endotoxins are known to promote 
activation of NLRP3 inflammasomes via Toll-like recep-
tors (TLRs). This event is followed by the accumulation of 
IL-1 family cytokines, which modulate insulin production 
by pancreatic beta cells.110 Importantly and at the same 
time, a decrease in endogenous protective mechanisms 
occurs.111 NLRP3 inflammasome activation is involved 
in endothelial lysosome membrane permeabilization, 
cathepsin B release, and impaired glycocalyx 
thickness,112 thus further contributing to the endothelial 
cell dysfunction, enhanced susceptibility to cardiovascular 
injury and thrombotic events, a common complication in 
severe COVID-19 patients.

In fact, thrombotic events are now recognized as 
a common feature in COVID-19 patients, and COVID-19 
has recently been suggested to be a thrombotic viral fever.113 

Obese patients are prone to thrombotic events for many 
different reasons,113 and COVID-19 may contribute even 
further to this complication. The imbalance of the ACE/ 
ACE2 system caused by internalization of ACE2 after bind-
ing to virus S protein causes a switch towards pro-thrombotic 
activity by decreasing Ang-(1-7)-Mas axis (antithrombotic) 
and increasing angiotensin II (prothrombotic). This 

mechanism may be of central pathogenic relevance explain-
ing the poor outcome of obese patients with COVID-19.113

In summary, there are many different ways by which 
low-grade inflammation caused by metabolic changes in 
obesity may contribute to the worse prognosis of obese 
patients infected by SARS-CoV-2, in a combination of 
factors and mechanisms leading to a subversion of the 
defensive responses of the organism against the virus.
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