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Background: Lead poisoning causes an oxidative stress response – a key

“bridge” connecting various pathways – in the human body. Oxidative

stress usually implies an imbalance between pro-oxidants and antioxidants.

Moreover, Nrf2, Keap1, and TXNIP proteins play an essential role in oxidative

stress. Some studies showed that pea peptides could alleviate the oxidative

stress response. However, the effect and mechanism of pea peptide on

oxidative stress response induced by lead in PC12 cells has not been reported.

Aim: Investigating the effect and mechanism of pea peptides in alleviating

oxidative damage in PC12 cells induced by lead.

Methods: In this study, cell viability was measured by CCK8 (Cell Counting Kit-

8). Superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione

reductase (GR), glutathione peroxidase (GPx), reactive oxygen species (ROS),

and lipid peroxidation (MDA) were measured using the corresponding

Biochemical kits. The Keap1, Nrf2, and TXNIP protein expressions were tested

using Western blot.

Results: Pea peptides PP3, PP4, and PP6 could reverse the decrease of cell

viability caused by lead exposure (P < 0.05), the elevation of ROS and MDA

caused by lead exposure, and the decrease of CAT, SOD, GR, GPx, and

GSH/GSSG caused by lead exposure (P < 0.05). Moreover, PP3, PP4, and PP6

could reduce the elevated expression of Keap1 and TXNIP caused by lead

exposure; and increase the expression of Nrf2 (P < 0.05).

Conclusion: PP3, PP4, and PP6 can alleviate lead-induced oxidative stress

damage in PC12 cells, and the Nrf2/Keap1/TXNIP signaling pathway may play

an essential role in this process.
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GRAPHICAL ABSTRACT

This figure illustrates the mechanism of action of PP3, PP4, and PP6 in mitigating oxidative stress due to lead exposure. When PC12 cells are
exposed to lead, large amounts of ROS are produced, leading to oxidative stress.
(1) The intracellular antioxidant system is inhibited, and large lipid peroxides are produced.
(2) The intracellular expression level of Keap1 is increasedand the expression level of Nrf2 is decreased and translocated to the nucleus by
dissociating from Keap1 in the cytoplasm.
(3) The intracellular level of TXNIP is increased and translocated from the nucleus to translocate to the cytoplasm and mitochondria to bind to
TRX and inhibit the antioxidant system of the organism.
(4) Pre-incubation with PP3, PP4 and PP6 reversed this phenomenon.

Introduction

According to the World Health Organization, lead
poisoning remains a major environmental health threat and a
continuing source of health disparities. It has been defined as
one of the ten chemicals addressing major public health issues.
It is well known that lead exposure during early childhood
can damage the central nervous system and lead to various
cognitive problems such as mental disorders, attention deficit
and hyperactivity disorder (ADHD), and low IQ (1). In Asia,
the Middle East, and elsewhere, lead levels in seafood and
meat products usually exceed the standard set by the European
Commission. Lead can enter and accumulate in the body
through the digestive tract, respiratory tract and skin contact.
When it accumulates to a certain level, it can lead to lead
poisoning (2).

Lead poisoning causes oxidative stress in the body, which
has been reported as one of its potential mechanisms (3).
Oxidative stress is an imbalanced state between oxidative
and antioxidant actions in the body. It promotes oxidation

process and leads to inflammatory infiltration of neutrophils and
increased secretion of proteases, resulting in the production of
large amounts of oxidative intermediates (4). The antioxidant
system in the body consists of antioxidant enzymes and
non-enzymatic antioxidants. The antioxidant enzymes include
superoxide dismutase (SOD), catalase (CAT), glutathione
reductase (GR), and glutathione peroxidase (GPx). Non-
enzymatic antioxidants consist of vitamin C, vitamin E, and
carotenoids (5). Many epidemiological and experimental studies
demonstrated that lead could induce oxidative stress. Oxidative
stress caused by lead exposure may lead to the development
of hypertension and cardiovascular disease (6). Meanwhile, it
could also affect the hematological system through oxidative
stress-induced erythrocyte damage (7).

The NRF2-KEAP1 signaling pathway is a significant
regulator of the antioxidant response to oxidative stress.
Lead exposure aggravates oxidative stress by activating the
Nrf2/Keap1 pathway (2). Kelch-like ECH-associated protein 1
(Keap1) is an essential chaperone for E3 ubiquitin ligase, and
Nrf2 signaling plays a crucial role in regulating the cellular
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TABLE 1 The biological activity, water solubility, toxicity and their functions of polypeptides.

NO. Sequence Functions Static charge Activity score Toxicology Water soluble

PP1 EFEGMTFLL Anti-tumor −2 0.639 Non-Toxin Poor

PP2 KGQTPLFPR Antioxidant +1 0.718 Non-Toxin Good

PP3 KYSSPIHIW Antibacterial, Antioxidant +1.1 0.626 Non-Toxin Poor

PP4 KKADLYNPR Antibacterial, Antioxidant +2 0.466 Non-Toxin Good

PP5 EHYDSEAILF Antibacterial, Antioxidant −2.9 0.407 Non-Toxin Good

PP6 KYGPTPVRDGFK Antioxidant +2 0.451 Non-Toxin Good

defense and anti-inflammatory responses to oxidative stress
(8). Thioredoxin-interacting protein (TXNIP) is endogenous
thioredoxin (TRX) repressor protein widely expressed in vivo.
In cells, thioredoxin-interacting protein is the only protein
in the α-arrestin family that can bind to TRX. Cysteine 63
and cysteine 247 in TXNIP form disulfide bonds with the
hydrophobic group of the active site of reduced TRX, thereby
inhibiting the antioxidant function of TRX and contributing
to ROS accumulation (9). It has been found that the effect
of TXNIP on TRX/ROS is blocked by the p38 MAPK
signaling pathway inhibitor SB03580, suggesting that TXNIP
is involved in the regulation of intracellular ROS by p38
MAPK (10).

Proteins extracted from pea have several biological
functions. For example, the sticky soluble polysaccharides in
peas can improve glucose tolerance, reduce blood lipid, and
increase the secretion of ileal bile acid (11). Pea protein reduces
blood glucose in streptozotocin (STZ) induced diabetic mice
effectively (12) and hydrolyzate can lower blood pressure in
hypertensive rats (13). Moreover, pea seed protein showed
anti-inflammatory effects in a mouse model of colitis (14).
It was reported that the protein isolated from mung beans
exhibited several antioxidant activities (15).

However, the alleviating effects of pea peptides on oxidative
stress injury induced by lead in PC12 cells have not been
explored clearly. Therefore, this study aimed to (1) investigate
whether pea peptides could alleviate the oxidative stress
damage caused by lead in PC12 and (2) the role of the
Keap1/Nrf2/TXNIP signaling pathway in this process.

Materials and methods

Materials

High-glucose Dulbecco’s modified Eagle’s medium
(DMEM), fetal bovine serum (FBS), ROS assay kits, superoxide
dismutase activity (SOD) assay kits, reduced and oxidized
glutathione (GSH and GSSG) assay kit, and malondialdehyde
(MDA) assay kit were purchased from Solarbio (Beijing,
China). The activities of catalase (CAT), glutathione reductase
(GR), and glutathione peroxidase (GPx) were detected

using the corresponding test kits (Beyotime Biotechnology,
Nanjing, China). Primary antibodies against β-actin, Keap1,
TXNIP, and Nrf2 were purchased from Solarbio (Beijing,
China). Conjugated anti-rabbit and anti-mouse antibodies
were purchased from Proteintech (Wuhan, China). Unless
otherwise stated, all other chemicals were of analytical grade
and purchased from Solarbio (Beijing, China) and Beyotime
(Shanghai, China).

Table 1 shows the sequences and related information of the
six pea peptides. All peptides used in this study were synthesized
by GL Biochem Ltd. (Shanghai, China), and their purity was
greater than 80%.

Cell culture and treatment

Rat pheochromocytoma cell line PC12 cells were obtained
from the Animal Immunology Laboratory, Henan Provincial
Academy of Agricultural Sciences (Zhengzhou, China).
The cells were cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM), supplemented with 10% (v/v) heat-
inactivated fetal bovine serum (FBS) at 37◦C in a 5% CO2

incubator. Logarithmic growth phase cells were taken for
subsequent experiments.

To determine whether pea peptides can have a protective
effect against lead injury, this study followed the protocol of
Cheng et al. (16) and used pea peptides preincubated for 4 h
prior to lead exposure. First, PC12 cells at the logarithmic
growth stage were pre-incubated in 6-well plates for 24 h. Then
the medium was replaced with fresh medium with or without
peptides for 4 h. Finally, the medium was replaced with fresh
medium with or without lead for 24 h for subsequent assays.
This experiment contains six groups: the control group, Pb
group, PP3 + Pb group, PP4 + Pb group, PP6 + Pb group
and Vc + Pb group.

Measurement of reactive oxygen
species level

Reactive oxygen species level was measured according
to the method of Li et al. (17). Briefly, DCFH-DA was
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used to co-incubate the cells with different treatments for
30 min. The cells were then washed off without residual
DCFH-DA using PBS. The level of ROS was detected
using the Multi-Mode Detection Platform (Spectar Max i3)
with an excitation wavelength of 488 nm and an emission
wavelength of 525 nm.

Measurement of malondialdehyde
level

Malondialdehyde was measured by the lipid preoxidation
MDA kit. In short, the lysed cells were reacted with
thiobarbituric acid at 100◦C for 15 min. MDA levels were then
detected using a Multi-Mode Detection Platform (Spectar Max
i3) at 532 nm. MDA was calculated using a standard curve
according to the manufacturer’s data sheet.

Measurement of GSSG and glutathione
level

Glutathione and GSSG was measured according to the
method of Xu et al. (18). The whole process contains following
steps. First, this experiment produced total glutathione content
by reacting the sample with the assay working solution at 25◦C
for 5 min. After this, NDAPH was added and the absorbance
value was detected at 412 nm every 5 min using a microplate
reader and maintaining the temperature at 25◦C. For the GSSG
assay, the sample was reacted with GSH scavenging reagent at
25◦C for 60 min, and then proceeded as above.

Measurement of antioxidant enzymes

Measurement of catalase activity
Catalase activity was measured according to the method

of Zhao et al. (19). Briefly, the lysed cells were mixed
with phosphate buffer and hydrogen peroxide. Detection was
performed in kinetic form using the Multi-Mode Detection
Platform (Spectar Max i3) with an absorbance of 240 nm. The
CAT activity was calculated according to the standard curve
provided by the reagent vendor.

Measurement of superoxide dismutase activity
Total SOD activity was measured according to the method

of Chen et al. (20). In short, the collected samples were mixed
with the SOD assay working solution and then added to the
starter working solution. After incubation at 37◦C for 30 min,
the SOD activity was measured using Multi-Mode Detection
Platform (Spectar Max i3) with an absorbance of 450 nm. SOD
activity was calculated according to the formula provided by
the reagent vendor.

Measurement of glutathione reductase and
glutathione peroxidase activity

The intracellular GR and GPx levels were detected separately
according to the method of Guo and Zhang et al. (21, 22).
In short, for GR, the sample was mixed with GSSG solution
and NADPH solution, DTNB solution was added, and the
absorbance value at 412 nm was detected using a microplate
reader and kept at 25◦C. For GPx, the sample was mixed with
GPx assay working solution and hydrogen peroxide reagent
solution, and the absorbance value at 340 nm was detected using
a microplate reader at 25◦C.

Expression of Keap1/Nrf2/TXNIP
pathway proteins

PC12 cells were processed according to different groups
and the method to Western blotting analysis follows procedures
used in Rahman et al. (23). In a nutshell, the PC12 cells were
washed 3 times with pre-chilled PBS. The 200 µl of RIPA lysate
containing protease inhibitor was added to each well. All wells
were shaken on ice for 30 min, and collected and centrifuged
at 12,000 rpm for 15 min, and finally, the concentration of the
collected protein supernatant was assayed with the BCA protein
concentration assay kit.

Total protein (40 µg) of each sample was separated
by electrophoresis using 10% sodium dodecyl sulfate-
polyacrylamide (SDS-PAGE) and then transferred onto
polyvinylidene fluoride (PVDF) membrane using the wet
transfer method. Afterward, the membranes were closed
for 2 h at room temperature using 5% skim milk. Next,
the membranes were incubated with the desired primary
antibody overnight at 4◦C in a shaker. The membranes
were incubated with the corresponding secondary antibody
with horseradish peroxidase at room temperature for
1 h. Finally, the proteins on the PVDF membranes were
visualized using ECL luminescence reagents. The images
of the detected bands were analyzed using Fusion FX6-
XT, and the density of the protein bands was analyzed
using Image-Pro Plus 6.0 software. The intensities of the
bands were compared to that of β-actin (internal control).
To ensure reproducibility, experiments were performed at
least in triplicate.

Statistical analysis

All presented data are the mean results of at least
three independent measurements. Data are expressed
as mean ± standard deviation (SD) of the independent
experiments. When it was necessary to compare three
or more groups of data, a one-way ANOVA and
LSD test was used. Statistical analysis of the data was
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FIGURE 1

Effect of different treatments on cell viability of PC12 cells. (A) Effects of lead on cell viability in PC12 cells. PC12 cells incubated with lead
(0–160 µM) for 24 h. (B–D) Effects of PP3, PP4, and PP6 cell viability in PC12 cells. PC12 cells were incubated with (B) PP3, (C) PP4, and (D) PP6
for 4h. (E) Effects of PP1-6 on cell viability in lead-exposure PC12 cells. PC12 cells were pre-incubated with PP1-6 (200 µM) for 4 h, then treated
with 10 µM lead for 24 h. The valued of the bars indicates the means ± SD (n = at least 3). Different superscript letters indicate differences
(P < 0.05).

performed using the SPSS 20 statistical package (IBM
Corporation, Armonk, NY, United States). The statistical
results were considered statistically significant when
P < 0.05.

Results and discussion

Preventive effects of pea peptides on
cell viability

Lead exposure is known to cause oxidative stress, leading
to apoptosis or necrosis of PC12 cells (24). In our preliminary
experiments, the damage of lead on PC12 cells was first assessed.
CCK-8 results showed that 10 µM of lead caused a significant
decrease (P < 0.05) in cell viability compared to the control
group, indicating that lead caused severe damage to PC12 cells
at this concentration. Lead at 40 µM caused a further decrease
(P < 0.05) in cell viability compared to lead at 10 µM. Cell

viability was further reduced when the concentration of lead is
160 µM (P < 0.05). It indicated that lead exposure leads to a
dose-dependent decrease in cell viability (Figure 1A). Therefore,
the lowest damage concentration of 10 µM was selected for the
next steps of the experiment.

To determine whether pea peptide causes harm to PC12
cells, this study used cells incubated for 4 h with different
concentrations of pea peptide to observe the changes in cell
viability. The results from Figures 1B–D showed that 12.5–
200 µM pea peptide did not cause damage to the cells (P< 0.05).
Therefore, 200 µM pea peptide was selected for the next
experiment in this study. Besides, this study pre-incubated the
pea peptide for 4 h and then incubated with lead for 24 h to
test whether the pea peptide had a protective effect on the lead-
exposed cells. As shown in Figure 1E, pre-incubation with PP3,
PP4, and PP6 before lead treatment effectively increased cell
viability and restored it to the control level (P < 0.05). Other
studies have reported that enzymatic protein hydrolyzates from
yellow pea seeds can enhance the reduction in cell viability
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FIGURE 2

Effects of PP3, PP4, PP6 and VC on intracellular ROS in PC12 cells. (A) PC12 cells incubated with PP3, PP4, PP6, and VC for 4 h. (B) PC12 cells
pre-incubated with PP3, PP4, PP6, and VC for 4 h, then treated with lead for 24 h. The valued of the bars indicates the means ± SD (n = at least
3). Different superscript letters indicate differences (P < 0.05).

caused by high sugar, which could be an effect caused by their
rich biological activity (25).

Effects of pea peptides on reactive
oxygen species level

Reactive oxygen species have an essential role in lead-
induced neurotoxicity, and their elevated levels indicate that
cells are subjected to oxidative stress. Ascorbic acid (VC) has a
powerful antioxidant effect. Based on the relevant literature, this
study chose 80 µM of VC as the standard for the control group
to evaluate the antioxidant properties of pea peptides (26).

This study examined the effects of three pea peptides
on reactive oxygen species in PC12 cells (Figure 2A). This
study found that 200 µM of PP3, PP4, and PP6 did not
increase intracellular ROS levels compared to the control, and
the results of VC were consistent with them (P < 0.05).
Then, this study examined the effect of pretreatment with pea
peptides for 4 h prior to lead exposure on ROS. As Figure 2B
shows, the lead treatment significantly increased ROS in the
cells compared to the control group. PP3, PP4, PP6, and VC
preincubation significantly decreased ROS generated by lead
exposure compared to the lead group (P< 0.05). In one study on
the treatment of arsenic poisoned mice, ROS levels in the uterus
of mice treated with pea protein were significantly reduced,
demonstrating that it inhibited oxidative stress caused by
arsenic poisoning (27). This study also illustrated that hydrogen
peroxide and lipopolysaccharide-induced ROS in RAW264.7
cells increased significantly and that treatment with wood pea
extract reversed this result (28).

Effects of pea peptides on antioxidant
system

Several enzymes, including SOD, CAT, GR, and GPx, play a
crucial role in scavenging reactive oxygen species and reducing
oxidative damage in the antioxidant system. GPx refers to
an enzyme that uses GSH as a reaction substrate to reduce
hydrogen peroxide to water or the corresponding alcohols.
SOD, CAT, and GPx form an essential anti-redox system in the
organism, preventing the cell membrane and other biological
tissue functions from being disrupted by oxidative stress (29).
GR is one of the essential enzymes in the human redox system.
It is the significant flavins that maintain the prototype GSH
content in cells. Glutathione is a tripeptide bound by glutamate,
cysteine, and glycine, with antioxidant effects and integrative
detoxification. Also, the production of lipid oxidation products
is one of the main events of oxidative cell damage and can be
assessed by the MDA level.

This study examined the effects of three pea peptides
and VC on SOD, CAT, GR, GPx and MDA of PC12 cells
(Figures 3A–E). Compared with the control group, the three
pea peptides and VC did not cause significant effects on these
antioxidant enzymes and MDA in PC12 cells (P < 0.05),
indicating that the pea peptides and VC did not cause oxidative
damage to PC12 cells.

The effect of preincubation with three pea peptides and
VC before lead treatment on the above indices was further
tested (Figures 3F–J). Compared with the control group, the
lead treatment caused a significant decrease in the activities of
SOD, CAT, GR, and GPx (P < 0.05). It increased the MDA
content, indicating that lead treatment led to oxidative damage
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FIGURE 3

Effect of PP3, PP4, PP6, and VC on Oxidative stress indicators in PC12 cells. (A–E) PC12 cells incubated with PP3, PP4, PP6, and VC for 4 h. (F–J)
PC12 cells were pre-incubated with PP3, PP4, PP6, and VC for 4 h, then treated with lead for 24 h. The results of T-SOD are shown in panels
(A,F). The results of CAT are shown in panels (B,G). The results of GR are shown in panels (C,H). The results of GPx are shown in panels (D,I). The
results of MDA are shown in panels (E,J). The valued of the bars indicates the means ± SD (n = at least 3). Different superscript letters indicate
differences (P < 0.05).

in PC12 cells. Lead treatment was reported to cause oxidative
damage to PC12 cells, It decreases the activity of antioxidant
enzymes and increases the production of lipid peroxides (30).
PP3, PP6, and VC significantly increased the SOD activity
compared to the lead group, but PP4 did not (Figure 3F);
however, none of these pretreatments restored SOD activity to
normal levels (P < 0.05). Compared with the lead group, PP3,
PP4, PP6, and VC all significantly increased CAT activity, with
PP3 having a better effect than PP6 and PP6 having a better
effect than PP4 and VC (Figure 3G); nonetheless, only PP3
returned to the normal level (P < 0.05). The results of the GR
assay are shown in Figure 3H. Compared with the lead group,
PP3, PP4, PP6, and VC all significantly increased GR viability;
compared with the control group, PP4 significantly increased
GR viability, and both PP3 and PP6 restored GR viability to the
level of the control group (P < 0.05). As shown in Figure 3I,
PP3, PP4, PP6, and VC significantly increased GPx activity
compared to the lead group; interestingly, GPx levels in all the
experimental groups were significantly increased compared to
the control group, and the effect of VC and PP6 was better
than that of PP3 and PP4 (P < 0.05). The results of the MDA
assay are shown in Figure 3J. Compared with the lead group,
PP3, PP4, PP6, and VC significantly reduced the rise in MDA
caused by lead: the corresponding date in all groups returned to
normal levels (P < 0.05). Many bioactive peptides isolated from
plants have antioxidant activity. For example, peptides isolated
and identified from wheat, lupine, and peas can effectively
scavenge superoxide anions, hydroxyl radicals and inhibit lipid
peroxidation (31). Pea protein hydrolyzates prepared with
different proteases demonstrated excellent antioxidant activity

under a liposome model system (32). Pea peptides have also
been reported to reduce oxidative stress caused by lead exposure
and be involved in reducing and scavenging excess ROS in
cells (33).

Effects of pea peptides on
glutathione/GSSG

The redox status of cells can be reflected by the ratio of
GSH/GSSG. This study examined the effects of pea peptides
and VC on GSH/GSSG in PC12 cells (Figure 4A). The three
pea peptides and VC did not significantly decrease GSH/GSSG
(P < 0.05), demonstrating that they did not affect the normal
glutathione redox cycle in PC12 cells. Then, the effects of pea
peptides and VC preincubation on GSH/GSSG were further
examined (Figure 4B). In this study, lead treatment could
significantly decrease the level of GSH/GSSG, demonstrating
its effect on the glutathione redox cycle. Lead treatment has
been shown to decrease intracellular GSH levels, which is
consistent with our findings (34). When preincubated with
pea peptides and VC for lead treatment, PP3, PP4, PP6,
and VC significantly increased GSH/GSSG and returned to
normal levels compared to the lead group (P < 0.05). It has
been reported that tea catechins can dramatically reverse the
decrease in GSH/GSSG ratio caused by lead exposure (35).
Cytidylcholine significantly increased the reduced glutathione
in PC12 cells to antagonize the oxidative stress produced by lead
exposure (36).
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FIGURE 4

Effect of PP3, PP4, PP6, and VC on GSH/GSSG in PC12 cells. (A) PC12 cells were incubated with PP3, PP4, PP6, and VC for 4 h. (B) PC12 cells
were pre-incubated with PP3, PP4, PP6, and VC for 4 h, then treated with lead for 24 h. The valued of the bars indicates the means ± SD (n = at
least 3). Different superscript letters indicate differences (P < 0.05).

FIGURE 5

Western blotting analysis of the effect of PP3, PP4, PP6, and VC on Keap1, Nrf2, and TXNIP expression in lead-exposed PC12 cells. PC12 cells
were pre-incubated with PP3, PP4, PP6, and VC for 4 h, then treated with lead for 24 h. (A) The density of Keap1, Nrf2, and TXNIP was
determined. (B) Represents data on the change in Keap1 protein expression relative to β-actin in different groups; (C) represents data on the
change in Nrf2 protein expression relative to β-actin in different groups; (D) represents data on the change in TXNIP protein expression relative
to β-actin in different groups. The valued of the bars indicates the means ± SD (n = at least 3). Different superscript letters indicate differences
(P < 0.05).

The influence of pea peptides on
Keap1/Nrf2/TXNIP signal pathway

Nuclear factor E2-related factor 2 (Nrf2) is an integral part
of the cellular self-defense system against exogenous stimuli and

is sensitive to oxidative stress. When the organism is exposed
to oxidative stress, Nrf2 dissociates from Keap1 in the cytosol
and enters the nucleus. When the organism produces excessive
ROS, TXNIP enters the cytoplasm and mitochondria from
the nucleus to bind with thioredoxin (TRX), which inhibits
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the antioxidant capacity of TRX and further leads to the
accumulation of ROS (37).

The western blotting results for Keap1, Nrf2, and TXNIP
are shown in Figure 5A. As shown in Figure 5B, lead exposure
significantly increased the expression of Keap1. Surprisingly, all
pea peptides and VC significantly decreased the expression of
Keap1 compared to the lead group. Among them, PP4 brought
its level back to normal and was better than PP3, PP6, and VC
(P < 0.05). As shown in Figure 5C, lead exposure significantly
decreased the expression of Nrf2. Moreover, all pea peptides and
VC significantly increased the decrease caused by lead exposure
and returned to normal levels; the effect of PP3 and PP4 was
better than PP6 and VC (P < 0.05). As shown in Figure 5D,
lead exposure significantly increased the expression of TXNIP
(P < 0.05). However, all pea peptides and VC significantly
reduced the elevated levels of TXNIP due to lead exposure;
among them, only PP6 returned to normal levels, and its effect
was better than that of PP3, PP4, and VC (P < 0.05).

Many studies report the use of various biological materials
like rosemary, ascorbic acid, melatonin and fenobutramide
for reducing oxidative stress. Many studies report the use
of various biological materials like rosemary, ascorbic acid,
melatonin, and fenobutramide for reducing oxidative stress.
Evidence from Lv et al’s study showed that lead exposure
increases the protein and mRNA levels of Keap1 in HepG2
cells (38). Use of rosemary and ascorbic acid significantly
decreased the protein and mRNA levels of Keap1 in lead-
exposed cells and protected them from oxidative stress damage,
probably because of the regulatory role of the Nrf2-Keap1
antioxidant pathway (38). It has been found that a specific
dose of melatonin can significantly enhance the expression of
Nrf2, thus alleviating the oxidative stress damage induced by
ethanol in BV2 cells during development (39). The antitumor
effect of fenobutramide was reported to upregulate TXNIP
levels by exacerbating oxidative stress (10). It has also been
shown that oxidative stress and inflammasome activation are
linked through thioredoxin-interacting proteins (40). Our study
illustrates that pea peptides enhance the antioxidant capacity
by increasing Nrf2 expression and decreasing Keap1 expression,
effectively blocking TXNIP expression and binding to TRX.

Conclusion

Our results indicate that lead exposure could significantly
reduce the viability of PC12 cells, increase ROS and MDA level,
decrease the activity of SOD, CAT, GPx, GR, and GSH/GSSG,
up-regulate the protein of Keap1 and TXNIP and down-
regulated Nrf2 protein expression in PC12 cells. Pea peptides
could alleviate lead-induced oxidative stress damage in PC12
cells, and Keap1, Nrf2 and TXNIP play an essential role.
The pea peptides could protect PC12 cells from lead-induced
oxidative stress damage through the Keap1/Nrf2/TXNIP
signaling pathway. Our study would provide a new perspective
for the in-depth research of lead neurotoxicity.
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