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Hypoxia and ischemia cause inflammatory injury and critically participate in the
pathogenesis of various diseases in various organs. However, the protective strategies
against hypoxic and ischemic insults are very limited in clinical settings up to date. It is of
utmost importance to improve our understanding of hypoxic/ischemic (H/I) inflammation
and find novel therapies for better prevention/treatment of H/I injury. Recent studies
provide strong evidence that the expression of microRNAs (miRNAs), which regulate
gene expression and affect H/I inflammation through post-transcriptional mechanisms,
are differentially altered in response to H/I stress, while δ-opioid receptors (DOR) play a
protective role against H/I insults in different organs, including both H/I-sensitive organs
(e.g., brain, kidney, and heart) and H/I-insensitive organs (e.g., liver and muscle). Indeed,
many studies have demonstrated the crucial role of the DOR-mediated cyto-protection
against H/I injury by several molecular pathways, including NLRP3 inflammasome
modulated by miRNAs. In this review, we summarize our recent studies along with those
of others worldwide, and compare the effects of DOR on H/I expression of miRNAs in
H/I-sensitive and -insensitive organs. The alternation in miRNA expression profiles upon
DOR activation and the potential impact on inflammatory injury in different organs under
normoxic and hypoxic conditions are discussed at molecular and cellular levels. More in-
depth investigations into this field may provide novel clues for new protective strategies
against H/I inflammation in different types of organs.

Keywords: MicroRNAs, hypoxic/ischemic inflammation, δ-opioid receptor (DOR), organs’ differential responses,
NLRP3 inflammasome

INTRODUCTION

MicroRNAs (miRNAs) are a class of 21∼25-ribonucleotide single-strand non-coding RNA
molecules which is endogenously expressed in eukaryote cells (Guo et al., 2014). It has been well
recognized that miRNAs play an important role in the post-transcriptional regulation of genes
by targeting mRNA molecules. Through base-pairing with the 3′untranslated regions (3′UTRs),
miRNAs modulate direct cleavage and/or translational repression of target mRNAs (Bartel, 2009),
thus regulating wide spectrum of processes in physiological and pathological conditions. Their
regulatory networks are very complex, partially because miRNA expression varies dramatically in
different tissues in response to different cell stimulations.
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Hypoxic/ischemic injury is a process in which blood flow
cessation and oxygen deprivation occur in the body, organs,
or cells. Metabolic waste products are accumulated due to the
starvation of oxygen and nutrients, leading to profound tissue
dysfunction and damage (Zhao et al., 2018). More specifically,
hypoxia is a state of low oxygen supply, resulted from a decrease
in partial pressure of oxygen, inadequate oxygen transport, or
the inability of the tissues/organs to uptake oxygen from the
blood. In contrast, ischemia is defined as inadequate blood
flow to the tissues, resulting in the deprivation of oxygen
and glucose, as well as other substances in the blood (Chao
and Xia, 2010; Yang et al., 2015). In this review, the term
of “H/I injury” is used to describe the general influences of
hypoxic and/or ischemic insult, because hypoxia and ischemia
processes often occur one after another. A wide range of
pathophysiological processes have been reported to be associated
with H/I injury, including ATP depletion, calcium overload,
mitochondrial dysfunction, oxidative stress, and etc. (Eltzschig
and Eckle, 2011; Chen et al., 2019). More recently, emerging
evidence suggests that H/I inflammation, a quick pathological
response to oxygen/blood flow depletion, has a major impact
on H/I injury through pro-inflammatory cytokines and their
signaling pathways (Chen et al., 2020c; Sikora et al., 2021;
Troscher et al., 2021).

Because of energy imbalance, H/I insult induces pro-
inflammatory events including microglia activation, cytokines
production, and immune cell development via various biological
processes such as apoptosis and oxidative reaction (Chen et al.,
2020c). Different organs may suffer from H/I inflammation
in different ways, thus leading to various H/I-related diseases.
H/I neuroinflammation induces brain injury in ischemic stroke
and post-stroke epilepsy (Li X. et al., 2020; Troscher et al.,
2021; Xue Y. et al., 2021), while H/I inflammation leads to
other pathophysiological events in peripheral organs, including
heart failure, acute kidney injury, and hepatocellular damages
(Nangaku and Eckardt, 2007; Klune and Tsung, 2010; Frohlich
et al., 2013; Yang et al., 2015). On the other side, some beneficial
reaction may go through the regulation of inflammatory events.
For example, long term limb remote ischemic conditioning could
decrease blood pressure via inflammation regulation (Gao et al.,
2021). Studies have demonstrated the vital roles of miRNAs
in the regulation of gene expression under H/I condition, not
only in H/I-sensitive organs such as kidney, heart, and brain,
but also in the H/I-insensitive organs such as liver and muscle
(Nallamshetty et al., 2013; Bertero et al., 2017). H/I inflammation
is mediated, at least partially, by the miRNA-induced repression
of gene expressions. The alternations of miRNA expression in
response to H/I injury differ widely in different organs due
to their differential sensitivities to the reduction of oxygen
and blood flow. Numerous studies have shown the changes
of miRNA expression profiles along with the potential targets
and inflammatory pathways upon H/I insult in specific organs
(Tables 1, 2). However, few studies have compared the common
changes and the differences of miRNA profiles between H/I-
sensitive and -insensitive organs.

Opioid receptors belong to the large family of seven-
transmembrane G protein-coupled receptors with three major

sub-types known as MOR, KOR, and DOR (Xia, 2015). It is well
demonstrated that DOR is protective against hypoxic, ischemic,
and excitotoxic insults. There exists a differential distribution
of DOR in different parts of the brain with a higher density in
the cortex, striatum and dorsal root ganglion (Xia, 2015; Tan
et al., 2016; Li X. et al., 2020; Gao et al., 2021). DOR is present
not only in the nervous system but also in other organs such
as the heart, lungs, liver, and gastrointestinal and reproductive
tracts (Feng et al., 2012). Our recent studies as well as those
of others present strong evidence of the DOR-mediated cyto-
protection in different organs, including brain, kidney, heart,
and liver (Zhang et al., 2000, 2002, 2006; Ma et al., 2005;
Chao et al., 2007, 2008, 2009, 2012; Kang et al., 2009; Chao
and Xia, 2010; Feng et al., 2011, 2012; He et al., 2013a; Luo
et al., 2019). Moreover, there is accumulating evidence that DOR
activation can achieve a protective role against H/I injury by
modulating miRNA expression in multiple organs (Yang et al.,
2012; He et al., 2013b; Zhi et al., 2016, 2017), especially in
the process of neuroinflammation (Chen et al., 2020c). It is
therefore possible for DOR signaling, directly or indirectly, to
protect organs against H/I inflammation by targeting specific
miRNA molecules.

In this review, we highlight some of the recent updates about
the effects of H/I and DOR activation on miRNA expression in
the current literature, along with our recent work in this field.
In particular, we intend to summarize and compare differential
regulation of miRNA expression in different organs and discuss
potential clinical significances in terms of specific DOR treatment
against H/I inflammation.

EFFECTS OF HYPOXIA/ISCHEMIA ON
MICRORNAs IN HYPOXIA-SENSITIVE
ORGANS

Kidney
Although blood flow to the kidney accounts for 20% of the
cardiac output, the kidney is vulnerable to H/I injury because
of the renal vascular anatomy and the high energy consumption
of renal tubular epithelial cells (Bracken et al., 2006). H/I-
induced inflammatory processes exert a significant role in the
development of nephrotic diseases, such as acute kidney injury,
glomerulonephritis, and chronic allograft nephropathy (Wang Z.
et al., 2020; Nangaku and Eckardt, 2007; Heyman et al., 2008;
Chen et al., 2020b). Moreover, the ischemia–reperfusion process
during renal transplantation has a profound influence on both
short- and long-term recovery outcome of a transplanted kidney
(Kosieradzki et al., 2003; Kosieradzki and Rowinski, 2008; Chen
et al., 2019). Several studies have suggested that H/I condition,
especially a prolonged stress, could strongly influence the miRNA
expression profiles in kidneys (Godwin et al., 2010; Shapiro et al.,
2011). A number of altered miRNAs have been discovered during
H/I kidney injury with identified target genes, which regulate cell
inflammatory phenotypes (Table 1). Recent studies in human
and rodent models also suggested a crosstalk among different
renal cell types after H/I insult. For example, H/I-induced
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TABLE 1 | H/I-induced changes of miRNAs in the kidney with defined target genes.

H/I regulated miRNAs Species Target genes Functions References

Up-regulated by H/I

miR-21 Mouse CBS, CSE Promote macrophage M1 inflammatory phenotype Pushpakumar et al., 2021

miR-23a Mouse A20 Activate macrophages and promote tubulointerstitial inflammation Li Z. et al., 2019

miR-24 Human, mouse S1PR1, H2A.X, HO-1 Promote infiltration of inflammatory cells Lorenzen et al., 2014

miR-155 Rat FoxO3a Induce pro-inflammatory cytokines Wu et al., 2016

miR-214 Mouse mt-Nd6, mt-Nd4l Disrupt mitochondrial oxidative phosphorylation Bai et al., 2019

miR-351-5p Rat, mouse MAPK13, SIRT6 Promote oxidative stress and inflammation Hu et al., 2018

miR-374b-5p Mouse Socs1 Promote M1 macrophage activation and inflammation Ding et al., 2020

miR-494 Human, mouse HtrA3, ATF3 Enhance renal inflammation Lan et al., 2012; Gong et al., 2021

miR-1897-3p Mouse Nucks1 Modulate inflammation and renal injury Bellinger et al., 2014

Down-regulated by H/I

miR-27a Rat TLR4 Inhibit inflammation in renal IRI Wang et al., 2019

miR-194 Human Rheb Suppress oxidative stress and inflammation Shen et al., 2018

miR-195-5p Rat VEGFA Inhibit inflammatory cytokines Xu et al., 2020a

miR-449b-5p Rat HMGB1, MMP2 Reduce renal inflammation and apoptosis Xu et al., 2020b

TABLE 2 | H/I-induced changes of miRNAs in the heart with defined target genes.

H/I regulated
miRNAs

Species Target genes Functions References

Up-regulated by H/I

miR-22 Rat Sirt1, PGC1α Promote mitochondrial oxidative damage Du et al., 2016

miR-23a Rat CX43 Enhance mitophagy and myocardial I/R injury Wang L. et al., 2021

miR-30c-5p Rat Bach1, SIRT1 Regulate cardiac inflammation and NF-κB signaling Chen et al., 2020a; Sun et al., 2021

miR-181c-5p Rat PTPN4 Exacerbate myocardial I/R injury and NF-κB-mediated inflammation Wang S. et al., 2020

miR-184 Rat FBXO28 Promote myocardial inflammation and oxidative stress Zou et al., 2020

miR-199a-214 Mouse PPARδ Impair mitochondrial fatty acid oxidation el Azzouzi et al., 2013

miR-327 Rat RP105 Enhance inflammation and NF-κB signaling Yang et al., 2018

miR-346 Rat NFIB Promote myocardial inflammation and apoptosis Yang et al., 2020

miR-361 Mouse PHB1 Inhibit mitochondrial fission and apoptosis Wang K. et al., 2015

miR-665 Rat GLP1R Promote inflammatory response and impair mitochondrial respiratory
chain enzyme activity

Lin et al., 2019

Down-regulated by H/I

miR-30e Rat SOX9 Inhibit myocardial inflammation Cheng et al., 2021

miR-130a-5p Mouse HMGB2 Inhibit inflammatory injury and NF-κB signaling Li Y. et al., 2021

miR-138 Human PDK1 Promote mitochondrial respiration and inhibit glycolysis Zhu et al., 2017

miR-142-3p Porcine IRAK-1 Attenuate myocardiac inflammatory response Su et al., 2019

miR-147 Rat HIPK2 Inhibit myocardial inflammation and apoptosis Wu and Huang, 2020

miR-200a Human, mouse Keap1, β-catenin Reduce inflammation, ROS production and apoptosis Sun et al., 2016; Ma Y. et al., 2021

miR-204 Mouse Cotl1 Inhibit myocardial inflammation and oxidative stress Tan et al., 2020

miR-335 Rat MAP3K2 Inhibit myocardial inflammation and apoptosis Wang A. et al., 2021

miR-369 Rat TRPV3 Reduce hypoxia-induced apoptosis and inflammation Wang J. et al., 2021

miR-409-5p Rat USP7 Inhibit myocardial inflammation Xue Q. et al., 2021

miR-495 Mouse NLRP3 Inhibit NLRP3 inflammasome signaling Zhou et al., 2018

miR-499-5p Rat CnAa, CnAb Regulate mitochondrial dynamics Wang J. et al., 2011

miR-668-3p Rat SDF-1 Inhibit inflammation and oxidative stress Gao et al., 2020

miR-708 Rat HMGB1, ADAM17 Inhibit pro-inflammatory cytokine and NF-κB signaling Zhang et al., 2020c; Qu et al., 2021

miR-1278 Mouse IL-22, CXCL14 Inhibit myocardial inflammation Liu D. et al., 2021

upregulation of miR-21 and miR-374b-5p could promote renal
inflammation by activating M1 macrophage (Ding et al., 2020;
Pushpakumar et al., 2021). Renal tubular epithelial cells are
usually the initial site of renal injury, with activation of fibroblasts

or macrophage occurring later by exosome delivery of specific
miRNAs (Tan et al., 2016; Li Z. et al., 2019). Pro-inflammatory
cytokine production and tubulointerstitial inflammation induced
by miRNAs could eventually cause renal fibrosis (Table 1).
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Heart
Heart is a H/I-sensitive organ with active metabolism. H/I-
induced myocardial injury is closely associated with cardiac
disorders such as myocardial infarction and heart failure
(Dirksen et al., 2007; Cassavaugh and Lounsbury, 2011; Frohlich
et al., 2013). MicroRNAs have been demonstrated to orchestrate
many aspects in the development of heart diseases. Recent
research on miRNAs regarding myocardial inflammation has
drawn much attention from clinicians and scientists. Under
H/I condition, the mismatch between energy production and
consumption has profound impacts on mitochondrial function
and energy metabolism processes of cardiomyocytes (Table 2).
Pro-inflammatory miRNAs such as miR-22, miR-199a-214, miR-
361, and miR-665 are elevated (el Azzouzi et al., 2013; Wang K.
et al., 2015; Du et al., 2016; Lin et al., 2019), whereas anti-
inflammatory miRNAs such as miR-138 and miR-499-5p are
reduced (Wang J. et al., 2011; Zhu et al., 2017) to impair
normal mitochondrial function in myocardial cells. In addition,
abnormal expression of miR-30c-5p, miR-181c-5p, miR-327,
miR-130a-5p, and miR-708 upon H/I stimulation could regulate
myocardial inflammation through NF-κB signaling (Yang et al.,
2018; Chen et al., 2020a; Wang S. et al., 2020; Zhang et al., 2020c;
Li Y. et al., 2021; Qu et al., 2021; Sun et al., 2021; Table 2).
One of the key inflammatory mediators, NLRP3 inflammasome,
may also be a direct target of H/I-sensitive miRNAs. A recent
study in rodents identified that miR-495 ameliorated cardiac
microvascular endothelial cell injury and inflammatory reaction
by suppressing the NLRP3 inflammasome signaling pathway
(Zhou et al., 2018).

Brain
Hypoxic and/or ischemic injuries are well-documented entities
in the pathogenesis of cerebrovascular diseases such as stroke.
The effects of H/I on miRNAs in the brain have been widely
investigated in patients as well as animal ischemic models with
middle cerebral artery occlusion (MCAO). Our previous reviews
have summarized the regulation of brain miRNAs in response
to hypoxic and ischemic conditions (Yang et al., 2015) and their
impact on neuroinflammatory signaling pathways (Chen et al.,
2020c). Many studies have elucidated the possible mechanisms
and the potential biological processes of H/I-induced miRNA
expression changes. The neuroinflammation processes including
NLRP3 signaling, mitochondrial impairment, microglia
activation, inflammatory cytokines production, and potentially
neurodegeneration (Chen et al., 2017, 2020c). In general, up-
regulation of pro-inflammatory miRNAs and down-regulation
of anti-inflammatory miRNAs are often observed in H/I
brains (Table 3). The majority of dysregulated miRNAs in the
brain exposed to H/I insult displayed a reduction of miRNA
expression, especially after a long-term exposure. Similarly
with other H/I-sensitive organs, cerebral miRNAs can directly
influence inflammatory cytokines production by modulating
target genes. They can also affect NLRP3 inflammasome and
NF-κB signaling to modulate neuroinflammation. Moreover,
the abnormal expression of cerebral miRNAs, e.g., miR-186-5p,
miR-200b, miR-210, miR-449c-5p, miR-302a-3p, miR-424,

miR-665-3p, and let-7c-5p, can alter the activation of microglia,
the most important inflammatory cell type in the brain, and then
indirectly influence neuroinflammation, neuronal death and
neurodegeneration (Table 3).

EFFECTS OF HYPOXIA/ISCHEMIA ON
MICRORNAs IN HYPOXIA-INSENSITIVE
ORGANS

Liver
Although liver is regarded as one of the hypoxia-insensitive
organs, oxygen is also important for liver function maintenance.
The insufficiency or deprivation of oxygen and blood flow
in hepatic microenvironment due to respiratory/circulatory
disorders leads to hepatocellular damage. Indeed, hypoxia
activates multiple hypoxia mediators and in turn accelerate
or antagonize hepatic damage (Klune and Tsung, 2010; Lu
et al., 2016), such as fatty liver disease (Suzuki et al., 2014),
hepatocellular carcinoma (HCC) (Liu et al., 2015), and liver-stage
malaria (Ng et al., 2014).

Multiple studies have illustrated the H/I injury-induced
miRNA changes in liver inflammation, hepatocellular oxidative
stress and apoptosis. Meanwhile, altered miRNAs are closely
associated with hypoxia-induced HCC pathogenesis by
modulating HCC cell angiogenesis, viability and metastasis
(Table 4). For example, the hypoxia-sensitive miR-210, which
is regarded as the master orchestrator miRNA to H/I insults,
is significantly up-regulated in the liver. It mediates hypoxia-
induced liver inflammation and HCC cell metastasis through
targeting VMP1 (Ying et al., 2011; Song et al., 2014). In addition,
hypoxia elevated miR-370 expression and thus promoted
inflammation and hepatic histological damage by targeting
TGFBR2 (Li et al., 2015). In contrast, cyto-protective miRNAs
including miR-24-3p, miR-140-5p, miR-142-3p, miR-146a,
and miR-148a were down-regulated under H/I condition, and
thus impaired liver function by elevating pro-inflammatory
responses (Table 4).

Muscle
In comparison to other organs, muscles are relatively tolerant
to hypoxic and ischemic stress. Like other H/I-sensitive organs,
however, H/I-stimulated muscles also regulate several molecular
pathways to better adapt to hypoxic/ischemic environments
(Zhu et al., 2022). Recent studies have been devoted to
underpinning the mechanisms and pathways of miRNA
alternations upon ischemia–reperfusion injury, including
macrophage polarization, leukocyte infiltration, and pro-
inflammatory cytokine production in ischemic muscle (Table 4).
It is reported that miR-93 inhibits IRF9 and induces M2-like
polarization in ischemic muscles to enhance angiogenesis,
arteriogenesis, and perfusion recovery in peripheral artery
disease (Ganta et al., 2017). In in vitro studies, pulmonary artery
smooth muscle cells (PASMCs) have been used to investigate H/I-
induced muscle miRNA alternations. An H/I down-regulation
of miR-98 was observed to modulate inflammation and PASMC
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TABLE 3 | H/I-induced changes of miRNAs in the brain with defined target genes.

H/I
regulated
miRNAs

Species Target
genes

Functions References

Up-regulated by H/I

miR-7-5p Rat Sirtuin 1 Enhance cerebral
inflammation

Zhao and
Wang, 2020

miR-19a-3p Human, rat IGFBP3 Promote inflammation Chai et al.,
2020

miR-20b Rat NLRP3 Promote inflammation
by activate NLRP3
signaling

Zhao et al.,
2019

miR-21-3p Rat MAT2B Promote inflammation Li C. et al.,
2019

miR-155 Human,
mouse

MafB,
DUSP14

Induce inflammatory
mediators expression

Shi Y. et al.,
2020; Zhang
et al., 2020a

miR-186-5p Rat CTRP3 Increase
microglia/macrophage
inflammation

Chen et al.,
2021

miR-200b Rat KLF4 Induce microglia M1
polarization

Wen et al.,
2018

miR-210 Mouse TET2 Induce macrophage
infiltration, microglial
activation and
inflammation

Huang et al.,
2018; Ma Q.
et al., 2021

miR-217 Rat SIRT1,
MEF2D

Induce neuronal injury
and inflammatory
response

Rao et al.,
2019; Shi L.
et al., 2020

miR-449c-5p Rat STAT6 Promote microglial
inflammation

Zhang et al.,
2020b

miR-3473b Mouse SOCS3 Promote
neuroinflammation

Wang X. et al.,
2018

Down-regulated by H/I

miR-7a-5p Rat SNCA Inhibit mitochondrial
fragmentation and
oxidative stress

Kim et al., 2018

miR-17-5p Rat TXNIP Inhibit NLRP3
inflammasome

Chen et al.,
2018

miR-26b-5p Rat Smad1 Inhibit apoptosis and
inflammatory responses

Shangguan
et al., 2020

miR-29a Rat TP53INP1 Inhibit NLRP3
inflammasome

Liu X. et al.,
2021

miR-34c-5p Rat NCOA1 Inhibit inflammatory
cytokines and NF-κB
signaling

Tu and Hu,
2021

miR-124 Rat CYBB Inhibit
neuroinflammation and
NF-κB signaling

Wu et al., 2020

miR-125b Rat TP53INP1 Inhibit
neuroinflammation and
apoptosis

Li et al., 2018

miR-140-3p Rat HIF-1α Alleviate inflammation,
oxidative stress and
apoptosis

Yi et al., 2020

miR-181c-3p Rat CXCL1 Inhibit inflammation in
astrocytes

Song et al.,
2019

miR-182-5p Rat, mouse TLR4 Inhibit inflammatory
cytokines

Wang J. et al.,
2018

miR-199b Mouse AQP4 Inhibit
neuroinflammation

Zhang et al.,
2021

(Continued)

TABLE 3 | (Continued)

H/I
regulated
miRNAs

Species Target
genes

Functions References

miR-302a-3p Mouse STAT1 Inhibit microglial
inflammation

Hu et al., 2021

miR-367-3p Mouse Gprc5a Inhibit
neuroinflammation

Tabet et al.,
2020

miR-374a-5p Rat Smad6 Inhibit pro-inflammatory
cytokines and NLRP3
inflammasome

Chen et al.,
2020e

miR-381 Rat IRF4 Inhibit inflammatory
cytokines

Fang et al.,
2021

miR-410 Human PTEN Inhibit
neuroinflammation

Meng et al.,
2021

miR-421-3p Mouse YTHDF1 Prevent inflammatory
response

Zheng et al.,
2020

miR-424 Human,
mouse

CDC25A,
CCND1,
CDK6

Inhibit neuronal
apoptosis and microglia
activation

Zhao et al.,
2013

miR-485 Rat AIM2 Inhibit pyroptosis and
inflammation

Liang et al.,
2020

miR-532-5p Rat CXCL1 Inhibit
neuroinflammation and
NF-κB signaling

Shi et al., 2021

miR-542-3p Mouse TLR4 Inhibit
neuroinflammation

Cai et al., 2021

miR-665-3p Mouse TRIM8 Inhibit apoptosis and
microglial inflammation

Zhang et al.,
2020d

miR-874-3p Human,
mouse

CXCL12 Promote angiogenesis
and inhibit inflammation

Xie et al., 2020

miR-1202 Human Rab1a Inactivate
TLR4/NF-κB-involved
inflammatory signaling
pathway

Song et al.,
2020

let-7c-5p Human,
mouse

Caspase-3 Inhibit microglia
activation

Ni et al., 2015

let7i Human CD86,
CXCL8,
HMGB1

Regulate leukocyte
activation, recruitment
and proliferation

Jickling et al.,
2016

apoptosis by directly targeting pro-inflammatory cytokine IL6
(Wang Q. et al., 2015).

The information on H/I muscle miRNAs are still limited
at present. Altered miRNAs could significantly affect muscle
function and change the status of some muscle diseases
by targeting key components in the inflammatory pathways.
Therefore, it is needed to further investigate the regulation of
muscle miRNAs in H/I condition.

EFFECTS OF δ-OPIOID RECEPTOR
ACTIVATION ON MICRORNA
EXPRESSION PROFILES IN DIFFERENT
ORGANS UNDER NORMOXIA

δ-Opioid receptor is neuroprotective against H/I injury in the
brain (Zhang et al., 2002; Chao et al., 2008, 2009; Kang et al.,
2009; He et al., 2013a). The administration of DOR agonists can
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TABLE 4 | H/I-induced changes in miRNAs in H/I-insensitive organs with defined target genes.

Organ H/I regulated
miRNAs

Species Target genes Functions References

Liver Up-regulated by H/I

miR-210 Human VMP1 Mediate hypoxia-induced HCC cell metastasis and liver inflammation Ying et al., 2011; Song et al., 2014

miR-370 Mouse TGFBR2 Induce proinflammatory cytokines and hepatic histological damage Li et al., 2015

miR-450b-5p Mouse CRYAB Induce inflammatory cytokines and inhibit macrophage M2 polarization Huang et al., 2020

Down-regulated by H/I

miR-24-3p Mouse STING Inhibit inflammatory response and apoptosis in hepatic I/R process Shen et al., 2020

miR-128-3p Mouse Rnd3 Activate NF-κB signaling Mou et al., 2020

miR-140-5p Mouse CAPN1 Inhibit inflammatory response and apoptosis Yu et al., 2021

miR-142-3p Mouse MARCKS Attenuate hepatic I/R injury and inflammation Li Y. et al., 2020

miR-146a Mouse IRAK1, TRAF6,
TLR4

Inhibit proinflammatory cytokines release and apoptosis Jiang et al., 2014; Chungen et al.,
2020

miR-148a Mouse CaMKIIα Inhibit TLR4-mediated inflammation Zheng et al., 2018

Muscle Up-regulated by H/I

miR-93 Mouse IRF9 Induce M2-like macrophage polarization in ischemic muscle Hazarika et al., 2013; Ganta et al.,
2017

miR-155 Human SOCS-1 Aggravate inflammatory response, leukocyte infiltration and tissue
damage

Eisenhardt et al., 2015

Down-regulated by H/I

miR-92b-3p Rat HIF1A Inhibit inflammatory cytokines Wang and Quan, 2021

miR-98 Human IL6 Modulate inflammation and PASMC apoptosis Wang Q. et al., 2015

miR-146b Mouse TRAF6 Inhibit inflammatory factors expression Desjarlais et al., 2019

miR-let-7a Human STAT3 Inhibit inflammation Cheng et al., 2020

PASMC, pulmonary artery smooth muscle cells.

prolong survival of peripheral organs, such as lung, heart, liver,
and kidney (Peart et al., 2005; Patel et al., 2006). As a protective
molecule, DOR can tonically regulate miRNA expression even
in the normoxic condition. We measured miRNA expression
profiles in different organs such as the kidney, heart, brain,
and liver after DOR activation with a specific and potent DOR
agonist UFP-512 applied in Sprague Dawley rats (Yang et al.,
2012; He et al., 2013b; Zhi et al., 2016, 2017). DOR activation
can influence the expression of many miRNAs in different organs.
As summarized in Table 5, the brain had the most dramatic
changes in miRNAs after DOR activation. Conversely, miRNAs
in the heart and liver kept relatively stable during the observation
(DOR activation for 1, 5, and 10 days), suggesting a differential
regulation of miRNAs among organs in response to DOR signals
under normoxic condition.

Among hypoxia-sensitive organs, seven common miRNA
changes were observed in the kidney and brain, including miR-
21, miR-29b, miR-298, miR-347, miR-351, miR-466b, and miR-
511 (Table 5; Yang et al., 2012; He et al., 2013b). MicroRNAs
in the kidney displayed the similar expression tendency with
those of the brain. For instance, miR-29b was significantly
down-regulated in the brain and kidney at 1 day after DOR
activation with UFP-512 and maintained at a relatively stable
level after 5–10 days DOR activation. Reduced expression level
of miR-347 was observed after DOR activation at day 1 in the
brain, and at days 5 and 10 in the kidney. Similarly, miR-511
was significantly down-regulated after DOR activation in rat
brain and kidney at day 10 (Tables 6, 7). In contrast, there
were few common miRNA changes among hypoxia-insensitive

organ (liver) and hypoxia-sensitive organs. In our work,
only the alternation of miR-107-3p expression was seen in
both the heart and liver in normoxic condition upon DOR
activation (Table 5). Further investigating their functions and
elucidating the mechanistic differences between the H/I sensitive
and -insensitive organs will yield valuable information for
better understand the DOR-mediated regulation of miRNAs in
physiological conditions.

TABLE 5 | DOR-activation induced changes in miRNA expression profiles in
normoxic condition.

Organs Kidney Brain Heart Liver

miRNAs let-7f miR-21 miR-107-3p miR-107-3p

miR-20b-5p miR-29a miR-128-3p miR-122-5p

miR-21 miR-29b miR-141-3p miR-146a-5p

miR-29b miR-31 miR-350 miR-182

miR-212 miR-101b miR-184

miR-298 miR-186 miR-192-5p

miR-347 miR-298

miR-351 miR-324-3p

miR-370 miR-347

miR-466b miR-351

miR-511 miR-363*

miR-466b

miR-511

Summarized from our published articles (Yang et al., 2012; He et al., 2013b; Zhi
et al., 2016, 2017).
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TABLE 6 | Effects of DOR activation on brain miRNAs in prolonged hypoxia.

miRNA 1 day 5 days 10 days

Hypoxia C + DOR H + DOR Hypoxia C + DOR H + DOR Hypoxia C + DOR H + DOR

miR-29b ↓ ↓ – ↓ – – – – –

miR-324-3p ↓ ↓ – ↓ – – – – –

miR-347 ↓ ↓ ↓ ↓ – ↓ – – ↓

miR-298 ↓ ↓ – ↓ – ↓ – – –

miR-101b ↓ ↓ ↓ – – ↓ – – –

miR-466b ↓ ↓ ↓ ↓ – ↓ – – –

miR-186 – – – ↓ ↓ ↓ – – –

miR-20b-5p – – ↓

miR-212 – – ↓

miR-351 – ↑ ↓

let-7f ↓ – –

miR-29a – ↓ ↓ ↓ – –

miR-511 – ↓ – ↓ ↓ –

miR-363* – ↑ ↓ – – ↓ – ↓ –

miR-370 – – – ↓ – ↓ – – –

miR-21 – ↓ – – – ↓ – ↑ ↓

miR-31 – – ↑ ↓ – ↓ – ↓ –

↑, up-regulation; ↓, down-regulation; –, no statistical difference; C, normoxic control; H, hypoxia; DOR, DOR activation. Comparisons: hypoxia vs. C; C + DOR vs. C;
H + DOR vs. H. Summarized from our published article (Yang et al., 2012).

TABLE 7 | Effects of DOR activation on renal miRNAs in prolonged hypoxia.

miRNA 1 day 5 days 10 days

Hypoxia C + DOR H + DOR Hypoxia C + DOR H + DOR Hypoxia C + DOR H + DOR

let-7f ↓ ↓ –

miR-363* ↓ – ↑

miR-370 – ↑ ↓

miR-466b ↓ ↓ ↑

miR-511 ↓ ↓ ↓

miR-298 – ↑ ↓ ↑ – ↓

miR-324-3p ↑ – – ↑ – ↓

miR-20b-5p – – ↓ – ↑ –

miR-347 – – – – ↓ ↓ ↓ ↓ –

miR-212 – – – – ↓ ↓ ↓ ↓ –

miR-351 – ↑ – – ↓ – ↓ – –

miR-29a – – ↓ – – ↓ ↑ – –

miR-21 ↓ ↓ ↓ – – ↓ – ↓ –

miR-29b ↓ ↓ ↓ – – ↓ – – ↓

↑, up-regulation; ↓, Down-regulation; -, No statistical difference; C, normoxic control; H, hypoxia; DOR, DOR activation. Comparisons: hypoxia vs. C; C + DOR vs. C;
H + DOR vs. H. Summarized from our published article (He et al., 2013b).

EFFECTS OF δ-OPIOID RECEPTOR
ACTIVATION ON MICRORNA
EXPRESSION PROFILES IN DIFFERENT
ORGANS UNDER HYPOXIA

Since either DOR activation or hypoxic condition has a profound
impact on miRNA expression profiles in different organs, it will
be interesting to learn the possible effect of DOR activation
on hypoxia-induced miRNA changes. Our studies have shown

that miRNA expression profiles can be significantly altered when
DOR activation was applied to hypoxic organs (Yang et al.,
2012; He et al., 2013b; Zhi et al., 2016, 2017). We noticed that
the differential alternations in the miRNAs largely depended
on the duration of hypoxia, and DOR activation led to diverse
outcomes in response to short-term or prolonged hypoxia in
different organs.

As one of the hypoxia-sensitive organs, the hypoxic brain
showed the most dramatic changes in miRNA expression
in response to DOR activation. Some miRNAs were largely
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altered at the earliest time point (1 day), including miR-
347, miR-101b, miR-466b, miR-29a, miR-363∗, and miR-31
(Yang et al., 2012). The majority of miRNAs, especially
those that mediates cyto-protective function such as anti-
neuroinflammation, were down-regulated compared with those
in normal condition. Among them, miR-29a alleviated cerebral
ischemia/reperfusion injury via down-regulating target gene
TP53INP1 and the NF-κB/NLRP3 pathway (Liu X. et al.,
2021). In the brain exposed to a mid-term hypoxia (5 days),
DOR activation provoked even more miRNA reduction as
compared to that in short-term hypoxia (1 day), whereas
the expression of miRNAs turned to the baseline level upon
DOR activation under prolonged hypoxia (Table 6; Yang
et al., 2012). These findings implicated that brain miRNA
expression responded quickly after the hypoxia insult, and
possibly involved in anti-hypoxic injury by modulating the
expression of target genes.

δ-Opioid receptor activation can also modify hypoxia-induced
changes of miRNA expression in the kidney. The changes in
several miRNAs could be detected upon DOR activation in
the kidney exposed to a continuous hypoxia for a prolonged
period. For instance, the down-regulation of miR-511 and miR-
298 expression was observed upon DOR activation followed
by a continuous exposure to hypoxia for 5 to 10 days (He
et al., 2013b). In the case of miR-370, miR-20b-5p, and miR-
29a/b, although hypoxia alone did not alter their expression
levels at certain time points, the administration of UFP-
512 to the hypoxic kidney significantly down-regulated the
expression of these miRNAs. MiR-21 was reported to induce
macrophage M1 inflammatory phenotype, cytokine production,
endothelial-mesenchymal transition, and fibrosis in ischemic
kidney (Pushpakumar et al., 2021). DOR activation could

lower miR-21 expression in prolonged hypoxia (5 days and
10 days). Apparently, DOR activation continuously modulated
renal miRNA expression during the whole hypoxic period
(Table 7; He et al., 2013b).

Unlike other hypoxia-sensitive organs, the majority of altered
miRNAs in the heart was up-regulated under 1 day hypoxia.
The administration of UFP-512 to the hypoxic heart induced
a further upregulation in terms of the expression of miR-141-
3p, miR-376a-3p and miR-134-5p. Moreover, the expression of
miR-134-5p and miR-7b was increased throughout the entire
time course after DOR activation under hypoxia, suggesting their
important roles in the regulation of renal adaptation to hypoxic
stress (Table 8; Zhi et al., 2016).

Similar to that in hypoxia-sensitive organs, miRNA expression
in hypoxia-insensitive organs can also be influenced by DOR
activation in hypoxic condition. The expression of miR-
34a-5p, miR-142-5p, miR-145-5p, miR-146a-5p, and miR-
204-5p were significantly increased in the liver after DOR
activation and hypoxic stress (Zhi et al., 2017). MiR-192-
5p was the only miRNA whose expression level started to
decrease after DOR activation under hypoxia (Table 9). MiR-
146a was reported to ameliorate ischemia/reperfusion injury
in vivo and hypoxia/reoxygenation injury in vitro by directly
suppressing IRAK1 and TRAF6 in the liver (Jiang et al., 2014).
Prolonged hypoxia could down-regulate miR-146a level, whereas
DOR activation restored miR-146a expression, which might
inhibit pro-inflammatory cytokine release and cellular apoptosis.
Therefore, DOR signaling likely functions to upregulate hepatic
tolerance to hypoxic stress by differentially modulating the
expression of different miRNAs.

Collectively, among hypoxia-sensitive organs, the kidney and
brain had a common change in the miRNAs, i.e., a significant

TABLE 8 | Effects of DOR activation on cardiac miRNAs in prolonged hypoxia.

miRNA 1 day 5 days 10 days

Hypoxia C + DOR H + DOR Hypoxia C + DOR H + DOR Hypoxia C + DOR H + DOR

miR-7a-5p ↑ – ↓

miR-141-3p ↑ ↑ ↑ – – – – – –

miR-196c-5p ↑ – ↓

miR-200a-3p ↑ ↑ –

miR-200b-3p – ↑ – – – –

miR-203a-3p ↑ – –

miR-324-3p ↑ – ↓

miR-376a-3p ↑ ↑ – ↑ – –

miR-135a-5p ↑ ↑ ↑

miR-193a-3p ↑ ↑ –

miR-338-3p ↑ ↑ –

miR-128-3p – – – – – ↑

miR-134-5p – ↑ ↑ ↑ ↑ ↑

miR-350 – ↑ – – ↓ –

miR-107-3p ↑ ↑ ↑ – – –

miR-7b – ↑ – ↑ – ↑

↑, up-regulation; ↓, down-regulation; –, no statistical difference; C, normoxic control; H, hypoxia; DOR, DOR activation. Comparisons: hypoxia vs. C; C + DOR vs. C;
H + DOR vs. H. Summarized from our published article (Zhi et al., 2016).
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TABLE 9 | Effects of DOR activation on liver miRNAs in prolonged hypoxia.

miRNA 1 day 5 days 10 days

Hypoxia C + DOR H + DOR Hypoxia C + DOR H + DOR Hypoxia C + DOR H + DOR

miR-7a-5p ↑ – –

miR-10a-5p ↑ ↑ ↓

miR-25-3p ↑ ↑ –

miR-26b-5p ↑ ↑ –

miR-30e-5p ↑ – ↓ – – –

miR-34a-5p ↓ ↑ ↓ ↑ ↓ ↑

miR-34c-5p ↑ ↑ ↑

miR-107-3p ↑ – ↑ ↓ ↑ ↓

miR-122-5p ↑ ↓ ↑ ↓ – ↓

miR-128a-3p ↑ – ↑ – ↑ –

miR-135b-5p ↑ – –

miR-142-5p ↑ ↑ ↓ ↑ ↓ ↑

miR-145-5p ↑ ↑ ↑ – – ↑

miR-146a-5p – – ↑ ↓ ↑ ↑ ↓ ↑ ↑

miR-181a-5p ↑ – ↓

miR-182 ↓ ↑ ↓ ↑ ↓ –

miR-184 – – – ↓ – ↓

miR-192-5p ↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓

miR-204-5p ↑ ↑ – ↑ – ↑

↑, up-regulation; ↓, down-regulation; –, no statistical difference; C, normoxic control; H, hypoxia; DOR, DOR activation. Comparisons: hypoxia vs. C; C + DOR vs. C;
H + DOR vs. H. Cited from our previous work (Zhi et al., 2017).

alternation in nine miRNAs in both organs (Yang et al., 2012;
He et al., 2013b), whereas hypoxia-sensitive and -insensitive
organs had no common change at all (Table 10).

It seems that hypoxia comprehensively modifies miRNA
profiles with a major difference among organs, while DOR
signaling is able to modulate such regulation in most of
these organs (Feng et al., 2012; He et al., 2013a; Nallamshetty
et al., 2013; Yang et al., 2015). DOR activation may induce
cyto-protection against H/I insult in both hypoxia-sensitive

TABLE 10 | DOR-activation modifies hypoxia-induced changes in
miRNA expression.

Organs Kidney Brain Heart Liver

miRNAs miR-20b-5p miR-20b-5p miR-7b miR-34a-5p

miR-21 miR-21 miR-107-3p miR-142-5p

miR-29a miR-29a miR-134-5p miR-145-5p

miR-29b miR-31 miR-141-3p miR-146a-5p

miR-212 miR-101b miR-200b-3p miR-192-5p

miR-298 miR-186 miR-376a-3p miR-204-5p

miR-324-3p miR-212

miR-347 miR-298

miR-363* miR-347

miR-370 miR-351

miR-466b miR-363*

miR-511 miR-370

miR-466b

Summarized from our published articles (Yang et al., 2012; He et al., 2013b; Zhi
et al., 2016, 2017).

and -insensitive organs, at least partially, through modulating
miRNA expression.

CONCLUSION AND
PHARMACOLOGICAL PERSPECTIVES

Hypoxic/ischemic-induced inflammatory injury to different
organs is a frequently encountered clinical problem and the
common cause of various diseases with limited therapeutic
options. Because the role of miRNAs in controlling H/I
inflammation, recent studies on miRNA expression under H/I
condition have drawn much attention from clinicians and
scientists worldwide. Many experiments have been conducted
in cell models, animal models, and patients to investigate the
potential targets and signaling pathways of miRNAs involved in
H/I pathology. Some of the miRNAs are regarded as injury factors
under hypoxic condition by promoting cellular inflammation,
mitochondrial dysfunction, oxidative stress and apoptosis, while
others play protective roles against H/I insult by inhibiting
pro-inflammatory cytokines release and NLRP3 inflammasome
(Tables 1–4). Our summary of increased or decreased miRNAs
in response to DOR activation (Tables 5, 10) provides a
guide for future clarifications of their functions in controlling
H/I inflammation.

Hypoxic/ischemic stress comprehensively alters miRNA
expression in H/I-sensitive and -insensitive organs, largely
depending on the duration of hypoxia. MicroRNA expression
in H/I-sensitive organs such as brain and kidney often respond
quickly to relatively short-term hypoxia (1 day). After prolonged
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hypoxia (10 days), the expression of some miRNAs turned
back to the baseline level. There is evidence suggesting that a
mild/moderate H/I stress may induce pro-inflammatory cytokine
release and causes a quick inflammatory response, whereas
a severe/prolonged stress eventually causes cell apoptosis and
necrosis (Krock et al., 2011; Hadjipanayi and Schilling, 2013).
The differential cellular signaling is partially mediated by the
miRNA-induced repression of gene expression.

Although various miRNAs can exhibit very different responses
even in the same organ under similar H/I condition, there
are several H/I sensitive miRNAs that display common
changes among different organs. These miRNAs were named
“hypoxamiRs,” including miR-21, miR-210, and miR-199a
(Nallamshetty et al., 2013; Greco et al., 2014; Azzouzi et al.,
2015; Bertero et al., 2017). Accumulating evidence shows that
the expression of miR-21 can be directly induced by hypoxia
stimulation in several cell types due to the consensus hypoxia-
response-element (HRE) sequence in its promoter region
(Kulshreshtha et al., 2007; Parikh et al., 2012). Similarly, the
expression of miR-210 could be up-regulated by either HIF-
dependent mechanism via HRE binding (Lee et al., 2009; Pocock,
2011), or HIF-independent transcriptional regulations (Bertero
et al., 2017). One of the most important functions mediated by
these “hypoxamiRs” is cellular inflammation (Tables 1–4).

Aging is a key factor affecting H/I inflammation and
miRNA expression. In contrast to the immature and young
organs, the aged ones are more sensitive to H/I stress. The
oxygen-deprived conditions (hypoxia and ischemia) lead to
oxidative stress, cellular damage and protein modifications
(Adav and Sze, 2020). H/I inflammation and abnormal miRNA
expression have been proposed as risk factors for aging and
neurodegenerative diseases. Some circulating inflamma-miRs,
e.g., miR-21-5p and miR-126-3p, are even thought as potential
biomarkers of cognitive impairment AD patients (Giuliani et al.,
2021). MicroRNAs implicated in pathological aging such as
miR-92a-5p and miR-532-5p are also regarded as potential
biomarkers and putative molecular effectors of cognitive frailty
(Carini et al., 2021). Serum miR-214 as well as salivary miR-
874 and miR-145-3p might serve as auxiliary biomarkers for
PD (Chen et al., 2020d; Li L. et al., 2021). In aged rats,
transcription factor HIF could protect against ischemic brain
injury by reducing inflammatory responses via the Akt signaling
pathway (Du et al., 2020). All these facts suggest that an
elevated level of inflammation exists in various aging-related
chronic diseases, and modulating miRNA expression is a
promising avenue for the prevention and treatment of aging and
chronic diseases.

The miRNA expression can be modulated by sequence-
specific miRNA mimics (or agomirs) and inhibitors (or
antagomirs), both in vitro and in vivo. A recent study
showed that miR-363-3p treatment attenuates brain ischemia-
induced long-term cognitive deficits in rats (Panta et al.,
2020), suggesting the potential applications of miRNA mimics.
The process of miRNA biogenesis involves transcription, pre-
miRNA splicing, exporting, and stability of mature miRNAs.
Therefore, the miRNA expression can be modulated by specific
molecular signals.

The information in this review suggests that DOR activation
is effective in protecting organs against H/I injury, with the
capability of modulating miRNAome in both normoxic and
hypoxic conditions. Although the direct regulatory mode of DOR
on miRNA expression is still unknown, DOR signaling may
affect miRNA biogenesis by modulating some key transcriptional
factors. For instance, ERK is found to suppress pre-miRNA
export from the nucleus to cytoplasm through phosphorylation of
Exportin-5, resulting in a global reduction of pre-miRNA loading
and miRNA synthesis (Xie et al., 2020; Zhang et al., 2020d). Since
ERK activity could be upregulated by DOR activation (Ma et al.,
2005; Cai et al., 2021), DOR may regulate miRNA expressions via
this signaling pathway.

Different kinds of DOR agonists have been developed in the
past. Many of them displayed analgesic, antidepressant, anxiolytic
and other opioid effects. For instance, Deltorphin I is an opioid
peptide with relatively high affinity and selectivity to DOR and
produce centrally mediated analgesic effects in animals (Thomas
et al., 1997). Another commonly used one is delta opioid peptide
DADLE ([D-Ala2, D-Leu5]-Enkephalin), which was used for pre-
conditioning and post-conditioning to induce neuroprotection
against hippocampal injury resulted from transient forebrain
ischemia in rats (Wang S. et al., 2011). There are also other
non-peptide DOR agonists used for antidepressant, anxiolytic or
anti-inflammatory properties, including SNC-80 (Bilsky et al.,
1995; Perrine et al., 2006), AZD2327 (Hudzik et al., 2014), and
ADL5859 (Nozaki et al., 2012). In addition, AR-M 1000390 (Wei
et al., 2000) and DPI-3290 (Ananthan, 2006) were also used for
DOR agonists. However, UFP-512 that we commonly used in
our studies might yield more reliable data for DOR activation
because of its specificity and potent binding affinity (Balboni
et al., 2002; He et al., 2013b; Xia, 2015). Future development of
more specific DOR agonists with lower side-effects may facilitate
the application of DOR for the treatment of H/I inflammation.

In summary, it is possible to develop a new protective
strategy against H/I injury by activating DOR signaling and
targeting certain miRNAs to suppress H/I inflammation in both
hypoxia/ischemia-sensitive and -insensitive organs. However,
controversies and ambiguity still persist in the literature,
especially regarding the up-regulation versus down-regulation of
miRNAs under different conditions and their downstream targets
in the different organs. Moreover, the molecular mechanisms
involved in the DOR-mediated regulation of miRNAs are
largely unknown at present. The controversies may be partially
attributed to the differences in the models, species, and
experimental approaches among different studies. Nevertheless,
the solution of the above-mentioned fundamental issues depends
on more reliable and in-depth studies in future.
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