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ABSTRACT

Measurements of gene expression from microarray
experiments are highly dependent on experimental
design. Systematic noise can be introduced into the
data at numerous steps. On Illumina BeadChips,
multiple samples are assayed in an ordered series
of arrays. Two experiments were performed using
the same samples but different hybridization
designs. An experiment confounding genotype
with BeadChip and treatment with array position
was compared to another experiment in which
these factors were randomized to BeadChip and
array position. An ordinal effect of array position
on intensity values was observed in both experi-
ments. We demonstrate that there is increased
rate of false-positive results in the confounded
design and that attempts to correct for confounded
effects by statistical modeling reduce power of
detection for true differential expression. Simple
analysis models without post hoc corrections
provide the best results possible for a given exper-
imental design. Normalization improved differential
expression testing in both experiments but ran-
domization was the most important factor for
establishing accurate results. We conclude that
lack of randomization cannot be corrected by
normalization or by analytical methods. Proper ran-
domization is essential for successful microarray
experiments.

INTRODUCTION

Establishing causality is the ultimate goal of any experi-
ment aiming to discover the mechanisms underlying
natural phenomena. Among several approaches for
establishing causality, one of the most widely used is
randomization, as first described by Sir Ronald Fisher in
‘The design of experiments’ (1). The random assignment

of experimental units to treatments controls the likelihood
that any factor other than the treatment is the cause of
the association (2,3). This recommendation is explicitly
stated in most reference books devoted to the analysis of
microarray data (4). Nonetheless, this basic principle, that
has been widely accepted and applied in many fields of
science, is often ignored at several levels in the design of
microarray experiments. Consequently, many investiga-
tors and consulting analysts are faced with the challenging
and sometimes impossible task of performing post hoc
analyses for experiments that were not properly random-
ized. As a result, causality can no longer be established
with confidence.

Experimental designs should be tailored to the micro-
array platform. Numerous studies can be found in the
literature on how to design efficient experiments with
two-color (5–8) and even three- or four-color arrays (9).
Such designs try to minimize or balance the variability
introduced by design factors such as dye bias, and array
effects. For two-color arrays, dye-swap and blocking are
commonly employed. Provided that appropriate designs
are used, linear models can account for dye and array
effects in an analysis of variance (10). The multiple alter-
natives for pairing samples in either references or different
versions of loop designs have been studied both theoreti-
cally (11,12) as well as empirically (13). However, the role
of sample position in one-color platforms that hold mul-
tiple samples in a single slide has received less attention.
These platforms present features that may lead to sources
of technical variation that had not been anticipated. For
custom arrays (NimbleGen, 200 probes), samples are
placed in a 3-row by 4-column arrangement of wells and
confounding effects may arise from the array, row, or
column of the samples. It has been shown that accuracy
and reproducibility of differential expression testing in this
platform is improved by experimental designs that employ
blocking, randomization and replication (14).

We examined the effect of sample position effects using
whole-genome Illumina BeadChips in which multiple sam-
ples are hybridized on a single BeadChip. Each BeadChip
(chip hereafter) represents an experimental block and all
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samples on a single chip can potentially share common
effects due to processing. Furthermore, samples are hybri-
dized to arrays in ordered positions, which are labeled
in alphabetic order. For instance, positions A–H for
MouseRef-8 and A–F for Mouse-6 Sentrix� mouse
platforms.

We present empirical evidence for the presence of sig-
nificant chip and position effects in an Illumina microar-
ray study. We compared the results from two experiments
that used the same set of RNA samples, but where
samples from each experimental group were placed on
the chips using either a confounded design layout or a
randomized arrangement. In addition, we considered the
impact of both normalization and the choice of statistical
model on the results of the analyses. We discuss the impli-
cations for experiments performed on Illumina and other
microarray platforms.

MATERIALS AND METHODS

Experimental design

Two experiments were performed using the same RNA
samples obtained from cardiac muscle of 16 individual
mice from one of two different genetic backgrounds
(genotype): the C57BL/6J (B) inbred strain and the
C57BL/6J-chrYA/J/NaJ (BY) congenic strain in which
the Y chromosome from the A/J strain has been intro-
gressed onto the B background (15). Four mice from
each strain were castrated (treatment C) and four mice
were subject to sham operations but remained intact (treat-
ment I). In the Confounded experiment (Figure 1), all sam-
ples from the B genotype were hybridized to the first chip
and samples of the BY genotype were hybridized to the
second chip. Samples from intact mice are in positions
A–D and samples from castrated mice are in positions
E–H. Thus, genotype was fully confounded with chip,
and treatment was partially confounded with array posi-
tion on the chip. In the Randomized experiment (Figure 1),
block randomization was used. Samples were selected at
random, subject to the constraint that two samples of each
type appear on each chip. Since the same RNA samples
were used in both experiments, any differences can be
attributed to technical factors. Normalization should, in
principle, eliminate these effects. In the following sections,
we assess the impact of normalization and design factors
(chip and position) on tests for genotype, treatment and
interaction in these two experiments.

Subjects and samples manipulation

Experimental animals (corresponding to the offspring of
breeding pairs obtained from the Jackson Laboratory)
were euthanized at 12 weeks of age, between 9:00 and
10:00 AM, for tissue collection. Procedures were approved
by the Institut de Recherches Cliniques de Montréal
(IRCM) Institutional Animal Care Committee and con-
ducted according to guidelines issued by the Canadian
Council on Animal Care. RNA was isolated from samples
of myocardium from left ventricles of 16 mice using
the RNeasy minikit (Qiagen Canada, Mississauga, ON,
Canada). Biotinylated probes were prepared from 50 ng

of total RNA, using the Ambion Illumina TotalPrep
RNA Amplification kit (Applied Biosystems, Streetsville,
ON, Canada). The complete set of RNA was hybridized
to MouseRef-8 BeadChips (25K, Illumina, San Diego
CA, USA). The two experiments were performed on dif-
ferent days. Bead level intensity values were summarized
using BeadStudio v3.1 without normalization. Local
background correction was applied by default using
BeadStudio. Raw probe intensity values were imported
to the R 2.7.2 (UNIX) language/environment for normal-
ization and analysis (R. Development Core Team, http://
www.r-project.org).

Probe annotation

In the Illumina platforms, probes are bound to a set of
�30 beads. We will refer to the trim-average of intensity
across each set as the probe level values. Probes were
annotated using the ArrayGene software as described pre-
viously (16). Briefly, every sequence or gene id associated
with a given probe in the gene list obtained from the
Illumina website was cross-referenced to a local MySQL
database of sequence and gene identifiers that is based on
EntrezGene IDs (Genome build 37). Probes associated
with more than one EntrezGene were not annotated and
were not used for the functional analysis. More than 4700
out of 17 077 genes on the MouseRef-8 platform are tar-
geted by more than one probe. Due to the potential vari-
ation of transcripts (e.g. alternative splicing), we did not
merge probe level values into a single gene-level summary.
When reporting effects at the probe level, we use the terms
probe and transcript interchangeably.

Data preprocessing

All samples passed quality control inspection in both
experiments (Supplementary Figures 1S and 2S).
Quantile normalization was applied to data from each
experiment separately (17). Variance was stabilized with
a log2 transformation. Probes for unexpressed genes were
removed based on Present/Absent calls as recommended
in (18). In short, transcripts were called as present when
probability of detection was �0.96 (as estimated with
BeadStudio, using the intensity distribution of negative
probes), and were retained when present in at least 50%
of samples from any treatment/genotype group in either
experiment. Out of 25 697 probes, 13 903 were retained for
statistical analysis.

Assessment of array-level design effects

Linear models were fit to the median intensity across all
probes from each array on each chip. The following model
was fit to the data from each experiment separately before
normalization:

mij ¼ �þ ci þ �ipj þ eij, 1

where mij is the log2 transformed median intensity from
array j of chip i,� is the mean, ci is the effect of the chip
i,�i is the coefficient of regression on position pj within
chip i, and eij is the residual. Within-chip R2 was estimated
by fitting a reduced model with only the position term for
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each chip with the lmList function in the nlme package for
the R language/environment (nlme package; http://cran
.r-project.org).

Assessment of probe level effects

Differential expression and technical effects were tested by
fitting a set of linear models at the probe level to data from
each experiment separately, with and without normaliza-
tion (Table 1). All models in Table 1 are some version a
cell means model where �k is the mean intensity of sam-
ples from four experimental groups: B.I, B.C, BY.I
and BY.C. The effects of genotype, treatment and their
interaction were estimated by appropriate contrasts
between experimental groups: genotype= (B.C+B.I) –
(BY.C+BY.I), treatment= (B.I+BY.I) – (B.C+
BY.C) and interaction= (B.I – BY.I) – (B.C – BY.C).
To assess association to within chip position effects, two
additional contrasts were calculated: treatment_B=B.I –
B.C and treatment_BY=BY.I – BY.C. The UnAdj model
tests experimental groups without adjustment for chip and
position. The LinReg model includes a linear regression
adjustment for position. The approximation of position
effects by a linear regression was based on empirical obser-
vations from this and other data sets (Appendix). The Full
model relaxes the linearity assumption by including posi-
tion as a random effect (Table 1). The effect of Chip was
included in the LinReg and Full models only for the
Randomized experiment as this factor was completely
confounded with genotype in the Confounded experiment
and could therefore not be estimated.
All model fitting and ANOVA analyses were performed

in the R language/environment version 2.7.2 using the
R/maanova software version 1.13 (19). F-values were cal-
culated using shrinkage estimates of error variance (20).
P-values were derived from expected F distributions and
corrected for multiple comparisons with the q-value
method described in (21). Probes were selected by
FDR< 0.1. For the genotype or treatment effects, only
probes without a significant interaction were selected.
The proportion of differentially expressed genes p1 was

estimated from the distribution of P-values as described
in (21).

The rank order of P-values was used as a selection index
and 1� rs was used as distance measure for hierarchical
clustering, where rs is the Spearman correlation between
P-values from each pair of models. Negative correlations
result in distances >1. Use of Spearman correlation allows
us to compare relative order of significance without spe-
cifying significance thresholds. The hclust function of the
stat package for R was used to generate an agglomerative
average hierarchical clustering of ranked P-values from
each model. Venn diagrams were produced with the
limma package for R (22).

Functional testing for lists of differentially
expressed genes

Only probes that could be associated with a unique
EntrezGene as in (16) were used for functional testing.
In cases where genes were targeted by multiple probes,
genes were selected if at least one probe was significantly
differentially expressed (DE) (FDR< 0.1). Over-represen-
tation on Gene Ontology (GO) terms was assessed by
a Fisher’s exact test comparing the odds ratio for mem-
bership to a given GO term between DE and non-DE
genes (23).

RESULTS

We compared data from two experiments: one with a
Confounded design and another with a Randomized
design, using the same samples, on Illumina BeadChips
(Figure 1). Statistical modeling was used to evaluate the
effects of both design and experimental factors in each
experiment separately. By design factors, we refer to tech-
nical factors that are associated with the processing of
samples, hybridization protocols, and/or microarray plat-
form. Experimental factors refer to biological factors of
interest, such as genotype, treatment and their interaction.

Figure 1. Experimental design. Layout of samples for the Confounded
and Randomized experiments. Black rectangles represent BeadChips.
Sentrix Position for individual arrays are displayed along the left side
of BeadChips (A–H). Each experiment used two BeadChips. Colors
represent genotype [blue=C57BL/6J (B); green=C57BL/6J-chrYA/J/
NaJ (BY)] and castration treatment [yellow= intact (I); red=
castrated (C)].

Table 1. Statistical models applied to probe level data

Experiment Models df1 df2 Abbreviation

Confounded ykl=�+�k+ekl 3 12 c.unadj
yijkl=�+�ipj+�k+eijkl 5 10 c.linreg
yjkl=�+Pj+�k+ejkl 9 6 c.full

Randomized ykl=�+�k+ekl 3 12 r.unadj
yijkl=�+ci+�ipj+�k+ejkl 6 9 r.linreg
yijkl=�+Ci+Pj+�k+ekl 11 4 r.full

df1, model degrees of freedom; df2, error degrees of freedom; y, log2
probe level intensity; �, overall mean; �k, mean for experimental group
k; �i, coefficients of regression within chip; pj, position covariate (values
1–8); Pj, random position effect (levels A–H); Ci, random chip effect;
Lower case indicates fixed and upper case random effects; c, con-
founded; r, randomized; unadj, unadjusted; linreg, adjustment by
linear regression; full, adjustment by full mixed model.
The prefix ‘raw.’ or ‘norm.’ is applied to the model abbreviation in the
text and figures to indicate if the model was fit to raw or normalized
data, respectively (Figure 4).
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We assessed the effects of design factors on bias and power
of statistical tests for differential expression. By differen-
tial expression we refer to variation in the abundance of
a gene’s messenger RNA (mRNA) across samples in an
experiment. The amount of mRNA in a sample is mea-
sured indirectly by fluorescence intensity of a given probe
in the microarray. Design factors can affect intensity but
only experimental factors can produce differential expres-
sion. With this distinction made between biological and
technical effects on intensity, we note that statistically sig-
nificant probes do not imply differential expression.
Throughout the text, we use this distinction and try to
differentiate true differential expression from increased
number of selected probes that result from confounded
design effects.

Assessment of array-level design effects

We initially investigated the overall intensity distribution
from each array to assess systematic effects due to chip
and position by fitting model 1 (see ‘Materials and
Methods’ section) to the median intensity before normal-
ization (Figure 2). We tested for differences in intensity
between chips within each experiment and for a linear
trend of intensity across positions within a chip. Chip
had a suggestive effect in the Confounded experiment
(P-value=0.137) but not in the Randomized experiment
(P-value=0.955). In addition, we observed position
effects: (i) in the Confounded experiment, a positive trend
was observed in Chip 2 (R2

� 0.25, P-value=0.046); (ii) in
the Randomized experiment, a decreasing trend across pos-
itions was observed in both chips (R2

� 0.17, P-value=
0.09). This pattern was also observed in negative control
probes, i.e. probes that have no target in the mouse genome
and samples are therefore expected to reflect background
signal (Supplementary Figure 3S). For subsequent ana-
lyses, we adjusted the data using quantile normalization

(17) to equalize the median intensities across all chips and
arrays within each experiment.

Effect of design on number of differentially
expressed genes

Differential expression associated with experimental fac-
tors was assessed using two-way ANOVA. This is the
simplest and most obvious method to study the effects
of genotype, treatment, and their interaction. If an inter-
action is present, it means that the effect of a factor on the
response variable depends on the levels of the other factor.
In the present study, a significant interaction can be inter-
preted as treatment effects that depend on the genotype of
the animals or equivalently, a genotype effect that depends
on the treatment. This was done by an ANOVA of the
UnAdj model with raw and normalized data from the
Confounded and Randomized experiments (Table 1).
We found that more probes were selected for genotype,

treatment and interaction in the Confounded experiment.
However, we caution that this does not necessarily indi-
cate greater power to detect biological effects in this
experiment. To assess the biological information content
of the differentially expressed gene lists in each experi-
ment, we examined the lists for enrichment of GO biolog-
ical processes (23). Although this is not a perfect test, it is
reasonable to expect greater enrichment in a biologically
coherent gene list. The DE gene list for treatment and
genotype in the Randomized experiment, although
shorter, identified more biological process terms than the
corresponding list from the Confounded experiment
(Figure 3). For the interaction gene list, the Confounded
experiment identified more terms. GO biological processes
are highly interrelated and multiple GO terms may
effectively represent the same groups of DE genes
(Supplementary Table 3S). Nevertheless, our results sug-
gest that the longer gene lists for main effects selected in
the Confounded experiment may be due to detection of

Figure 2. Boxplot for raw data from the both experiments. Outliers are not shown for clarity. Boxplots of raw intensity values for negative probes in
the Confounded and Randomized experiments are shown by position in the four Chips. Color differentiates castration treatment (yellow=castrated;
green= intact). Blue lines are best linear fit on the medians by position.
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technical effects on intensities. We explore the importance
of such design effects below.

Accounting for design effects by statistical models

The differential expression analysis presented above
ignores any effects that chip or position within chip may
have on intensity measurements. This is a common proce-
dure in microarray analysis, since it is expected that nor-
malization would correct for technical factors before gene
level model testing. However, for the purpose of assessing
the fraction of probes that are affected by such design
effects, we tested differential expression with two addi-
tional models: LinReg, and Full models (Table 1). We fit
the UnAdj, LinReg and Full models to data from each
experiment separately, with and without normalization.
The Full model is a mixed model that accounts for
chip and position when testing for experimental effects.
The Full model was fit using REML method (24). The
LinReg model accounts for Chip effects as in the Full
model, but position effects are assumed to follow a
linear trend. LinReg was fit as a fixed effects model.
We performed an unsupervised hierarchical clustering

of results from the UnAdj, LinReg and Full models by
the ranking of P-values (Figure 4). The branch length in
the tree is inversely proportional to the correlation of the
rank order of genes (rs) between a given pair of models
(see ‘Materials and Methods’ section for details). Test
results for the Genotype, Treatment and Interaction
terms showed a hierarchical pattern in which normal-
ization was the most important factor, followed by
experimental design and lastly by the analysis model.
The exception to this pattern was the fitting of the
LinReg model to the Confounded experiment. This
model produced very different results, with zero or

negative rank correlation compared to all other cases.
Furthermore, LinReg model selected no probes for
genotype effects in normalized data. Inspection of the
effects estimated from each model in the Confounded
experiment revealed that genotype effects from the
LinReg model are affected by the slope of position effects
in a given chip. In this model, the genotype effect is effec-
tively the difference between the intercepts of the regres-
sion lines fit to position effects (Supplementary Figure 6S).
The LinReg model does not seem to be appropriate in
the Randomized experiment either. It produced unex-
pected P-value distributions for Chip and Position effects
(Supplementary Figure 8S). Although the intent was
to achieve post hoc correction for position effects, the
LinReg model is clearly problematic and should be
avoided in practice.

The UnAdj and Full models in the Confounded experi-
ment produced the closest results to those from the
Randomized experiment (rs� 0.4–0.5). Both models per-
formed similarly in terms of ranking of probes for all three
experimental factors (rs> 0.97). This was true for both the
Confounded and the Randomized experiments. However,
the absolute difference in their P-values changed with nor-
malization. In the Randomized experiment, the UnAdj
model using raw data mainly gave higher P-values than
the Full model and the Full model therefore selected more
probes. However, these P-values had little correlation to
the results from either model on normalized data.
Therefore, although the largest number of probes for
treatment and genotype is selected with the Full model
using raw data (Figure 4), the selected set of probes
is very different than when normalized data is used.
In contrast, once data is normalized, the Full model
selects fewer probes than the UnAdj model and both
models produce P-values with high rank order agreement.

Figure 3. Confounded experiment is enriched with false-positive results. Genes selected for differential expression in two replicated experiments.
Genes were selected by the UnAdj model on normalized data. Venn diagrams group number of unique genes selected (a–c) and GO Biological
Processes associated to those genes (d–f).
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This indicates that although the Full model is effective at
reducing the residual variance in raw data, it is not a
replacement for the use of normalization to remove sys-
tematic effects. Once data are normalized, the cost paid in
error degrees of freedom (Table 1) outweighs the benefit
from the reduction in residual variance, decreasing the
model’s power and consequently the UnAdj model per-
forms better.

Overall, no combination of normalization and modeling
examined here could provide results for the Confounded
experiment with a correlation to the Randomized experi-
ment that was >0.5. The LinReg model was the worst

choice for the confounded experiment. The UnAdj model
proved to be the best option for normalized data, regard-
less of the design layout.

Effect of confounding ‘Chip’ and ‘Genotype’

The LinReg and Full models account for design effects at
the probe level by estimating probe specific coefficients for
chip and position. In the Confounded experiment, adjust-
ing for the effects of chip would also remove any genotype
effects due to the complete confounding of these two fac-
tors. Therefore, we cannot adjust for chip effects in this

Figure 4. Hierarchical clustering of fitted models for adjustment of chip and position effects (Table 1). Models distance was measured as 1-Spearman
correlation between P-values. Negative correlations produce distances higher than 1. Branches are labeled to indicate normalization method (norm,
raw), experiment (c,r) and analysis model (unadj, linreg, full). Number of probes selected at FDR< 0.1 are shown at right.
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model and as a consequence, differential gene expression
between genotypes cannot be distinguished from technical
effects due to chip (for the mathematical arguments on this
issue see pp. 181–183 of ref. (3)). We inspected the pro-
portion of total variance from the Full model due to chip
effects across probes in the Randomized experiment
(Figure 5). Although no significant difference between
chips was detected on the median intensity from raw
data in the Randomized experiment (Figure 2), we
found a large proportion of probes where chip effects
accounted for a significant fraction of the total variance
(>0.1=10 614 probes; >0.3=2511). These chip effects
were greatly reduced by normalization but were not elimi-
nated from all probes (>0.1=5130 probes; >0.3=928).
Similar random chip effects must also be present in the
Confounded experiment, resulting in apparent genotype
effects in hundreds of probes even after normalization.

Effect of confounding ‘Position’ and ‘Treatment’

In order to assess the association between position and
treatment effects, we calculated treatment effects for each
genotype separately (see ‘Materials and Methods’ section).
In the Confounded experiment, the treatment comparison
for the BY genotype was performed in a single chip, i.e.
Chip 2. Therefore, we assessed presence of association
between position effects for Chip 2 and treatment effects
in the BY genotype (Treatment_BY) in this experiment
using the LinReg model (Figure 6). Despite the bad per-
formance of this model shown above, we use it here
because it provides insights into position effects and the
properties of this model. Position and Treatment_BY
effects were highly correlated both before and after nor-
malization. This correlation was not observed in either
chip from the Randomized experiment (see Randomized
panels in Figure 6 and Supplementary Figure 9S). Under
the null hypothesis, the distribution of effects should
center around the expected value of zero. However, the
distribution of position effects in raw data from Chip 2

and 4 were shifted to the positive and negative side,
respectively. This is evidence of bias in estimated position
effects was produced by the systematic position effects
observed both in target (Figure 2) and control probes
(Supplementary Figure 3S). Treatment_BY effects also
showed deviation form the zero expectation, which
could be due to the confounding with Position.
Normalization moved the distributions of intensities, cen-
tering gene-specific position and treatment effects in both
experiments around zero. However, random gene-specific
position effects were still present for many probes
(Figure 6). Thus, normalization was effective at correcting
overall systematic effects but it does not break correlations
between the partially confounded factors nor does it elim-
inate many probe-specific position effects.

To explore the effects of these corrections on power for
detecting differential expression, we selected lists of genes
with the largest adjusted treatment effects (FDR< 0.1;
Table 2). The P-value distributions for treatment effects
(Supplementary Figures 7S and 8S) were used to estimate
the proportion of DE genes p1 as explained in methods.
Estimates of p1 from all three models in raw data from
the Confounded experiment were lower (0.06–0.25) than
in the Randomized experiment (0.52–0.68, Table 2).
Although, normalized data showed much more similar
estimates, p̂

1
was smaller for the LinReg and Full models

in the Confounded experiment, whereas p̂
1
for UnAdj

model was larger (Table 2). These results indicate that
correcting for chip and position effects in raw data
causes large reduction in power for the Confounded exper-
iment and almost no probes are selected (44 in LinReg and
87 in Full). Once systematic effects are removed by nor-
malization, adjustment by the LinReg and Full models still
reduced power, although to a lesser degree, when com-
pared to the Randomized experiment. Not adjusting for
position effects (UnAdj model), selects more probes in the
Confounded experiment but at the expense of increased
false positive results. Therefore, neither normalization nor
post hoc adjustment could match the precision and power
of the Randomized experiment.

DISCUSSION

Inspection of raw data from an Illumina microarray
experiment revealed significant chip and position effects
at the array and probe levels, with an approximately
linear trend of decreasing intensity values from positions
A to H (Figure 2 and Supplementary Figure 3S). These
trends were also observed in a large and independent
Illumina dataset (Appendix). In that experiment, position
effects showed significant linear trends in 10 out of 24
chips, all of negative sign. Some of those trends were
twice as big as those observed here. This and previous
observations from other experiments lead us to conclude
that position effects are prevalent in Illumina experiments
and can be of large magnitude. Results in the Appendix
also show that position trends can extend beyond single
chips and even across batches, pointing at lability of the
fluorescent dye as a possible cause for these position
effects. If this is the case, microarray experiments with

Figure 5. Variance due to chip effects. The variance component asso-
ciated to chip effects (S2

chip) was estimated by REML from the Full
model in raw and normalized data from the Randomized experiment.
The histogram shows the distribution of S2

chip/S
2
total across probes.
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any platform may suffer systematic effects due to order of
sample processing. Regardless of the source or sign of
position effects, the confounding of factors of interest
with order of hybridization would have similar conse-
quences on power and accuracy as those reported here.
This could explain the higher power observed from

balanced over unbalanced designs on a custom
NimbleGen chip (14) and highlights the relevance of our
findings for any microarray platform.
Performing a standard test for differential expression

due to genotype, treatment, and interaction effects with
the UnAdj model demonstrates that the Confounded
experiment selects more probes than the Randomized
experiment. This could be due to higher power or to
increased false discoveries. The confounding of design
factors with experimental factors does not allow us to dis-
tinguish these explanations in the Confounded experiment
(3). The reduced enrichment for biological annotations
compared to the Randomized experiment favors the
hypothesis of increased false discoveries. Analysis of the
Randomized experiment demonstrated that hundreds of
probes can show significantly large chip and position
effects even after normalization. It is likely that the same
effects occur in the Confounded experiment, which is con-
sistent with the larger number of selected probes.
We further explored the possibility of controlling for

design effects by statistical modeling. This resulted in
reduced power to detect genotype, treatment, and interac-
tion effects in both designs (Figure 4). Adjusting for

Figure 6. Association between treatment and position effects introduced by a confounded design. Scatter plots show position in Chip 2 (Confounded)
and Chip 4 (Randomized) versus treatment effects in the BY genotype (Treatment_BY) from each experiment. Dotted blue lines cross the y- and x-
axis at 0. Solid blue lines denote the median position (vertical) and Treatment_BY effects (horizontal).

Table 2. Differentially expressed genes tested for Treatment effects

before and after normalization

Model Normalization Confounded
experiment

Randomized
experiment

p̂
1

Probes
elected

p̂
1

Probes
selected

UndAdj Raw 0.25 959 0.52 1472
Normalized 0.43 3615 0.39 3123

LinReg Raw 0.06 44 0.68 7417
Normalized 0.34 789 0.41 2892

Full Raw 0.11 87 0.67 6225
Normalized 0.33 1166 0.41 888

Estimated p1 and number of probes selected by FDR< 0.1 are shown
by experiment, normalization procedure and model used.
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position effects by a linear regression was a particularly
bad choice, producing the least consistent ranking of
probes compared to all other models. Presumably, this
was a consequence of controlling for a factor that, even
after normalization, was correlated with treatment
(Figure 6). The UnAdj and Full models produced highly
similar results (rs> 0.97), but both had a correlation of
only �0.4–0.5 to results from the randomized experiment.
Therefore, when an experiment has confounded design
factors, one cannot improve on the UnAdj model
and normalized data. This combination also presented
the highest power in the Randomized experiment
(Supplementary Figure 5S). Based on our results, we dis-
courage the use of post hoc corrections for design effects,
whether the experiment was confounded or randomized.
Furthermore, we conclude that randomization of samples
to position in the Illumina chip is essential for reliable
inferences of differential expression.
When randomization is not explicitly spelled out in pro-

tocols, the natural tendency is to perform hybridizations
following a logical order according to the identifiers of the
samples, which often include information on the factors
of interest in the experiment. We demonstrated that
this leads to a confounded design that can significantly
impact the outcome of the analysis by increasing the
false positives rate. Therefore, statistical designs that ran-
domize the arrangement of samples on chips or any other
systematic features of a protocol are advised. Randomized
relabeling of samples before processing provides a simple
strategy to avoid confounding. Consideration of potential
blocking factors as well as balance and replication can
suggest more sophisticated designs for accurate and unbi-
ased experiments (14). All of these principles are accepted
requirements for clinical trials testing new drugs (25) and
should be required as minimal standards for publication
of microarray results. These measures can improve repro-
ducibility of microarray experiments by avoiding augmen-
ted rates of false discoveries and providing confidence that
differential intensity reflects differential expression.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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