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Abstract

Deep learning, a cornerstone of artificial intelligence, is driving rapid advancements
in computational biology. Protein-protein interactions (PPIs) are fundamental
regulators of biological functions. With the inclusion of deep learning in PPI research,
the field is undergoing transformative changes. Therefore, there is an urgent need
for a comprehensive review and assessment of recent developments to improve
analytical methods and open up a wider range of biomedical applications. This
review meticulously assesses deep learning progress in PPI prediction from 2021

to 2025. We evaluate core architectures (GNNs, CNNs, RNNs) and pioneering
approaches—attention-driven Transformers, multi-task frameworks, multimodal
integration of sequence and structural data, transfer learning via BERT and ESM, and
autoencoders for interaction characterization. Moreover, we examined enhanced
algorithms for dealing with data imbalances, variations, and high-dimensional
feature sparsity, as well as industry challenges (including shifting protein interactions,
interactions with non-model organisms, and rare or unannotated protein
interactions), and offered perspectives on the future of the field. In summary, this
review systematically summarizes the latest advances and existing challenges in deep
learning in the field of protein interaction analysis, providing a valuable reference for
researchers in the fields of computational biology and deep learning.

Keywords Deep learning, Protein-protein interactions, Artificial intelligence, PPI
prediction, Artificial neural networks, Computational biology, Machine learning

Introduction

In the current era, Artificial Intelligence (AI) has become a central driver of interdisci-
plinary innovation and development, particularly in the realm of deep learning. Due to
its remarkable pattern recognition capabilities, deep learning has led to transformative
advancements across a wide range of disciplines. The impact of this phenomenon can be
observed across both academic and practical domains. These innovations have shown
that advanced computational models can emulate aspects of human reasoning and gen-
erate creative outputs, and in some cases, may even exceed the conventional limits of
human cognition [1].
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Protein-protein interactions (PPIs) play an essential role in cellular function, influenc-
ing a variety of biological processes such as signal transduction, cell cycle regulation,
transcriptional regulation, and cytoskeletal dynamics [2]. PPI regulates the interaction of
transcription factors with their target genes by modulating intracellular signaling path-
ways in response to external stimuli, ensuring precise control over gene expression and
cell cycle [3, 4]. Furthermore, PPIs are crucial for maintaining cytoskeletal structural sta-
bility and dynamic remodeling. They also play a vital role in protein folding and quality
control mechanisms, helping prevent the accumulation of misfolded proteins. PPIs can
be categorized based on their nature, temporal characteristics, and functions: direct and
indirect interactions, stable and transient interactions, as well as homodimeric and het-
erodimeric interactions. Different types of interactions shape their functional character-
istics and work in concert to regulate cellular biological processes.

Before the advent of deep learning-based predictors, the prediction and analysis of
PPIs relied predominantly on experimental methods and rudimentary computational
approaches. Techniques such as the yeast two-hybrid screening, co-immunoprecipita-
tion (Co-IP), mass spectrometry, and immunofluorescence microscopy were instrumen-
tal in elucidating molecular interactions [5-7]. Although effective, these experimental
techniques were often time-consuming, resource-intensive, and constrained by the lim-
ited number of detectable interactions and the challenges associated with scaling to large
datasets. Concurrently, computational methods based on sequence similarity, structural
alignment, and docking were employed to predict PPIs. However, these approaches
faced significant limitations due to their reliance on manually engineered features and
difficulties in scaling to accommodate large, complex biological systems [8, 9].

The application of deep learning in computational biology is largely enabled by its
powerful capability for high-dimensional data processing and automatic feature extrac-
tion [10, 11]. Biological data are often complex and high-dimensional, while deep learn-
ing effectively captures nonlinear relationships and automatically extracts meaningful
features [12, 13]. In contrast to conventional machine learning algorithms such as sup-
port vector machines and random forests, which rely on manually engineered features
[14, 15], deep learning can autonomously extract semantic sequence context informa-
tion from sequence and residue information data [16]. This ability makes it particu-
larly well-suited for processing large-scale datasets, as evidenced by breakthroughs like
AlphaFold 2 [17]. This capability allows for a more comprehensive understanding of PPI
networks, enabling new insights into cellular processes and facilitating the discovery of
potential therapeutic targets.

Deep learning has the potential to fundamentally transform the paradigm of PPI pre-
diction, offering unprecedented levels of accuracy and efficiency. This review system-
atically sorts out the latest progress of deep learning in PPI analysis, comprehensively
summarizes existing methods and key technologies, explores their application pros-
pects, and highlights future trends in PPI prediction. This will provide valuable refer-
ences for researchers in the fields of computational biology and artificial intelligence,
promoting the advancement and integration of protein interaction research and deep
learning technology.
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Data availability and issue description

Database

PPI data comprises a diverse range of information, which is primarily employed to
elucidate protein functions and interactions. Protein sequence data (e.g., amino acid
sequences) are fundamental to PPI research, as their unique characteristics closely
relate to interactions. Gene expression data further facilitates the inference of protein
expression and interaction patterns. In addition, protein structure data—encompass-
ing three-dimensional conformations and domain information—illuminates the roles
of binding sites and spatial characteristics in mediating interactions. PPI network data,
generated through experimental methodologies, construct comprehensive interac-
tion maps between proteins, thereby offering an integrative overview of their interplay
[18-20]. Functional annotation data, including resources such as Gene Ontology (GO)
and KEGG pathway information, enhance our understanding of proteins’ involvement in
specific biological processes [21, 22]. Moreover, several publicly available databases and
datasets, containing extensive experimental results as well as algorithm-based predic-
tions, have been extensively utilized in PPI prediction tasks. These resources have pro-
vided critical support for the training and validation of deep learning models. Table 1
presents several key datasets commonly employed in PPI prediction tasks, along with

their sources and pertinent details.

Common PPI tasks

Common tasks in PPI research include interaction prediction, interaction site identifica-
tion, cross-species interaction prediction, as well as the construction and analysis of PPI
networks [23-25]. The objective of interaction prediction is to ascertain the probability

Table 1 Commonly used PPl databases and their descriptions

Database Name Description URL

STRING A database for known and predicted protein-protein inter-  https://string-db.org/
actions across various species.

BioGRID A database of protein-protein and gene-gene interactions  https://thebiogrid.
from various species. org/

IntAct A protein interaction database maintained by the Euro- https://www.ebi.
pean Bioinformatics Institute. ac.uk/intact/

MINT A database of protein-protein interactions, particularly https://mint.bio.
from high-throughput experiments. uniromaz.it/

HPRD A human protein reference database with interaction, http://www.hprd.org/
enzymatic, and cellular localization data.

DIP A database of experimentally verified protein-protein https://dip.doe-mbi.
interactions. ucla.edu/

Reactome An open, free database of biological pathways and protein  https://reactome.org/
interactions.

CORUM A database focused on human protein complexes with http://mips.helmholtz-
experimentally validated data. muenchen.de/corum/

PDB A database storing 3D structures of proteins that also https://www.rcsb.org/
includes interaction data.

12D A database of protein-protein interactions, based on litera-  http://ophid.utoronto.
ture and experimental data. ca/i2d/

GeneMANIA A tool for analyzing functional gene and protein interac- http://genemania.org/
tion networks.

PINA A protein-protein interaction network analysis database. https://cbg.garvan.

org.au/pina/
APID A database of protein-protein interactions, with tools for http://apid.dep.usal.

visualization and analysis. es/
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of interactions between proteins. This determination is frequently made through the
analysis of amino acid sequences, structural characteristics, and gene expression data.
Interaction site prediction focuses on identifying specific regions on the protein surface
that are likely to participate in molecular interactions, often relying on high-resolution
three-dimensional structural data. Cross-species interaction prediction aims to predict
protein interactions across different species, facilitating the integration of data from
diverse organisms and enabling transfer learning applications. The construction and
analysis of PPI networks have yielded invaluable insights into global interaction patterns
and the identification of functional modules, which are essential for understanding the

complex regulatory mechanisms governing cellular processes.

Core deep learning models for PPI prediction

Graph-neural networks for protein-protein interactions

Graph neural networks (GNNs) based on graph structures and message passing adeptly
capture local patterns and global relationships in protein structures [26]. By aggregat-
ing information from neighboring nodes, GNNs generate node representations that
reveal complex interactions and spatial dependencies in proteins (as shown in Fig. 1B).
Variants of GNN, such as graph convolutional network (GCN) [27], GraphSAGE, and
Graph autoencoder (as shown in Fig. 1B), provide flexible toolsets for PPI prediction.
Graph convolutional networks (GCN), graph attention networks (GAT), GraphSAGE
(Graph Sampling and Aggregation), and graph autoencoders (GAE) constitute four prin-
cipal architectures in the field of GNN, each addressing specific challenges inherent in
graph-structured data. GCN employs convolutional operations to aggregate informa-
tion from neighboring nodes, making it highly effective for tasks such as node classi-
fication and graph embedding. As illustrated in Fig. 1A, an input node (denoted as C)
is processed through successive hidden layers to produce outputs Z,, Z,, Z;, Z,, and so
on, with each computational layer incorporating both the graph’s adjacency matrix and
convolution operations on node features. However, the uniform treatment of neighbor-
ing nodes in GCN may limit its ability to capture heterogeneous relationships in more
complex graphs [28]. In contrast, GAT introduces an attention mechanism that adap-
tively weights neighboring nodes based on their relevance, thereby enhancing the flex-
ibility of information propagation in graphs with diverse interaction patterns [29]. The
GAE framework utilizes an autoencoder-based approach, comprising an encoder and a
decoder (see Fig. 1B). The encoder processes the graph data through a series of GCN
layers to generate compact, low-dimensional node embeddings (Z and Z*), which are
subsequently employed by the decoder either to reconstruct the graph structure or to
facilitate predictive tasks, such as node classification and graph reconstruction [30].
Meanwhile, GraphSAGE is specifically designed for large-scale graph processing, uti-
lizing neighbor sampling and feature aggregation to significantly reduce computational
complexity, making it especially well-suited for applications involving massive graph
data [31].

In this context, researchers have introduced several innovative architectures, includ-
ing the AG-GATCN framework developed by Yang et al., which integrates GAT and
temporal convolutional networks (TCNs) to provide robust solutions against noise
interference in Protein-protein interactions analysis [32]. Zhong et al. developed the
RGCNPPIS system that integrates GCN and GraphSAGE, enabling simultaneous
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extraction of macro-scale topological patterns and micro-scale structural motifs [33].
Wu and Cheng introduced Deep Graph Auto-Encoder (DGAE), which innovatively
combines canonical auto-encoders with graph auto-encoding mechanisms, enabling
hierarchical representation learning for optimizing low-dimensional embeddings of bio-
molecular interaction graphs [34].

The continuous-time message passing paradigm has emerged as a pivotal framework
for modeling protein conformation dynamics. The GSALIDP architecture, introduced
by Zheng et al., is a hybrid GraphSAGE-LSTM network designed to predict the dynamic
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interaction patterns of intrinsically disordered proteins (IDPs). It combines the Graph-
SAGE algorithm for capturing graph-based structural information from multiple con-
formations of IDPs and an LSTM network to process the temporal evolution of these
conformations. This approach models the fluctuating nature of IDP conformations as
dynamic graphs, enabling the prediction of interaction sites and contact residue pairs
between IDPs [35]. Complementarily, Wang et al. formulated the Relational Graph Net-
work (RGN) approach under this paradigm, which established hierarchical graph rep-
resentations of protein structures through coordinated integration of spectral graph
convolutions and attention-based edge weighting. This dual-modality architecture
enables multi-scale topological feature extraction, significantly advancing the precision
of PPI trajectory prediction [36].

Recent advancements in neural network architectures leverage residual connectivity,
convolutional kernels, and hybrid dynamic adjustment strategies to enhance multivari-
ate modeling of structured data, such as graph-based and 3D protein representations.
For example, Li et al. integrated residual connectivity, dense connectivity, and dilation
convolution into GCNS, significantly enhancing training depth and stability [37]. SO(3)
is a mathematical concept representing the group of all 3D rotations, whereas isometric
neural networks are designed to preserve these rotational symmetries. These networks
are typically based on graph or spherical convolutional neural networks to maintain
isometry in machine learning. Based on the applicability of rotation invariance in pro-
tein structures, Aykent and Xia proposed GBPNet [38], an SO(3)-equivariant neural
network for protein structure representation, resulting in notable performance gains in

downstream tasks.

Convolutional neural networks for protein-protein interactions
A typical CNN module consists of convolutional layers, pooling layers, fully con-
nected layers, and additional architectural enhancements such as residual shortcuts (as
shown in Fig. 1C) [39, 40]. Recently, three-dimensional convolutional neural networks
(3D-CNNs) have been employed for protein structure integration due to their advan-
tages in modeling multi-level spatial features and optimizing geometric invariance.
Advancements in 3D structural representation have significantly enhanced the mod-
eling of spatial and geometric features in protein analysis and drug design, primar-
ily through the application of 3D-CNNs and geometric invariance-based approaches.
Three-dimensional convolutional neural networks (3D CNNs) have been shown to excel
in the capture of spatial features. RepVGG, a lightweight convolutional neural network
initially designed for image classification tasks, offers advantages in terms of computa-
tional efficiency and inference speed. Guo et al. built upon the foundations laid out by
RepVGQG, extending the framework to propose the TRScore model: a protein docking
method based on 3D RepVGG. This method has been demonstrated to accurately dis-
tinguish favourable near-native conformations from unfavourable non-native docking
complexes, exhibiting strong performance without requiring additional input features
[41]. To address 3D-CNN’s sensitivity to rotational and translational variations in initial
structures, Chen et al. introduced Eq. 3DCNN that integrates rotation-invariant mod-
ules to predict protein properties and capture non-geometric features [42]. Zhu et al.
proposed DeepRank, a deep learning-based framework tailored for data mining of 3D
PPI interfaces [43]. In the context of drug design, Sree et al. developed a 3D-CNN-based
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method for protein structure prediction to enhance the accuracy of drug recommenda-
tion systems [44].

Moreover, leveraging the effectiveness of multi-neural network architectures, Li et al.
introduced a PPI prediction model called MARPPI, which employs a two-channel frame-
work combined with a multi-scale residual network design [45]. Zhang et al. developed
the DeepGOA, which integrates protein sequence data and PPI network [46]. DeepGOA
utilizes Bi-LSTM (Bidirectional Long Short-Term Memory) with multi-scale CNNs to
generate semantic features of protein sequences, and the DeepWalk technique to obtain
the representation of PPI networks. These two representations were jointly used to pre-
dict protein functions, demonstrating superior performance compared to DeepGO and
BLAST in practice. In addition, CNN-based architecture was also employed to predict
the location of water molecules on protein chains. Specifically, Park and Seok introduced
GalaxyWater-CNN for this purpose [47].

Recurrent neural networks for protein-protein interactions

In the context of Protein-protein interactions prediction, recurrent neural networks
(RNNs) have been employed to process and analyze the semantic information of protein
sequences (as shown in Fig. 1D) [48]. The input at each time step (e.g., X,, Xy, X, Xy,
etc.) represents different protein fragments or features, which are processed by a shared
computational unit A to generate hidden states (e.g., hy, hy, h,, h;). These hidden states
contain contextual information from the protein sequence, reflecting potential interac-
tions between proteins. It is evident that RNN is capable of capturing the contextual
dependencies between amino acids in protein sequences, thereby enabling the effective
prediction of protein interactions and the revelation of significant connections in pro-
tein function and biological processes. RNN-based models excel in modeling sequen-
tial correlated data across multiple scales to enhance functionality. A substantial body
of research has leveraged this capability to learn protein sequence representations and
develop hybrid models by integrating diverse data structure methods, such as the pro-
tein localization approach proposed by Alakus and Turkoglu, which combines AVL trees
with bi-directional RNNs to validate interactions between SARS-CoV-2 and human pro-
teins [49].

Long Short-Term Memory (LSTM) networks have become a critical component in
PPI prediction, due to their proficiency in capturing sequence order and residue depen-
dencies. The development of long-range dependency learning has shed light on the
intricate relationship between protein folding and function by capturing interactions
between non-neighboring residues. In LSTM-based deep learning frameworks, regu-
larization methods have been leveraged to improve performance. For instance, Deng
et al. proposed a hybrid deep learning framework combining CNNs and LSTMs, which
optimized performance through logistic regression with L1 regularization [50]. Further-
more, Zhou et al. proposed a method for calculating the frustration index by evaluating
the additional stabilization energy of residue pairs relative to statistical energy distri-
butions, which is also used for PPI prediction [51]. The LSTM-PHV model developed
by Sho Tsukiyama et al. innovatively utilizes amino acid sequences to predict protein-
protein interactions (PPI) between humans and viruses by combining long short-term
memory (LSTM) networks and word2vec technology. This method effectively captures
the contextual information of sequences by converting amino acid sequences into “word
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vectors” and using LSTM to learn the complex dependencies between protein sequences
[52]. The RAPPPID method, proposed by Joseph Szymborski and Amin Emad, integrates
a dual AWD-LSTM network with multiple regularization techniques. This approach
aims to effectively address the generalization issues of traditional PPI prediction models
in the absence of unseen proteins and data bias. The innovative network architecture
ensures stability in complex datasets [53].

Exploring emerging techniques and approaches

Network optimization of attention mechanisms

Deep learning methods based on attention are reshaping the technical paradigm of PPI
prediction [54-56]. The attention mechanism enhances prediction accuracy by estab-
lishing residue-level long-range dependency modeling and using dynamic weights to
analyze higher-order protein relationships. The cross-attention mechanism effectively
constructs representations across diverse modalities, while the gated fusion architec-
ture enhances multi-scale feature extraction. Representative works in this field include:
Li et al. proposed SDNN-PPI that uses amino acid composition (AAC), conjoint triad
(CT), and auto covariance (AC) features while employing a self-attention mechanism to
enhance the feature extraction ability of deep neural networks (DNNs), achieving excel-
lent prediction accuracy on multiple datasets [57]. Zhai et al. proposed LGS-PPIS, a
local-global information aggregation framework combining an edge-aware graph convo-
lutional network (EA-GCN) and a self-attention (SA-RIM) module for PPIS prediction
[58]. Conversely, Wu et al. proposed AttentionEP, integrating cross- and self-attention
mechanisms, extracting spatial and temporal features through GCN, GAT, and BiLSTM,
integrating subcellular localization data, and employing a ResNet classifier for key pro-
tein prediction [56, 59].

The attention mechanism generates a dynamic network through an interpretable
weight distribution, visualizing and analyzing the protein interface recognition process.
Its hierarchical attention model uncovers the coupling patterns among residue-level fea-
tures, enabling researchers to deconstruct the multi-scale feature synergy mechanism
at the molecular dynamics level and offering computational evidence for analyzing pro-
tein conformational selection preferences. Song et al. proposed a method for clustering
spatially resolved gene expression data based on graph-regularized convolutional neu-
ral networks, supporting biological interpretation of gene clusters in the spatial context
[60]. Tang et al. proposed HANPPIS, combining six features: PSSM, secondary structure,
pre-trained vectors, hydrophilicity, and amino acid position [61]. Wang et al. proposed
ECA-PHYV, an interpretable model based on an effective channel attention mechanism
for predicting human-virus PPI [62].

Furthermore, several innovative PPI prediction frameworks and auxiliary models
have emerged. Li and Liu proposed MuToN, a geometric deep learning-based frame-
work that uses a geometric attention network to identify changes in the binding inter-
face caused by mutations and calculate the allosteric effects of amino acids [63]. leremie
et al. developed the TransformerGO model, which generates a graph representation of
GO terms using the node2vec algorithm. This method dynamically captures semantic
similarity between GO terms (The GO nomenclature is a standardized term employed
in Gene Ontology (GO) to describe the functions of genes and their products, the bio-
logical processes in which they are involved, and the cellular components in which they
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are located), outperforming traditional metrics and existing machine learning methods
on Saccharomyces cerevisiae and Homo sapiens datasets [64] (Table 2).

Transformer model structure

The transformer network is a novel model architecture consisting of multiple identical
layers, each including two main components: a multi-head self-attention mechanism
and a simple position-aware feed-forward fully connected network (as shown in Fig. 2)
[65].

Architectures based on multiple transformer layers have been incorporated into an
ensemble framework and achieved impressive results on pre-trained protein language
models. EnsemPPIS, proposed by Mou et al,, is an ensemble framework based on trans-
former and gated convolutional networks. It extracts residue interactions in protein
sequences through transformer layers and an ensemble learning strategy to integrate
global and local sequence features [66]. The MaTPIP deep learning framework, proposed
by X. Li et al., integrates CNN and transformer architectures, leveraging a pretrained
protein language model (PLM) along with manually curated protein sequence data. This
approach demonstrates superior performance on both human and cross-species PPI
benchmark datasets [67]. Meanwhile, the transformer architecture was further extended
by Kang et al., who proposed HN-PPISP. This innovative hybrid neural network model
integrates the MLP-Mixer module with a two-stage multi-branch transformer struc-
ture, exploiting the advantages of attention mechanisms and parallel feature aggregation.

Table 2 Summary of network optimization strategies using attention mechanisms for PPI prediction
Author Model Name Research method Evaluation parameter
Lietal [57] SDNN-PPI SDNN-PPI, which utilizes AAC, CT, and AC  (H. sapiens)

features and uses a self-attention mecha- ACC=0.9894+0.0019

nism to enhance DNN feature extraction MCC=0.9757 +0.0060

capability. AUC=0.9960
Zhaietal. [58]  LGS-PPIS LGS-PPIS, a local-global information ACC=0.802
aggregation framework combining edge  F1=0.502
sensing GCN and self-attention modules. MCC=0.398
AUROC=0.819
Wu et al. [59] AttentionEP AttentionEP’s multi-scale feature fusion ~ ACC=0.9610
method combines cross-attention and FScore=0.8262
self-attention mechanisms. AUC=0.9793
Precision=0.8627
BACC=0.8880
Songetal[60] CNN A clustering method of spatially resolved ACC=0.933923
gene expression data based on graph F1=0.932646
regularization and CNN. AUC=0.935120
Tang etal.[61]  HANPPIS HANPPIS, a method based on a hierarchi- ACC=0.631
cal attention mechanism. Precision=0.291
F1=0.393

Wang et al. [62] ECA-PHV

Liand Liu [63]  MuToN

leremie et al. TransformerGO

[64]

ECA - PRV for predicting human-viral PPI.

MuToN, a geometric deep learning
based framework.

The TransformerGO model generates
graph embeddings of GO terms through
the use of the node2vec algorithm, with
the purpose of capturing the seman-

tic similarity between GO terms in a
dynamic manner.

(TR1) ACC=0.9221
(TR2) ACC=0.9263
(TS1) ACC=0.869
(TS2) ACC=0.880
PCC=0.991

Spearman correlation=0.62
S. cerevisiae, GO-set size (10,

20) AUC=0.973

H. sapiens, GO-set size (10,

30) AUC=0.953

Page 9 of 23
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This approach markedly boosts the accuracy of PPI site prediction, outperforming seven
established methods [68].

Furthermore, point cloud-based deep learning techniques offer a promising geometry-
driven paradigm for resolving protein 3D structures. Wang et al. were the first to apply
PointNet and PointTransformer in predicting protein-ligand binding affinity, which sig-
nificantly improved prediction accuracy [69]. Chen et al. also utilized PointNet and 3D
point cloud neural networks to evaluate protein docking models [70]. These efforts con-
tributed to further improvements in the accuracy of docking predictions, highlighting
the potential of point cloud-based approaches in computational protein structure analy-
sis (Table 3).

Multitasking learning

In PPI prediction, a multi-task learning framework addresses multiple tasks via shared
layers, directing the training process by constraining layer optimization. The shared lay-
ers were trained to obtain the shared feature dependencies across multiple tasks, with
task-specific layers dedicated to each individual task. The shared layers enable the model
to generalize across tasks, improving its overall performance. (as shown in Fig. 3A). This
enhancement is achieved by considering both the protein’s interaction and its biologi-
cally notable features.

Li et al. have proposed a novel multi-task graph structure learning method, MgslaPPL
The PPI prediction task is specifically decomposed into two stages: amino acid resi-
due reconstruction (A2RR) and protein interaction prediction (PIP). An auxiliary task,
protein feature reconstruction (PFR) and mask interaction prediction (MIP), is intro-
duced to enhance the model’s capacity to predict interactions [71]. Similarly, Yang et al.



Cui et al. BioData Mining

(2025) 18:43

Table 3 Summary of transformer-based architecture for PPl prediction

Author Model Name Research method Evaluation parameter
Mou et al. EnsemPPIS EnsemPPIS, an integration framework (1jtdB) MCC=0.760
[66] based on transformer and gated convo-  (1b6cA) MCC=0.542
lutional networks.
X.Lietal. [67] MaTPIP The MaTPIP deep learning framework (S. cerevisiae)
works by fusing pre-trained protein AUPR=56.6
language models. F-Score=544
AUROC=875
Kang et al. HHN-PPISP HHN-PPISP, an innovative hybrid neural ~ ACC=0.667
[68] network model, combines the transform- MCC=0.244
er architecture’s MLP-Mixer module and ~ F-measure=0427
two-stage multi-branch module. AUCPR=0.360
Wang et al. PointNet and A point cloud-based deep learning strat-  Average R, = 0.827
[69] PointTransformer egy for protein-ligand binding affinity
prediction
Chen et al. PointDE PointDE: Protein Docking Evaluation Top 1: Success rate =65.6%,
[70] Using 3D Point Cloud Neural Network surpassing GNN-DOVE (64.1%).
Top 5: Success rate =90.1%,
surpassing GNN-DOVE (84.9%).
Top 10: Success rate=91.8%,
surpassing GNN-DOVE (86.7%).
A =4 o
Drug-target
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Fig. 3 Overview of multi-task learning and multimodal learning (A) Multi-task learning mechanism (B) Interdisci-
plinary multimodal expansion applications

proposed a novel framework, MpbPPI, which integrates a multi-task pre-training strat-

egy and geometric isometry preservation techniques to predict the effect of amino acid

mutations on PPI. Efforts have also been made to address challenges like sample bias

and missing data through the application of multi-task learning [72]. Capel et al. pro-

posed a multi-task learning strategy to solve the problem of data scarcity in predicting

PPI interface residues. Incorporating tasks such as secondary structure prediction, sol-

vent accessibility prediction, and buried residues identification into a multi-task learning
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framework enables the model to mitigate the impact of missing PPI annotation data [73]
(Table 4).

Multimodal approach and integrated model

Amid the rapid advancement of multi-omics data analysis, integrative models that com-
bine diverse data modalities—such as sequence, structural, and functional data—are
widely employed to improve prediction accuracy and shed light on interaction mecha-
nisms [74]. For instance, Kang et al. introduced a multimodal approach that fuses struc-
tural and sequence data, where a pre-trained transformer network extracts structural
features, and a masked language model encodes sequence information [75]. Similarly,
Chen and Hu combined sequence, structure, and adjacency features, to predict residue-
residue interactions, employing a stacked meta-learning method [76].

In the domain of interdisciplinary multi-modal extended applications, Rafiei et al. pro-
posed a deep learning method called DeepTraSynergy, which integrates multiple data
types, including drug-target interactions, protein-protein interactions, and cell-target
interactions. DeepTraSynergy contains a transformer model to extract drug features.
Through multitask learning, the model simultaneously predicts drug toxicity, drug-
target interactions, and drug combination synergy. The model employs node2vec for
protein representation and enhances prediction accuracy by optimizing multiple loss
functions, including synergy loss and toxicity loss (as shown in Fig. 3B) [77]. Researchers
use knowledge graphs (e.g., protein families [78]) to represent and integrate associations
between data from diverse modalities. The independence of neural networks enables
modular design according to functional purpose, with combined integrated models
offering advantages of different neural networks for multi-level and multi-dimensional
analysis capabilities. Baek et al. proposed a three-track neural network model integrat-
ing one-dimensional sequences, two-dimensional distance maps, and three-dimensional
structural information for protein structure and interaction prediction, demonstrat-
ing comparable performance to the DeepMind system at CASP14 [79]. Concurrently,
Asim et al. presented ADH-PPI, a deep hybrid model integrating FastText embedding
and LSTM, CNN, and self-attention layers, enhancing accuracy by 4% and the Matthews
correlation coefficient by 6% relative to prevailing methods in PPI prediction [80].

The multi-view model derived from AlphaFold represents a significant advancement
in computational protein analysis. For instance, Meng et al. introduced MVGNN-PPIS, a
multi-view graph neural network model that combines AlphaFold3 predictive structures
with migration learning, achieving superior performance over existing methods across

Table 4 Summarizes the contribution of Multi-task learning to the study of Protein-Protein
interactions

Author Model Research method Evaluation parameter
Name
Lietal.[71] MgslaPPI The MgslaPPl is divided into two stages: A2RR and SHS27K
PIP. An auxiliary task, PFR and MIP, is introduced to F1=79.95%
enhance the model's capacity to predict interactions.  SHS148K
F1=83.78%
Yangetal.  MpbPPI MpbPPI: a multi-task pre-training-based equivariant (S4169) Rp=0.795+0.004
[72] approach for the prediction of the effect of amino acid  (S1131) Rp=0.865+0.003
mutations on protein-protein interactions. (5645) Rp=0.615+0.013

(M1101) RP=0.787+0.002

Capel etal. Customized Multi-task learning to leverage partially annotated data  AUC ROC=0.732+0.004
[73] OPUS-TASS  for PPl interface prediction.
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multiple PPI datasets [24]. Analogously, the AlphaBridge framework stands as a cutting-
edge breakthrough in computational protein complex analysis, leveraging the advanced
technology of AlphaFold3 [81]. This framework employs key metrics, including the
predicted local distance difference test (pLDDT), pairwise alignment error (PAE), and
predicted distance error (PDE) [82], which are innovatively incorporated into a graph-
based clustering algorithm. With its unique architecture, the AlphaBridge framework is
capable of accurately identifying and deeply analyzing a variety of interaction interfaces
within macromolecular complexes, whether they involve protein-protein interactions or
protein-nucleic acid associations, ultimately providing precise insights.

Furthermore, researchers have leveraged the integration of multi-omics data to
achieve more accurate prediction of protein complex formation, thereby facilitating a
deeper understanding of diverse biological processes within cells [83]. Consequently,
this enhanced efficiency in disease prediction and drug research, and development has
led to significant advances in the field [84]. For example, Schulte-Sasse et al. developed
EMOGI, a graph convolutional network that seamlessly integrates multi-omics pan-can-
cer data with PPI networks for cancer gene prediction [85] (Table 5).

Transfer learning and pre-trained models

Transfer learning is a machine learning approach that improves model precision and
generalizability by pre-training on a large dataset and subsequently applying the result-
ing model to a smaller dataset. The widespread use of transfer learning in bioinformatics,
exemplified by applications like gene expression prediction and cancer diagnosis, under-
scores its potential when data is limited. For instance, Qiao et al. proposed ProNEDP, a

deep learning algorithm combining transfer learning and a bilinear attention network

Table 5 Summary of multimodal approaches and integrated models in PPI prediction
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Author

Model Name

Research method

Evaluation parameter

Kang et al. [75]

Kuan-Hsi Chen
and Yuh-Jyh Hu.
[76]

Rafiei et al. [77]

Baek et al. [79]

Asim et al. [80]

Schulte-Sasse et
al. [85]

AFTGAN

RRI-Meta

DeepTraSynergy

BAKER-ROSETTASERVER
and BAKER

ADH-PPI

EMOGI

Multi-type PPI prediction based on
attention-free converter and graph at-
tention network.

Residue—Residue interaction prediction
via stacked Meta-Learning.

Drug combinations using multimodal
deep learning with transformers.

Accurate prediction of protein struc-
tures and interactions using a three-
track neural network.

Deep hybrid model combining FastText
embedding and LSTM, CNN, and self-
attention layer.

Integration of multiomics data with
graph convolutional networks to
identify new cancer genes and their
associated molecular mechanisms.

(SHS27K)
Micro-F1=0.867
Hamming Loss=0.087
(SHS148K)
Micro-F1=0.920
Hamming Loss=0.052
(3HMX) AUROC=0.97
(1MLO) AUROC=0.74
(1RKE) AUROC=0.86
(DrugCombDB)
ACC=0.7715
AUC-ROC=0.8321
F1=0.7608
(OncologyScreen)
ACC=0.8052
AUC-ROC=0.8637
F1=08112

To a level comparable
to AlphaFold2.

ACC=0.9263
MCC=0.9144
Precision=0.9284
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for high-throughput identification of NLR receptor-pathogen effector interactions [86].
Concurrently, Yang et al. combined evolutionary sequence features, Siamese convolu-
tional neural networks, and multilayer perceptrons, introducing two transfer learning
strategies (‘freeze’ and ‘fine-tune’) to significantly improve human-virus PPI prediction
performance [87].

Pretrained models based on transformer structures, such as BERT and ESM, have
become mainstream methods for transfer learning-based PPI prediction [88, 89]. The
effectiveness of BERT can be attributed to its bidirectional encoding and pretraining-
fine-tuning, enabling it to learn a general language representation from substantial unla-
beled data. Given this applicability, Liu et al. proposed the MindSpore ProteinBERT
(MP-BERT) model, a transformer-based bidirectional encoder representation using pro-
tein pairs as input, suitable for PPI identification and site location [90]. Warikoo et al.
developed LBERT, a transformer model combining local and global context, significantly
improving classification accuracy for PPI, DDI, and PER extraction tasks [91]. The ESM
architecture can also learn universal protein representations through large-scale pre-
training, similar to BERT. The ES2M architecture core relies on evolutionary data (e.g.,
diverse genomic sequences) for deep protein sequence representation learning and fea-
ture capturing related to biological functions. Li et al. developed a hybrid model using
the ESM-2 model to encode protein sequences into embedding representations with
high-dimensional features extracted [92]. In a comparable study, Yang et al. developed
TUnA, a hybrid model combining the ESM-2 and transformer encoders. TUnA intro-
duces the Spectral-normalized Neural Gaussian Process and uncertainty estimation to
generate robust PPI predictions [93] (Table 6).

Protein-protein interaction characterization learning and autoencoders
In the field of PPI prediction, feature extraction serves as a critical foundational step.
As illustrated in Fig. 4, converting protein sequences or structures into representative

Table 6 Summary of transfer learning and pre-trained models used in PP| prediction
Author

Model Name Research method Evaluation parameter
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Qiao et al. ProNEP ProNEP, a deep learning algorithm combin- AUROC=0.9292
[86] ing transfer learning and bilinear attention AUPRC=0.7134
networks.
Yang et al. Siamese CNN archi-  Evolutionary sequence graph features and (HIV) ACC=98.65
[87] tecture and MLP a twin convolutional neural network (CNN) Precision=95.16
architecture combined with a multilayer F1-score=92.36
perceptron model. AUPRC=0.974
Liuetal. [90] MindSpore Protein-  MindSpore ProteinBERT (MP-BERT) model, (H. sapiens)
BERT (MP-BERT) a transformer-based bidirectional encoder ACC=0.9818
representation. Precision=0.9732
F1=0.9820
MCC=0.9639
Warikoo et LBERT A lexical awareness transformer model that Precision=0.858
al.[91] combines local and global context. F1-score=0.855
Lietal.[92] ~ ESMDNN-PPI A hybrid model that employs the ESM-2 AUPR=0.9306
model to encode protein sequences as em- ROC=0.9869
bedded representations.
Parkinsonet  TUnA TUNA, the model combines an ESM-2 embed- AUROC=0.7
al. [93] ding with a transformer encoder and intro- AUPR=0.69
duces a spectral-normalized neural Gaussian ~ F1=0.65
process. MCC=0.3

Balanced accuracy=0.65
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feature vectors is commonly employed. Several sequence encoding methods have been
widely adopted, including one-hot encoding, which represents each amino acid as an
independent binary vector to facilitate sequence processing; amino acid physicochemi-
cal property encoding, such as AAindex, which quantifies properties like polarity,
charge, and hydrophobicity; and embedding techniques such as Word2Vec, which map
protein sequences to a low-dimensional space by capturing the contextual relationships
among amino acids. These generated vectors exhibit complex semantic information
and enhanced expressive capabilities. Subsequently, advanced deep learning models are
employed for intricate feature extraction and pattern recognition, followed by further
modeling using machine learning approaches.

Autoencoders (AEs) represent a significant breakthrough in the representation learn-
ing of PPIs, with the potential to greatly enhance the accuracy of sequence and structure
encoding. As illustrated in Fig. 5, this advancement is achieved by mapping and recon-
structing protein data in a low-dimensional latent space, which helps capture intrinsic
relationships. AE is a model used for unsupervised learning to learn low-dimensional
representations of data, typically for tasks like data compression and reconstruction
[94]. GAE (Graph Autoencoder) extends this concept to graph data, using GNNs in
the encoder to capture node embeddings based on graph structure and reconstruct the
graph (e.g., predicting node connections) in the decoder. In essence, GAE is a graph-spe-
cific version of AE, designed to handle the complexities of graph-structured data [30].

Cui et al. introduced SMG (self-supervised masked graph learning), a novel method
leveraging PPI networks enriched with multi-omics data for cancer gene identification.
By employing a self-supervised learning paradigm, SMG leverages GNNs to effectively
accomplish its objectives [95]. Similarly, Cao et al. proposed FFANE, a node represen-
tation technique integrating PPI networks with protein sequence data to enhance PPI
prediction accuracy [96]. Furthermore, Zhang et al. developed PPII-AEAT, a method for
PPI inhibitor prediction based on autoencoders and adversarial training, which extracts
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Table 7 Summary of characterization learning and autoencoders in PPl prediction

Author Model Research method Evaluation parameter
Name

Cuietal.[95] SMG SMG: self-supervised masked graph (The disease subnetwork identification

learning for cancer gene identification  task)
AUPRC=0.87

Caoetal FFANE Protein features fusion using attributed (. cerevisiae) average accuracy =94.28%

[96] network embedding for predicting (H. sapiens) average accuracy =97.69%,
protein-protein interactions (H. pylori) average accuracy =84.05%

Zhangetal.  PPI-AEAT PPII-AEAT: Prediction of protein-protein  (Bcl2-Like/Bak-Bax)

[97] interactions inhibitors based on autoen- MCC=0.84+0.027

coders with adversarial training

F1=0.92+0.012

AUROC=0.93+0.006

key features of small molecule compounds using extended connectivity fingerprints and

Mordred descriptors, undergoing three-stage training within an autoencoder framework

to learn high-level representations and predict inhibitory activity [97] (Tables 7 and 8).

A technical analysis and comparison of PPI

Table 8 Key technologies for PPl prediction

Technology

Advantages

Disadvantages

Applicability

GNN

CNNs

RNN

Effectively captures local and
global dependencies in protein
networks; handles non-Euclid-
ean data.

Excellent at extracting local
features; handles 3D protein
structures well.

Captures long-distance
dependencies in protein se-
quences using LSTM; suitable for
sequence-based tasks.

High computational com-
plexity for large-scale graphs;
prone to overfitting with
sparse data.

Struggles with long-range
dependencies in sequences;
relies on local features.
Susceptible to vanishing
gradient problems; training
on long sequences can be
challenging.

Best for large-scale,
complex network-based
protein interaction
analysis.

Ideal for 3D protein struc-
ture analysis, drug design,
and protein docking tasks.
Best for sequence-based
tasks, especially in protein
sequence analysis and
prediction.
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Table 8 Key technologies for PPl prediction

Technology

Advantages

Disadvantages

Applicability

Transformer

Multi-task
Learning

Multimodal
Learning

Transfer
Learning

Powerful for capturing long-

range dependencies in complex

interactions; excels in multi-
modal data fusion.

Improves model generalization
by leveraging shared layers;
enhances performance across
related tasks.

Integrates multiple data types

to enhance prediction accuracy;

provides a comprehensive
understanding of PPI.

Improves model performance
on small datasets by leveraging
knowledge from large datasets;
enhances generalization.

Requires significant compu-
tational resources and large
datasets for effective training.

Requires careful task-specific
layer design to avoid interfer-
ence between tasks.

Increases computational
complexity; challenges in
merging heterogeneous data
types.

Performance depends on the
similarity between source and
target tasks. It may be limited
when tasks differ significantly.

Most effective in tasks
involving long-range
dependencies and multi-
modal data integration.
Suitable for tasks where
multiple related objec-
tives need to be pre-
dicted simultaneously.
Effective in scenarios
that require integrating
various data types (e.g.,
sequence, structure, and
function).

Best for tasks with limited
data, such as cross-spe-
cies protein interaction
prediction.

Innovative strategies and challenges for PPI

Data quality and generalization ability

In protein-protein interactions (PPIs) prediction, data imbalance constitutes a perva-
sive challenge, primarily manifested as the disproportionate ratio of positive to negative
samples, heterogeneity in data sources, and high-dimensional feature sparsity. Typically,
PPI prediction datasets are characterized by an abundance of negative samples—pro-
tein pairs without interactions—while positive samples representing protein interactions
are relatively scarce, leading models to bias toward negative samples during training and
consequently impairing predictive accuracy [98, 99]. Moreover, PPI data are acquired
via a variety of experimental methods (e.g., yeast two-hybrid, co-immunoprecipitation,
and mass spectrometry) that differ in accuracy and coverage, thereby exacerbating data
heterogeneity. In addition, high-dimensional features such as protein sequences and
structural information may exhibit inherent sparsity, further complicating training, par-

ticularly in imbalanced scenarios.

To address these challenges, researchers have proposed several strategies. Resampling
techniques (e.g., SMOTE-based oversampling and undersampling) are widely employed
to adjust the ratio of positive to negative samples [100, 101]. Cost-sensitive learning
methods, which assign different error penalty weights to positive and negative samples,
enhance the model’s sensitivity to the minority class and mitigate the impact of imbal-
ance [102]. Bagging algorithms, such as random forests, leverage ensemble approaches
by training multiple independent base learners on diverse data subsets and incorporat-
ing feature selection techniques to improve the identification of minority class samples.
Additionally, boosting algorithms like gradient-boosted trees sequentially train base
learners that focus on correcting the errors of their predecessors [103—105]. Recently,
Generative Adversarial Networks (GANs) have been introduced to generate synthetic
positive samples that mimic authentic data, thereby augmenting the positive sample
count and rebalancing the dataset. GANs have demonstrated superior performance
compared to traditional oversampling and undersampling methods by capturing the
underlying data distribution, which enhances both the model’s accuracy and generaliza-

tion ability [103, 106, 107] (Table 9).
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Table 9 Common PPl benchmark datasets

Dataset Dataset Size (Protein Pairs) Data Source Weight Definition  Applicable
Name Species
STRING > 20 million proteins, Experimental data & Confidence score Multiple spe-
100 million interactions prediction (0-1) cies (including
human)
BioGRID > 1 million interactions Experimental validation  Literature support ~ Multiple species
(human, fly, etc.)
HINT >70,000 human interactions  Experimental data & Confidence score Human
prediction
DIP > 100,000 interactions Experimental validation  Literature support ~ Multiple species
MIPS Multiple yeast interactions Experimental validation ~ Experimental Yeast
support
IntAct Hundreds of thousands of Experimental validation  Experimental meth- Multiple spe-
interactions ods & literature cies (including
support human)
Reactome  Thousands of reactions & Experimental validation ~ Reaction type Primarily human
interactions & reaction network annotation
PDB > 170,000 protein structures  Experimental validation  High-confidence Multiple spe-
& interactions experimental cies (including
validation human)
PPI-Disease  Disease-related interactions  Experimental validation  Disease-related Primarily human
& disease annotations annotations
Corum > 20,000 protein complex Experimental validation  Reliability Mammals (pri-
interactions annotation marily human)
MINT Hundreds of thousands of Literature & experimental Literature support ~ Multiple species
interactions validation
KEGG Thousands of biological Experimental data & Confidence score Multiple species

pathways & interactions

prediction models

Interpretability and multidimensional interaction strategies

In protein-protein interactions (PPIs) prediction, balancing model complexity with
interpretability remains a significant challenge. As data complexity and biological
requirements grow, researchers adopt model fusion, hybrid strategies, and innovative
architectures to optimize performance. Moreover, downstream analyses—such as visual-
ization and functional module detection—enhance model interpretability. For instance,
t-SNE dimensionality reduction and clustering visualization techniques can evaluate
model effectiveness when handling heterogeneous and sparse data sources [108]. Addi-
tionally, the open-source tool Cytoscape offers interactive visualization interface with
functionalities for importing, navigating, filtering, clustering, searching, and exporting
networks to examine multidimensional protein interaction networks [109, 110].

PPIs are dynamic relationships that are regulated by multiple factors, including the
cellular environment, the cell cycle, and phosphorylation [111, 112]. These regula-
tory factors drive PPI networks to continuously adapt to changes in the intracellular
and extracellular environments. Consequently, in the domain of PPI prediction, mul-
tidimensional interaction strategies have the capacity to integrate sequence, structure,
network, microenvironment, and dynamic information. The advent of multi-modal
technologies has served to partially circumvent the limitations imposed by single-factor
approaches. For instance, Islam et al. attained 100% accuracy in protein category predic-
tion, thereby substantiating the efficacy of multi-modal data. Additionally, GO symbol
prediction achieved a high accuracy rate of 96% in biological processes (BP), 97% in cel-
lular components (CC), and 98% in molecular functions (MF) [113]. Multidimensional

interaction strategies have been proven to have significant advantages in capturing
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complex relationships in protein functions and achieving more accurate protein func-

tional annotation.

Challenges and opportunities encountered in PPI

Conventional models predicated upon the notion of protein interactions as static are
found to be in error when considering the dynamic nature of these interactions, which
are known to be subject to fluctuations arising from the cell state, environment, and
temporal considerations [114, 115]. It is imperative to acknowledge the dynamic nature
of this phenomenon, as disregarding it frequently results in suboptimal prediction accu-
racy under various physiological conditions. Future research endeavors must prioritize
the development of models capable of capturing these dynamic changes. Moreover,
these models should incorporate uncertainty modeling techniques to effectively inte-
grate temporal and spatial information [116].

The majority of existing PPI prediction methods and their corresponding datasets are
based on model organisms (e.g., human, mouse, and baker’s yeast), and their models and
data exhibit a high degree of adaptation to these species [117, 118]. However, the appli-
cability of existing protein-protein interaction (PPI) prediction methods to non-model
organisms is severely limited, primarily due to differences in protein function, struc-
ture, and interaction networks between species. Consequently, the effective transfer and
application of these model-organism-based PPI prediction methods to different species
has become a major challenge in current research.

Predicting interactions between rare or unannotated proteins is also a major challenge.
A substantial proportion of unannotated proteins may manifest distinctive interaction
patterns, and prevailing models frequently demonstrate suboptimal performance in set-
tings with scarce data. Researchers are exploring the potential of generative adversarial
networks (GANs) to generate synthetic data [119]. They are employing techniques such
as self-supervised learning and transfer learning to enhance the capacity of models to
predict infrequent interactions [120, 121]. Nevertheless, model prediction bias resulting

from data scarcity persists as a significant challenge.

Discussion

The rapid development of artificial intelligence technology has led to significant advance-
ments in the field of protein-protein interactions (PPIs) prediction through the application
of deep learning methods. This technological evolution has resulted in unprecedented levels
of innovation and transformation within the scientific community. The impact of deep learn-
ing on protein prediction is anticipated to be transformative, leading to substantial advance-
ments in the foreseeable future. The review of the latest research over the past five years
provides a reference point for the rapidly evolving industry.

This article reviews the application and progress of deep learning in PPI prediction from
2021 to 2025, summarizing cutting-edge technologies of recent years and examining the con-
tinuously evolving deep learning methods from a new perspective. It analyzes the innova-
tive applications of graph neural networks (GNNs), convolutional neural networks (CNNs),
recurrent neural networks (RNNSs), attention mechanisms, and transformer architectures,
as well as multi-task and multi-modal learning, and transfer learning to improve predic-
tion accuracy. These deep learning methods interact with each other, but each one exhibits

unique performance characteristics and advantages. These powerful computational tools can
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provide insights into the operating modes of structured and networked proteins in organisms
from complex data sets, thereby reconstructing our understanding of PPI and fundamentally
changing our logical understanding of organism systems. Deep learning’s innovation in PPI
prediction is a leap in AIs application in molecular biology, especially in studying protein
interactions. Optimized algorithms, better computing power and more data are driving deep
learning’s growing influence in PPI prediction and broader scope in computational biology.
This technological evolution is transforming our understanding of cellular processes, protein
functions and regulatory networks, paving the way for more accurate predictive models and
advancing research in this critical domain.
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