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Introduction
In the current era, Artificial Intelligence (AI) has become a central driver of interdisci-
plinary innovation and development, particularly in the realm of deep learning. Due to 
its remarkable pattern recognition capabilities, deep learning has led to transformative 
advancements across a wide range of disciplines. The impact of this phenomenon can be 
observed across both academic and practical domains. These innovations have shown 
that advanced computational models can emulate aspects of human reasoning and gen-
erate creative outputs, and in some cases, may even exceed the conventional limits of 
human cognition [1].
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Abstract
Deep learning, a cornerstone of artificial intelligence, is driving rapid advancements 
in computational biology. Protein-protein interactions (PPIs) are fundamental 
regulators of biological functions. With the inclusion of deep learning in PPI research, 
the field is undergoing transformative changes. Therefore, there is an urgent need 
for a comprehensive review and assessment of recent developments to improve 
analytical methods and open up a wider range of biomedical applications. This 
review meticulously assesses deep learning progress in PPI prediction from 2021 
to 2025. We evaluate core architectures (GNNs, CNNs, RNNs) and pioneering 
approaches—attention-driven Transformers, multi-task frameworks, multimodal 
integration of sequence and structural data, transfer learning via BERT and ESM, and 
autoencoders for interaction characterization. Moreover, we examined enhanced 
algorithms for dealing with data imbalances, variations, and high-dimensional 
feature sparsity, as well as industry challenges (including shifting protein interactions, 
interactions with non-model organisms, and rare or unannotated protein 
interactions), and offered perspectives on the future of the field. In summary, this 
review systematically summarizes the latest advances and existing challenges in deep 
learning in the field of protein interaction analysis, providing a valuable reference for 
researchers in the fields of computational biology and deep learning.
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Protein-protein interactions (PPIs) play an essential role in cellular function, influenc-
ing a variety of biological processes such as signal transduction, cell cycle regulation, 
transcriptional regulation, and cytoskeletal dynamics [2]. PPI regulates the interaction of 
transcription factors with their target genes by modulating intracellular signaling path-
ways in response to external stimuli, ensuring precise control over gene expression and 
cell cycle [3, 4]. Furthermore, PPIs are crucial for maintaining cytoskeletal structural sta-
bility and dynamic remodeling. They also play a vital role in protein folding and quality 
control mechanisms, helping prevent the accumulation of misfolded proteins. PPIs can 
be categorized based on their nature, temporal characteristics, and functions: direct and 
indirect interactions, stable and transient interactions, as well as homodimeric and het-
erodimeric interactions. Different types of interactions shape their functional character-
istics and work in concert to regulate cellular biological processes.

Before the advent of deep learning-based predictors, the prediction and analysis of 
PPIs relied predominantly on experimental methods and rudimentary computational 
approaches. Techniques such as the yeast two-hybrid screening, co-immunoprecipita-
tion (Co-IP), mass spectrometry, and immunofluorescence microscopy were instrumen-
tal in elucidating molecular interactions [5–7]. Although effective, these experimental 
techniques were often time-consuming, resource-intensive, and constrained by the lim-
ited number of detectable interactions and the challenges associated with scaling to large 
datasets. Concurrently, computational methods based on sequence similarity, structural 
alignment, and docking were employed to predict PPIs. However, these approaches 
faced significant limitations due to their reliance on manually engineered features and 
difficulties in scaling to accommodate large, complex biological systems [8, 9].

The application of deep learning in computational biology is largely enabled by its 
powerful capability for high-dimensional data processing and automatic feature extrac-
tion [10, 11]. Biological data are often complex and high-dimensional, while deep learn-
ing effectively captures nonlinear relationships and automatically extracts meaningful 
features [12, 13]. In contrast to conventional machine learning algorithms such as sup-
port vector machines and random forests, which rely on manually engineered features 
[14, 15], deep learning can autonomously extract semantic sequence context informa-
tion from sequence and residue information data [16]. This ability makes it particu-
larly well-suited for processing large-scale datasets, as evidenced by breakthroughs like 
AlphaFold 2 [17]. This capability allows for a more comprehensive understanding of PPI 
networks, enabling new insights into cellular processes and facilitating the discovery of 
potential therapeutic targets.

Deep learning has the potential to fundamentally transform the paradigm of PPI pre-
diction, offering unprecedented levels of accuracy and efficiency. This review system-
atically sorts out the latest progress of deep learning in PPI analysis, comprehensively 
summarizes existing methods and key technologies, explores their application pros-
pects, and highlights future trends in PPI prediction. This will provide valuable refer-
ences for researchers in the fields of computational biology and artificial intelligence, 
promoting the advancement and integration of protein interaction research and deep 
learning technology.
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Data availability and issue description
Database

PPI data comprises a diverse range of information, which is primarily employed to 
elucidate protein functions and interactions. Protein sequence data (e.g., amino acid 
sequences) are fundamental to PPI research, as their unique characteristics closely 
relate to interactions. Gene expression data further facilitates the inference of protein 
expression and interaction patterns. In addition, protein structure data—encompass-
ing three-dimensional conformations and domain information—illuminates the roles 
of binding sites and spatial characteristics in mediating interactions. PPI network data, 
generated through experimental methodologies, construct comprehensive interac-
tion maps between proteins, thereby offering an integrative overview of their interplay 
[18–20]. Functional annotation data, including resources such as Gene Ontology (GO) 
and KEGG pathway information, enhance our understanding of proteins’ involvement in 
specific biological processes [21, 22]. Moreover, several publicly available databases and 
datasets, containing extensive experimental results as well as algorithm-based predic-
tions, have been extensively utilized in PPI prediction tasks. These resources have pro-
vided critical support for the training and validation of deep learning models. Table 1 
presents several key datasets commonly employed in PPI prediction tasks, along with 
their sources and pertinent details.

Common PPI tasks

Common tasks in PPI research include interaction prediction, interaction site identifica-
tion, cross-species interaction prediction, as well as the construction and analysis of PPI 
networks [23–25]. The objective of interaction prediction is to ascertain the probability 

Table 1  Commonly used PPI databases and their descriptions
Database Name Description URL
STRING A database for known and predicted protein-protein inter-

actions across various species.
https://string-db.org/

BioGRID A database of protein-protein and gene-gene interactions 
from various species.

https://thebiogrid.
org/

IntAct A protein interaction database maintained by the Euro-
pean Bioinformatics Institute.

https://www.ebi.
ac.uk/intact/

MINT A database of protein-protein interactions, particularly 
from high-throughput experiments.

https://mint.bio.
uniroma2.it/

HPRD A human protein reference database with interaction, 
enzymatic, and cellular localization data.

http://www.hprd.org/

DIP A database of experimentally verified protein-protein 
interactions.

https://dip.doe-mbi.
ucla.edu/

Reactome An open, free database of biological pathways and protein 
interactions.

https://reactome.org/

CORUM A database focused on human protein complexes with 
experimentally validated data.

http://mips.helmholtz-
muenchen.de/corum/

PDB A database storing 3D structures of proteins that also 
includes interaction data.

https://www.rcsb.org/

I2D A database of protein-protein interactions, based on litera-
ture and experimental data.

http://ophid.utoronto.
ca/i2d/

GeneMANIA A tool for analyzing functional gene and protein interac-
tion networks.

http://genemania.org/

PINA A protein-protein interaction network analysis database. https://cbg.garvan.
org.au/pina/

APID A database of protein-protein interactions, with tools for 
visualization and analysis.

http://apid.dep.usal.
es/

https://string-db.org/
https://thebiogrid.org/
https://thebiogrid.org/
https://www.ebi.ac.uk/intact/
https://www.ebi.ac.uk/intact/
https://mint.bio.uniroma2.it/
https://mint.bio.uniroma2.it/
http://www.hprd.org/
https://dip.doe-mbi.ucla.edu/
https://dip.doe-mbi.ucla.edu/
https://reactome.org/
http://mips.helmholtz-muenchen.de/corum/
http://mips.helmholtz-muenchen.de/corum/
https://www.rcsb.org/
http://ophid.utoronto.ca/i2d/
http://ophid.utoronto.ca/i2d/
http://genemania.org/
https://cbg.garvan.org.au/pina/
https://cbg.garvan.org.au/pina/
http://apid.dep.usal.es/
http://apid.dep.usal.es/
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of interactions between proteins. This determination is frequently made through the 
analysis of amino acid sequences, structural characteristics, and gene expression data. 
Interaction site prediction focuses on identifying specific regions on the protein surface 
that are likely to participate in molecular interactions, often relying on high-resolution 
three-dimensional structural data. Cross-species interaction prediction aims to predict 
protein interactions across different species, facilitating the integration of data from 
diverse organisms and enabling transfer learning applications. The construction and 
analysis of PPI networks have yielded invaluable insights into global interaction patterns 
and the identification of functional modules, which are essential for understanding the 
complex regulatory mechanisms governing cellular processes.

Core deep learning models for PPI prediction
Graph-neural networks for protein-protein interactions

Graph neural networks (GNNs) based on graph structures and message passing adeptly 
capture local patterns and global relationships in protein structures [26]. By aggregat-
ing information from neighboring nodes, GNNs generate node representations that 
reveal complex interactions and spatial dependencies in proteins (as shown in Fig. 1B). 
Variants of GNN, such as graph convolutional network (GCN) [27], GraphSAGE, and 
Graph autoencoder (as shown in Fig.  1B), provide flexible toolsets for PPI prediction. 
Graph convolutional networks (GCN), graph attention networks (GAT), GraphSAGE 
(Graph Sampling and Aggregation), and graph autoencoders (GAE) constitute four prin-
cipal architectures in the field of GNN, each addressing specific challenges inherent in 
graph-structured data. GCN employs convolutional operations to aggregate informa-
tion from neighboring nodes, making it highly effective for tasks such as node classi-
fication and graph embedding. As illustrated in Fig. 1A, an input node (denoted as C) 
is processed through successive hidden layers to produce outputs Z1, Z2, Z3, Z4, and so 
on, with each computational layer incorporating both the graph’s adjacency matrix and 
convolution operations on node features. However, the uniform treatment of neighbor-
ing nodes in GCN may limit its ability to capture heterogeneous relationships in more 
complex graphs [28]. In contrast, GAT introduces an attention mechanism that adap-
tively weights neighboring nodes based on their relevance, thereby enhancing the flex-
ibility of information propagation in graphs with diverse interaction patterns [29]. The 
GAE framework utilizes an autoencoder-based approach, comprising an encoder and a 
decoder (see Fig. 1B). The encoder processes the graph data through a series of GCN 
layers to generate compact, low-dimensional node embeddings (Z and ZT), which are 
subsequently employed by the decoder either to reconstruct the graph structure or to 
facilitate predictive tasks, such as node classification and graph reconstruction [30]. 
Meanwhile, GraphSAGE is specifically designed for large-scale graph processing, uti-
lizing neighbor sampling and feature aggregation to significantly reduce computational 
complexity, making it especially well-suited for applications involving massive graph 
data [31].

In this context, researchers have introduced several innovative architectures, includ-
ing the AG-GATCN framework developed by Yang et al., which integrates GAT and 
temporal convolutional networks (TCNs) to provide robust solutions against noise 
interference in Protein-protein interactions analysis [32]. Zhong et al. developed the 
RGCNPPIS system that integrates GCN and GraphSAGE, enabling simultaneous 
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extraction of macro-scale topological patterns and micro-scale structural motifs [33]. 
Wu and Cheng introduced Deep Graph Auto-Encoder (DGAE), which innovatively 
combines canonical auto-encoders with graph auto-encoding mechanisms, enabling 
hierarchical representation learning for optimizing low-dimensional embeddings of bio-
molecular interaction graphs [34].

The continuous-time message passing paradigm has emerged as a pivotal framework 
for modeling protein conformation dynamics. The GSALIDP architecture, introduced 
by Zheng et al., is a hybrid GraphSAGE-LSTM network designed to predict the dynamic 

Fig. 1  Examples of three traditional artificial neural networks. (A) Graph Convolutional Network. (B) Graph autoen-
coder. (C) Convolutional Neural Network. (D) Recurrent Neural Network
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interaction patterns of intrinsically disordered proteins (IDPs). It combines the Graph-
SAGE algorithm for capturing graph-based structural information from multiple con-
formations of IDPs and an LSTM network to process the temporal evolution of these 
conformations. This approach models the fluctuating nature of IDP conformations as 
dynamic graphs, enabling the prediction of interaction sites and contact residue pairs 
between IDPs [35]. Complementarily, Wang et al. formulated the Relational Graph Net-
work (RGN) approach under this paradigm, which established hierarchical graph rep-
resentations of protein structures through coordinated integration of spectral graph 
convolutions and attention-based edge weighting. This dual-modality architecture 
enables multi-scale topological feature extraction, significantly advancing the precision 
of PPI trajectory prediction [36].

Recent advancements in neural network architectures leverage residual connectivity, 
convolutional kernels, and hybrid dynamic adjustment strategies to enhance multivari-
ate modeling of structured data, such as graph-based and 3D protein representations. 
For example, Li et al. integrated residual connectivity, dense connectivity, and dilation 
convolution into GCNs, significantly enhancing training depth and stability [37]. SO(3) 
is a mathematical concept representing the group of all 3D rotations, whereas isometric 
neural networks are designed to preserve these rotational symmetries. These networks 
are typically based on graph or spherical convolutional neural networks to maintain 
isometry in machine learning. Based on the applicability of rotation invariance in pro-
tein structures, Aykent and Xia proposed GBPNet [38], an SO(3)-equivariant neural 
network for protein structure representation, resulting in notable performance gains in 
downstream tasks.

Convolutional neural networks for protein-protein interactions

A typical CNN module consists of convolutional layers, pooling layers, fully con-
nected layers, and additional architectural enhancements such as residual shortcuts (as 
shown in Fig. 1C) [39, 40]. Recently, three-dimensional convolutional neural networks 
(3D-CNNs) have been employed for protein structure integration due to their advan-
tages in modeling multi-level spatial features and optimizing geometric invariance.

Advancements in 3D structural representation have significantly enhanced the mod-
eling of spatial and geometric features in protein analysis and drug design, primar-
ily through the application of 3D-CNNs and geometric invariance-based approaches. 
Three-dimensional convolutional neural networks (3D CNNs) have been shown to excel 
in the capture of spatial features. RepVGG, a lightweight convolutional neural network 
initially designed for image classification tasks, offers advantages in terms of computa-
tional efficiency and inference speed. Guo et al. built upon the foundations laid out by 
RepVGG, extending the framework to propose the TRScore model: a protein docking 
method based on 3D RepVGG. This method has been demonstrated to accurately dis-
tinguish favourable near-native conformations from unfavourable non-native docking 
complexes, exhibiting strong performance without requiring additional input features 
[41]. To address 3D-CNN’s sensitivity to rotational and translational variations in initial 
structures, Chen et al. introduced Eq. 3DCNN that integrates rotation-invariant mod-
ules to predict protein properties and capture non-geometric features [42]. Zhu et al. 
proposed DeepRank, a deep learning-based framework tailored for data mining of 3D 
PPI interfaces [43]. In the context of drug design, Sree et al. developed a 3D-CNN-based 
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method for protein structure prediction to enhance the accuracy of drug recommenda-
tion systems [44].

Moreover, leveraging the effectiveness of multi-neural network architectures, Li et al. 
introduced a PPI prediction model called MARPPI, which employs a two-channel frame-
work combined with a multi-scale residual network design [45]. Zhang et al. developed 
the DeepGOA, which integrates protein sequence data and PPI network [46]. DeepGOA 
utilizes Bi-LSTM (Bidirectional Long Short-Term Memory) with multi-scale CNNs to 
generate semantic features of protein sequences, and the DeepWalk technique to obtain 
the representation of PPI networks. These two representations were jointly used to pre-
dict protein functions, demonstrating superior performance compared to DeepGO and 
BLAST in practice. In addition, CNN-based architecture was also employed to predict 
the location of water molecules on protein chains. Specifically, Park and Seok introduced 
GalaxyWater-CNN for this purpose [47].

Recurrent neural networks for protein-protein interactions

In the context of Protein-protein interactions prediction, recurrent neural networks 
(RNNs) have been employed to process and analyze the semantic information of protein 
sequences (as shown in Fig. 1D) [48]. The input at each time step (e.g., Xt, X0, X1, X2, 
etc.) represents different protein fragments or features, which are processed by a shared 
computational unit A to generate hidden states (e.g., h0, h1, h2, h3). These hidden states 
contain contextual information from the protein sequence, reflecting potential interac-
tions between proteins. It is evident that RNN is capable of capturing the contextual 
dependencies between amino acids in protein sequences, thereby enabling the effective 
prediction of protein interactions and the revelation of significant connections in pro-
tein function and biological processes. RNN-based models excel in modeling sequen-
tial correlated data across multiple scales to enhance functionality. A substantial body 
of research has leveraged this capability to learn protein sequence representations and 
develop hybrid models by integrating diverse data structure methods, such as the pro-
tein localization approach proposed by Alakus and Turkoglu, which combines AVL trees 
with bi-directional RNNs to validate interactions between SARS-CoV-2 and human pro-
teins [49].

Long Short-Term Memory (LSTM) networks have become a critical component in 
PPI prediction, due to their proficiency in capturing sequence order and residue depen-
dencies. The development of long-range dependency learning has shed light on the 
intricate relationship between protein folding and function by capturing interactions 
between non-neighboring residues. In LSTM-based deep learning frameworks, regu-
larization methods have been leveraged to improve performance. For instance, Deng 
et al. proposed a hybrid deep learning framework combining CNNs and LSTMs, which 
optimized performance through logistic regression with L1 regularization [50]. Further-
more, Zhou et al. proposed a method for calculating the frustration index by evaluating 
the additional stabilization energy of residue pairs relative to statistical energy distri-
butions, which is also used for PPI prediction [51]. The LSTM-PHV model developed 
by Sho Tsukiyama et al. innovatively utilizes amino acid sequences to predict protein-
protein interactions (PPI) between humans and viruses by combining long short-term 
memory (LSTM) networks and word2vec technology. This method effectively captures 
the contextual information of sequences by converting amino acid sequences into “word 
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vectors” and using LSTM to learn the complex dependencies between protein sequences 
[52]. The RAPPPID method, proposed by Joseph Szymborski and Amin Emad, integrates 
a dual AWD-LSTM network with multiple regularization techniques. This approach 
aims to effectively address the generalization issues of traditional PPI prediction models 
in the absence of unseen proteins and data bias. The innovative network architecture 
ensures stability in complex datasets [53].

Exploring emerging techniques and approaches
Network optimization of attention mechanisms

Deep learning methods based on attention are reshaping the technical paradigm of PPI 
prediction [54–56]. The attention mechanism enhances prediction accuracy by estab-
lishing residue-level long-range dependency modeling and using dynamic weights to 
analyze higher-order protein relationships. The cross-attention mechanism effectively 
constructs representations across diverse modalities, while the gated fusion architec-
ture enhances multi-scale feature extraction. Representative works in this field include: 
Li et al. proposed SDNN-PPI that uses amino acid composition (AAC), conjoint triad 
(CT), and auto covariance (AC) features while employing a self-attention mechanism to 
enhance the feature extraction ability of deep neural networks (DNNs), achieving excel-
lent prediction accuracy on multiple datasets [57]. Zhai et al. proposed LGS-PPIS, a 
local-global information aggregation framework combining an edge-aware graph convo-
lutional network (EA-GCN) and a self-attention (SA-RIM) module for PPIS prediction 
[58]. Conversely, Wu et al. proposed AttentionEP, integrating cross- and self-attention 
mechanisms, extracting spatial and temporal features through GCN, GAT, and BiLSTM, 
integrating subcellular localization data, and employing a ResNet classifier for key pro-
tein prediction [56, 59].

The attention mechanism generates a dynamic network through an interpretable 
weight distribution, visualizing and analyzing the protein interface recognition process. 
Its hierarchical attention model uncovers the coupling patterns among residue-level fea-
tures, enabling researchers to deconstruct the multi-scale feature synergy mechanism 
at the molecular dynamics level and offering computational evidence for analyzing pro-
tein conformational selection preferences. Song et al. proposed a method for clustering 
spatially resolved gene expression data based on graph-regularized convolutional neu-
ral networks, supporting biological interpretation of gene clusters in the spatial context 
[60]. Tang et al. proposed HANPPIS, combining six features: PSSM, secondary structure, 
pre-trained vectors, hydrophilicity, and amino acid position [61]. Wang et al. proposed 
ECA-PHV, an interpretable model based on an effective channel attention mechanism 
for predicting human-virus PPI [62].

Furthermore, several innovative PPI prediction frameworks and auxiliary models 
have emerged. Li and Liu proposed MuToN, a geometric deep learning-based frame-
work that uses a geometric attention network to identify changes in the binding inter-
face caused by mutations and calculate the allosteric effects of amino acids [63]. Ieremie 
et al. developed the TransformerGO model, which generates a graph representation of 
GO terms using the node2vec algorithm. This method dynamically captures semantic 
similarity between GO terms (The GO nomenclature is a standardized term employed 
in Gene Ontology (GO) to describe the functions of genes and their products, the bio-
logical processes in which they are involved, and the cellular components in which they 
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are located), outperforming traditional metrics and existing machine learning methods 
on Saccharomyces cerevisiae and Homo sapiens datasets [64] (Table 2).

Transformer model structure

The transformer network is a novel model architecture consisting of multiple identical 
layers, each including two main components: a multi-head self-attention mechanism 
and a simple position-aware feed-forward fully connected network (as shown in Fig. 2) 
[65].

Architectures based on multiple transformer layers have been incorporated into an 
ensemble framework and achieved impressive results on pre-trained protein language 
models. EnsemPPIS, proposed by Mou et al., is an ensemble framework based on trans-
former and gated convolutional networks. It extracts residue interactions in protein 
sequences through transformer layers and an ensemble learning strategy to integrate 
global and local sequence features [66]. The MaTPIP deep learning framework, proposed 
by X. Li et al., integrates CNN and transformer architectures, leveraging a pretrained 
protein language model (PLM) along with manually curated protein sequence data. This 
approach demonstrates superior performance on both human and cross-species PPI 
benchmark datasets [67]. Meanwhile, the transformer architecture was further extended 
by Kang et al., who proposed HN-PPISP. This innovative hybrid neural network model 
integrates the MLP-Mixer module with a two-stage multi-branch transformer struc-
ture, exploiting the advantages of attention mechanisms and parallel feature aggregation. 

Table 2  Summary of network optimization strategies using attention mechanisms for PPI prediction
Author Model Name Research method Evaluation parameter
Li et al. [57] SDNN-PPI SDNN-PPI, which utilizes AAC, CT, and AC 

features and uses a self-attention mecha-
nism to enhance DNN feature extraction 
capability.

(H. sapiens)
ACC = 0.9894 ± 0.0019
MCC = 0.9757 ± 0.0060
AUC = 0.9960

Zhai et al. [58] LGS-PPIS LGS-PPIS, a local-global information 
aggregation framework combining edge 
sensing GCN and self-attention modules.

ACC = 0.802
F1 = 0.502
MCC = 0.398
AUROC = 0.819

Wu et al. [59] AttentionEP AttentionEP’s multi-scale feature fusion 
method combines cross-attention and 
self-attention mechanisms.

ACC = 0.9610
FScore = 0.8262
AUC = 0.9793
Precision = 0.8627
BACC = 0.8880

Song et al.[60] CNN A clustering method of spatially resolved 
gene expression data based on graph 
regularization and CNN.

ACC = 0.933923
F1 = 0.932646
AUC = 0.935 120

Tang et al. [61] HANPPIS HANPPIS, a method based on a hierarchi-
cal attention mechanism.

ACC = 0.631
Precision = 0.291
F1 = 0.393

Wang et al. [62] ECA - PHV ECA - PHV for predicting human-viral PPI. (TR1) ACC = 0.9221
(TR2) ACC = 0.9263
(TS1) ACC = 0.869
(TS2) ACC = 0.880

Li and Liu [63] MuToN MuToN, a geometric deep learning 
based framework.

PCC = 0.991
Spearman correlation = 0.62

Ieremie et al. 
[64]

TransformerGO The TransformerGO model generates 
graph embeddings of GO terms through 
the use of the node2vec algorithm, with 
the purpose of capturing the seman-
tic similarity between GO terms in a 
dynamic manner.

S. cerevisiae, GO-set size (10, 
20) AUC = 0.973
H. sapiens, GO-set size (10, 
30) AUC = 0.953
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This approach markedly boosts the accuracy of PPI site prediction, outperforming seven 
established methods [68].

Furthermore, point cloud-based deep learning techniques offer a promising geometry-
driven paradigm for resolving protein 3D structures. Wang et al. were the first to apply 
PointNet and PointTransformer in predicting protein-ligand binding affinity, which sig-
nificantly improved prediction accuracy [69]. Chen et al. also utilized PointNet and 3D 
point cloud neural networks to evaluate protein docking models [70]. These efforts con-
tributed to further improvements in the accuracy of docking predictions, highlighting 
the potential of point cloud-based approaches in computational protein structure analy-
sis (Table 3).

Multitasking learning

In PPI prediction, a multi-task learning framework addresses multiple tasks via shared 
layers, directing the training process by constraining layer optimization. The shared lay-
ers were trained to obtain the shared feature dependencies across multiple tasks, with 
task-specific layers dedicated to each individual task. The shared layers enable the model 
to generalize across tasks, improving its overall performance. (as shown in Fig. 3A). This 
enhancement is achieved by considering both the protein’s interaction and its biologi-
cally notable features.

Li et al. have proposed a novel multi-task graph structure learning method, MgslaPPI. 
The PPI prediction task is specifically decomposed into two stages: amino acid resi-
due reconstruction (A2RR) and protein interaction prediction (PIP). An auxiliary task, 
protein feature reconstruction (PFR) and mask interaction prediction (MIP), is intro-
duced to enhance the model’s capacity to predict interactions [71]. Similarly, Yang et al. 

Fig. 2  The transformer framework is comprised of two principal components. The encoder processes an input se-
quence to produce an internal representation using self-attention and feed-forward mechanisms. These elements 
enable the model to emphasise the pertinent components. The feed-forward layer transforms each input token 
independently in order to capture complex patterns. The encoder produces an encoded representation, which is 
then transmitted to the decoder. The decoder employs self-attention mechanisms to refine the output
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proposed a novel framework, MpbPPI, which integrates a multi-task pre-training strat-
egy and geometric isometry preservation techniques to predict the effect of amino acid 
mutations on PPI. Efforts have also been made to address challenges like sample bias 
and missing data through the application of multi-task learning [72]. Capel et al. pro-
posed a multi-task learning strategy to solve the problem of data scarcity in predicting 
PPI interface residues. Incorporating tasks such as secondary structure prediction, sol-
vent accessibility prediction, and buried residues identification into a multi-task learning 

Table 3  Summary of transformer-based architecture for PPI prediction
Author Model Name Research method Evaluation parameter
Mou et al. 
[66]

EnsemPPIS EnsemPPIS, an integration framework 
based on transformer and gated convo-
lutional networks.

(1jtdB) MCC = 0.760
(1b6cA) MCC = 0.542

X. Li et al. [67] MaTPIP The MaTPIP deep learning framework 
works by fusing pre-trained protein 
language models.

(S. cerevisiae)
AUPR = 56.6
F-Score = 54.4
AUROC = 87.5

Kang et al. 
[68]

HHN-PPISP HHN-PPISP, an innovative hybrid neural 
network model, combines the transform-
er architecture’s MLP-Mixer module and 
two-stage multi-branch module.

ACC = 0.667
MCC = 0.244
F-measure = 0.427 
AUCPR = 0.360

Wang et al. 
[69]

PointNet and 
PointTransformer

A point cloud-based deep learning strat-
egy for protein–ligand binding affinity 
prediction

Average Rp = 0.827

Chen et al. 
[70]

PointDE PointDE: Protein Docking Evaluation 
Using 3D Point Cloud Neural Network

Top 1: Success rate = 65.6%, 
surpassing GNN-DOVE (64.1%).
Top 5: Success rate = 90.1%, 
surpassing GNN-DOVE (84.9%).
Top 10: Success rate = 91.8%, 
surpassing GNN-DOVE (86.7%).

Fig. 3  Overview of multi-task learning and multimodal learning (A) Multi-task learning mechanism (B) Interdisci-
plinary multimodal expansion applications
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framework enables the model to mitigate the impact of missing PPI annotation data [73] 
(Table 4).

Multimodal approach and integrated model

Amid the rapid advancement of multi-omics data analysis, integrative models that com-
bine diverse data modalities—such as sequence, structural, and functional data—are 
widely employed to improve prediction accuracy and shed light on interaction mecha-
nisms [74]. For instance, Kang et al. introduced a multimodal approach that fuses struc-
tural and sequence data, where a pre-trained transformer network extracts structural 
features, and a masked language model encodes sequence information [75]. Similarly, 
Chen and Hu combined sequence, structure, and adjacency features, to predict residue-
residue interactions, employing a stacked meta-learning method [76].

In the domain of interdisciplinary multi-modal extended applications, Rafiei et al. pro-
posed a deep learning method called DeepTraSynergy, which integrates multiple data 
types, including drug-target interactions, protein-protein interactions, and cell-target 
interactions. DeepTraSynergy contains a transformer model to extract drug features. 
Through multitask learning, the model simultaneously predicts drug toxicity, drug-
target interactions, and drug combination synergy. The model employs node2vec for 
protein representation and enhances prediction accuracy by optimizing multiple loss 
functions, including synergy loss and toxicity loss (as shown in Fig. 3B) [77]. Researchers 
use knowledge graphs (e.g., protein families [78]) to represent and integrate associations 
between data from diverse modalities. The independence of neural networks enables 
modular design according to functional purpose, with combined integrated models 
offering advantages of different neural networks for multi-level and multi-dimensional 
analysis capabilities. Baek et al. proposed a three-track neural network model integrat-
ing one-dimensional sequences, two-dimensional distance maps, and three-dimensional 
structural information for protein structure and interaction prediction, demonstrat-
ing comparable performance to the DeepMind system at CASP14 [79]. Concurrently, 
Asim et al. presented ADH-PPI, a deep hybrid model integrating FastText embedding 
and LSTM, CNN, and self-attention layers, enhancing accuracy by 4% and the Matthews 
correlation coefficient by 6% relative to prevailing methods in PPI prediction [80].

The multi-view model derived from AlphaFold represents a significant advancement 
in computational protein analysis. For instance, Meng et al. introduced MVGNN-PPIS, a 
multi-view graph neural network model that combines AlphaFold3 predictive structures 
with migration learning, achieving superior performance over existing methods across 

Table 4  Summarizes the contribution of Multi-task learning to the study of Protein-Protein 
interactions
Author Model 

Name
Research method Evaluation parameter

Li et al. [71] MgslaPPI The MgslaPPI is divided into two stages: A2RR and 
PIP. An auxiliary task, PFR and MIP, is introduced to 
enhance the model’s capacity to predict interactions.

SHS27K
F1 = 79.95%
SHS148K
F1 = 83.78%

Yang et al. 
[72]

MpbPPI MpbPPI: a multi-task pre-training-based equivariant 
approach for the prediction of the effect of amino acid 
mutations on protein-protein interactions.

(S4169) Rp = 0.795 ± 0.004
(S1131) Rp = 0.865 ± 0.003
(S645) Rp = 0.615 ± 0.013
(M1101) RP = 0.787 ± 0.002

Capel et al. 
[73]

Customized 
OPUS-TASS

Multi-task learning to leverage partially annotated data 
for PPI interface prediction.

AUC ROC = 0.732 ± 0.004
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multiple PPI datasets [24]. Analogously, the AlphaBridge framework stands as a cutting-
edge breakthrough in computational protein complex analysis, leveraging the advanced 
technology of AlphaFold3 [81]. This framework employs key metrics, including the 
predicted local distance difference test (pLDDT), pairwise alignment error (PAE), and 
predicted distance error (PDE) [82], which are innovatively incorporated into a graph-
based clustering algorithm. With its unique architecture, the AlphaBridge framework is 
capable of accurately identifying and deeply analyzing a variety of interaction interfaces 
within macromolecular complexes, whether they involve protein-protein interactions or 
protein-nucleic acid associations, ultimately providing precise insights.

Furthermore, researchers have leveraged the integration of multi-omics data to 
achieve more accurate prediction of protein complex formation, thereby facilitating a 
deeper understanding of diverse biological processes within cells [83]. Consequently, 
this enhanced efficiency in disease prediction and drug research, and development has 
led to significant advances in the field [84]. For example, Schulte-Sasse et al. developed 
EMOGI, a graph convolutional network that seamlessly integrates multi-omics pan-can-
cer data with PPI networks for cancer gene prediction [85] (Table 5).

Transfer learning and pre-trained models

Transfer learning is a machine learning approach that improves model precision and 
generalizability by pre-training on a large dataset and subsequently applying the result-
ing model to a smaller dataset. The widespread use of transfer learning in bioinformatics, 
exemplified by applications like gene expression prediction and cancer diagnosis, under-
scores its potential when data is limited. For instance, Qiao et al. proposed ProNEP, a 
deep learning algorithm combining transfer learning and a bilinear attention network 

Table 5  Summary of multimodal approaches and integrated models in PPI prediction
Author Model Name Research method Evaluation parameter
Kang et al. [75] AFTGAN Multi-type PPI prediction based on 

attention-free converter and graph at-
tention network.

(SHS27K)
Micro-F1 = 0.867
Hamming Loss = 0.087
(SHS148K)
Micro-F1 = 0.920
Hamming Loss = 0.052

Kuan-Hsi Chen 
and Yuh-Jyh Hu. 
[76]

RRI-Meta Residue–Residue interaction prediction 
via stacked Meta-Learning.

(3HMX) AUROC = 0.97
(1ML0) AUROC = 0.74
(1RKE) AUROC = 0.86

Rafiei et al. [77] DeepTraSynergy Drug combinations using multimodal 
deep learning with transformers.

(DrugCombDB)
ACC = 0.7715
AUC-ROC = 0.8321
F1 = 0.7608
(OncologyScreen)
ACC = 0.8052
AUC-ROC = 0.8637
F1 = 0.8112

Baek et al. [79] BAKER-ROSETTASERVER 
and BAKER

Accurate prediction of protein struc-
tures and interactions using a three-
track neural network.

To a level comparable 
to AlphaFold2.

Asim et al. [80] ADH-PPI Deep hybrid model combining FastText 
embedding and LSTM, CNN, and self-
attention layer.

ACC = 0.9263
MCC = 0.9144
Precision = 0.9284

Schulte-Sasse et 
al. [85]

EMOGI Integration of multiomics data with 
graph convolutional networks to 
identify new cancer genes and their 
associated molecular mechanisms.

——
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for high-throughput identification of NLR receptor-pathogen effector interactions [86]. 
Concurrently, Yang et al. combined evolutionary sequence features, Siamese convolu-
tional neural networks, and multilayer perceptrons, introducing two transfer learning 
strategies (‘freeze’ and ‘fine-tune’) to significantly improve human-virus PPI prediction 
performance [87].

Pretrained models based on transformer structures, such as BERT and ESM, have 
become mainstream methods for transfer learning-based PPI prediction [88, 89]. The 
effectiveness of BERT can be attributed to its bidirectional encoding and pretraining-
fine-tuning, enabling it to learn a general language representation from substantial unla-
beled data. Given this applicability, Liu et al. proposed the MindSpore ProteinBERT 
(MP-BERT) model, a transformer-based bidirectional encoder representation using pro-
tein pairs as input, suitable for PPI identification and site location [90]. Warikoo et al. 
developed LBERT, a transformer model combining local and global context, significantly 
improving classification accuracy for PPI, DDI, and PER extraction tasks [91]. The ESM 
architecture can also learn universal protein representations through large-scale pre-
training, similar to BERT. The ES2M architecture core relies on evolutionary data (e.g., 
diverse genomic sequences) for deep protein sequence representation learning and fea-
ture capturing related to biological functions. Li et al. developed a hybrid model using 
the ESM-2 model to encode protein sequences into embedding representations with 
high-dimensional features extracted [92]. In a comparable study, Yang et al. developed 
TUnA, a hybrid model combining the ESM-2 and transformer encoders. TUnA intro-
duces the Spectral-normalized Neural Gaussian Process and uncertainty estimation to 
generate robust PPI predictions [93] (Table 6).

Protein-protein interaction characterization learning and autoencoders

In the field of PPI prediction, feature extraction serves as a critical foundational step. 
As illustrated in Fig.  4, converting protein sequences or structures into representative 

Table 6  Summary of transfer learning and pre-trained models used in PPI prediction
Author Model Name Research method Evaluation parameter
Qiao et al. 
[86]

ProNEP ProNEP, a deep learning algorithm combin-
ing transfer learning and bilinear attention 
networks.

AUROC = 0.9292
AUPRC = 0.7134

Yang et al. 
[87]

Siamese CNN archi-
tecture and MLP

Evolutionary sequence graph features and 
a twin convolutional neural network (CNN) 
architecture combined with a multilayer 
perceptron model.

(HIV) ACC = 98.65
Precision = 95.16
F1-score = 92.36
AUPRC = 0.974

Liu et al. [90] MindSpore Protein-
BERT (MP-BERT)

MindSpore ProteinBERT (MP-BERT) model, 
a transformer-based bidirectional encoder 
representation.

(H. sapiens)
ACC = 0.9818
Precision = 0.9732
F1 = 0.9820
MCC = 0.9639

Warikoo et 
al. [91]

LBERT A lexical awareness transformer model that 
combines local and global context.

Precision = 0.858
F1-score = 0.855

Li et al. [92] ESMDNN-PPI A hybrid model that employs the ESM-2 
model to encode protein sequences as em-
bedded representations.

AUPR = 0.9306
ROC = 0.9869

Parkinson et 
al. [93]

TUnA TUnA, the model combines an ESM-2 embed-
ding with a transformer encoder and intro-
duces a spectral-normalized neural Gaussian 
process.

AUROC = 0.7
AUPR = 0.69
F1 = 0.65
MCC = 0.3
Balanced accuracy = 0.65
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feature vectors is commonly employed. Several sequence encoding methods have been 
widely adopted, including one-hot encoding, which represents each amino acid as an 
independent binary vector to facilitate sequence processing; amino acid physicochemi-
cal property encoding, such as AAindex, which quantifies properties like polarity, 
charge, and hydrophobicity; and embedding techniques such as Word2Vec, which map 
protein sequences to a low-dimensional space by capturing the contextual relationships 
among amino acids. These generated vectors exhibit complex semantic information 
and enhanced expressive capabilities. Subsequently, advanced deep learning models are 
employed for intricate feature extraction and pattern recognition, followed by further 
modeling using machine learning approaches.

Autoencoders (AEs) represent a significant breakthrough in the representation learn-
ing of PPIs, with the potential to greatly enhance the accuracy of sequence and structure 
encoding. As illustrated in Fig. 5, this advancement is achieved by mapping and recon-
structing protein data in a low-dimensional latent space, which helps capture intrinsic 
relationships. AE is a model used for unsupervised learning to learn low-dimensional 
representations of data, typically for tasks like data compression and reconstruction 
[94]. GAE (Graph Autoencoder) extends this concept to graph data, using GNNs in 
the encoder to capture node embeddings based on graph structure and reconstruct the 
graph (e.g., predicting node connections) in the decoder. In essence, GAE is a graph-spe-
cific version of AE, designed to handle the complexities of graph-structured data [30].

Cui et al. introduced SMG (self-supervised masked graph learning), a novel method 
leveraging PPI networks enriched with multi-omics data for cancer gene identification. 
By employing a self-supervised learning paradigm, SMG leverages GNNs to effectively 
accomplish its objectives [95]. Similarly, Cao et al. proposed FFANE, a node represen-
tation technique integrating PPI networks with protein sequence data to enhance PPI 
prediction accuracy [96]. Furthermore, Zhang et al. developed PPII-AEAT, a method for 
PPI inhibitor prediction based on autoencoders and adversarial training, which extracts 

Fig. 4  Protein-protein interactions characterization learning
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key features of small molecule compounds using extended connectivity fingerprints and 
Mordred descriptors, undergoing three-stage training within an autoencoder framework 
to learn high-level representations and predict inhibitory activity [97] (Tables 7 and 8).

A technical analysis and comparison of PPI

Table 8  Key technologies for PPI prediction
Technology Advantages Disadvantages Applicability
GNN Effectively captures local and 

global dependencies in protein 
networks; handles non-Euclid-
ean data.

High computational com-
plexity for large-scale graphs; 
prone to overfitting with 
sparse data.

Best for large-scale, 
complex network-based 
protein interaction 
analysis.

CNNs Excellent at extracting local 
features; handles 3D protein 
structures well.

Struggles with long-range 
dependencies in sequences; 
relies on local features.

Ideal for 3D protein struc-
ture analysis, drug design, 
and protein docking tasks.

RNN Captures long-distance 
dependencies in protein se-
quences using LSTM; suitable for 
sequence-based tasks.

Susceptible to vanishing 
gradient problems; training 
on long sequences can be 
challenging.

Best for sequence-based 
tasks, especially in protein 
sequence analysis and 
prediction.

Table 7  Summary of characterization learning and autoencoders in PPI prediction
Author Model 

Name
Research method Evaluation parameter

Cui et al. [95] SMG SMG: self-supervised masked graph 
learning for cancer gene identification

(The disease subnetwork identification 
task)
AUPRC = 0.87

Cao et al. 
[96]

FFANE Protein features fusion using attributed 
network embedding for predicting 
protein-protein interactions

(S. cerevisiae) average accuracy = 94.28%
(H. sapiens) average accuracy = 97.69%,
(H. pylori) average accuracy = 84.05%

Zhang et al. 
[97]

PPII-AEAT PPII-AEAT: Prediction of protein-protein 
interactions inhibitors based on autoen-
coders with adversarial training

(Bcl2-Like/Bak-Bax)
MCC = 0.84 ± 0.027
F1 = 0.92 ± 0.012
AUROC = 0.93 ± 0.006

Fig. 5  The mechanism of autoencoders
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Table 8  Key technologies for PPI prediction
Technology Advantages Disadvantages Applicability
Transformer Powerful for capturing long-

range dependencies in complex 
interactions; excels in multi-
modal data fusion.

Requires significant compu-
tational resources and large 
datasets for effective training.

Most effective in tasks 
involving long-range 
dependencies and multi-
modal data integration.

Multi-task 
Learning

Improves model generalization 
by leveraging shared layers; 
enhances performance across 
related tasks.

Requires careful task-specific 
layer design to avoid interfer-
ence between tasks.

Suitable for tasks where 
multiple related objec-
tives need to be pre-
dicted simultaneously.

Multimodal 
Learning

Integrates multiple data types 
to enhance prediction accuracy; 
provides a comprehensive 
understanding of PPI.

Increases computational 
complexity; challenges in 
merging heterogeneous data 
types.

Effective in scenarios 
that require integrating 
various data types (e.g., 
sequence, structure, and 
function).

Transfer 
Learning

Improves model performance 
on small datasets by leveraging 
knowledge from large datasets; 
enhances generalization.

Performance depends on the 
similarity between source and 
target tasks. It may be limited 
when tasks differ significantly.

Best for tasks with limited 
data, such as cross-spe-
cies protein interaction 
prediction.

Innovative strategies and challenges for PPI
Data quality and generalization ability

In protein-protein interactions (PPIs) prediction, data imbalance constitutes a perva-
sive challenge, primarily manifested as the disproportionate ratio of positive to negative 
samples, heterogeneity in data sources, and high-dimensional feature sparsity. Typically, 
PPI prediction datasets are characterized by an abundance of negative samples—pro-
tein pairs without interactions—while positive samples representing protein interactions 
are relatively scarce, leading models to bias toward negative samples during training and 
consequently impairing predictive accuracy [98, 99]. Moreover, PPI data are acquired 
via a variety of experimental methods (e.g., yeast two-hybrid, co-immunoprecipitation, 
and mass spectrometry) that differ in accuracy and coverage, thereby exacerbating data 
heterogeneity. In addition, high-dimensional features such as protein sequences and 
structural information may exhibit inherent sparsity, further complicating training, par-
ticularly in imbalanced scenarios.

To address these challenges, researchers have proposed several strategies. Resampling 
techniques (e.g., SMOTE-based oversampling and undersampling) are widely employed 
to adjust the ratio of positive to negative samples [100, 101]. Cost-sensitive learning 
methods, which assign different error penalty weights to positive and negative samples, 
enhance the model’s sensitivity to the minority class and mitigate the impact of imbal-
ance [102]. Bagging algorithms, such as random forests, leverage ensemble approaches 
by training multiple independent base learners on diverse data subsets and incorporat-
ing feature selection techniques to improve the identification of minority class samples. 
Additionally, boosting algorithms like gradient-boosted trees sequentially train base 
learners that focus on correcting the errors of their predecessors [103–105]. Recently, 
Generative Adversarial Networks (GANs) have been introduced to generate synthetic 
positive samples that mimic authentic data, thereby augmenting the positive sample 
count and rebalancing the dataset. GANs have demonstrated superior performance 
compared to traditional oversampling and undersampling methods by capturing the 
underlying data distribution, which enhances both the model’s accuracy and generaliza-
tion ability [103, 106, 107] (Table 9).
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Interpretability and multidimensional interaction strategies

In protein-protein interactions (PPIs) prediction, balancing model complexity with 
interpretability remains a significant challenge. As data complexity and biological 
requirements grow, researchers adopt model fusion, hybrid strategies, and innovative 
architectures to optimize performance. Moreover, downstream analyses—such as visual-
ization and functional module detection—enhance model interpretability. For instance, 
t-SNE dimensionality reduction and clustering visualization techniques can evaluate 
model effectiveness when handling heterogeneous and sparse data sources [108]. Addi-
tionally, the open-source tool Cytoscape offers interactive visualization interface with 
functionalities for importing, navigating, filtering, clustering, searching, and exporting 
networks to examine multidimensional protein interaction networks [109, 110].

PPIs are dynamic relationships that are regulated by multiple factors, including the 
cellular environment, the cell cycle, and phosphorylation [111, 112]. These regula-
tory factors drive PPI networks to continuously adapt to changes in the intracellular 
and extracellular environments. Consequently, in the domain of PPI prediction, mul-
tidimensional interaction strategies have the capacity to integrate sequence, structure, 
network, microenvironment, and dynamic information. The advent of multi-modal 
technologies has served to partially circumvent the limitations imposed by single-factor 
approaches. For instance, Islam et al. attained 100% accuracy in protein category predic-
tion, thereby substantiating the efficacy of multi-modal data. Additionally, GO symbol 
prediction achieved a high accuracy rate of 96% in biological processes (BP), 97% in cel-
lular components (CC), and 98% in molecular functions (MF) [113]. Multidimensional 
interaction strategies have been proven to have significant advantages in capturing 

Table 9  Common PPI benchmark datasets
Dataset 
Name

Dataset Size (Protein Pairs) Data Source Weight Definition Applicable 
Species

STRING > 20 million proteins, 
100 million interactions

Experimental data & 
prediction

Confidence score 
(0–1)

Multiple spe-
cies (including 
human)

BioGRID > 1 million interactions Experimental validation Literature support Multiple species 
(human, fly, etc.)

HINT > 70,000 human interactions Experimental data & 
prediction

Confidence score Human

DIP > 100,000 interactions Experimental validation Literature support Multiple species
MIPS Multiple yeast interactions Experimental validation Experimental 

support
Yeast

IntAct Hundreds of thousands of 
interactions

Experimental validation Experimental meth-
ods & literature 
support

Multiple spe-
cies (including 
human)

Reactome Thousands of reactions & 
interactions

Experimental validation 
& reaction network

Reaction type 
annotation

Primarily human

PDB > 170,000 protein structures 
& interactions

Experimental validation High-confidence 
experimental 
validation

Multiple spe-
cies (including 
human)

PPI-Disease Disease-related interactions Experimental validation 
& disease annotations

Disease-related 
annotations

Primarily human

Corum > 20,000 protein complex 
interactions

Experimental validation Reliability 
annotation

Mammals (pri-
marily human)

MINT Hundreds of thousands of 
interactions

Literature & experimental 
validation

Literature support Multiple species

KEGG Thousands of biological 
pathways & interactions

Experimental data & 
prediction models

Confidence score Multiple species
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complex relationships in protein functions and achieving more accurate protein func-
tional annotation.

Challenges and opportunities encountered in PPI

Conventional models predicated upon the notion of protein interactions as static are 
found to be in error when considering the dynamic nature of these interactions, which 
are known to be subject to fluctuations arising from the cell state, environment, and 
temporal considerations [114, 115]. It is imperative to acknowledge the dynamic nature 
of this phenomenon, as disregarding it frequently results in suboptimal prediction accu-
racy under various physiological conditions. Future research endeavors must prioritize 
the development of models capable of capturing these dynamic changes. Moreover, 
these models should incorporate uncertainty modeling techniques to effectively inte-
grate temporal and spatial information [116].

The majority of existing PPI prediction methods and their corresponding datasets are 
based on model organisms (e.g., human, mouse, and baker’s yeast), and their models and 
data exhibit a high degree of adaptation to these species [117, 118]. However, the appli-
cability of existing protein-protein interaction (PPI) prediction methods to non-model 
organisms is severely limited, primarily due to differences in protein function, struc-
ture, and interaction networks between species. Consequently, the effective transfer and 
application of these model-organism-based PPI prediction methods to different species 
has become a major challenge in current research.

Predicting interactions between rare or unannotated proteins is also a major challenge. 
A substantial proportion of unannotated proteins may manifest distinctive interaction 
patterns, and prevailing models frequently demonstrate suboptimal performance in set-
tings with scarce data. Researchers are exploring the potential of generative adversarial 
networks (GANs) to generate synthetic data [119]. They are employing techniques such 
as self-supervised learning and transfer learning to enhance the capacity of models to 
predict infrequent interactions [120, 121]. Nevertheless, model prediction bias resulting 
from data scarcity persists as a significant challenge.

Discussion
The rapid development of artificial intelligence technology has led to significant advance-
ments in the field of protein-protein interactions (PPIs) prediction through the application 
of deep learning methods. This technological evolution has resulted in unprecedented levels 
of innovation and transformation within the scientific community. The impact of deep learn-
ing on protein prediction is anticipated to be transformative, leading to substantial advance-
ments in the foreseeable future. The review of the latest research over the past five years 
provides a reference point for the rapidly evolving industry.

This article reviews the application and progress of deep learning in PPI prediction from 
2021 to 2025, summarizing cutting-edge technologies of recent years and examining the con-
tinuously evolving deep learning methods from a new perspective. It analyzes the innova-
tive applications of graph neural networks (GNNs), convolutional neural networks (CNNs), 
recurrent neural networks (RNNs), attention mechanisms, and transformer architectures, 
as well as multi-task and multi-modal learning, and transfer learning to improve predic-
tion accuracy. These deep learning methods interact with each other, but each one exhibits 
unique performance characteristics and advantages. These powerful computational tools can 
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provide insights into the operating modes of structured and networked proteins in organisms 
from complex data sets, thereby reconstructing our understanding of PPI and fundamentally 
changing our logical understanding of organism systems. Deep learning’s innovation in PPI 
prediction is a leap in AI’s application in molecular biology, especially in studying protein 
interactions. Optimized algorithms, better computing power and more data are driving deep 
learning’s growing influence in PPI prediction and broader scope in computational biology. 
This technological evolution is transforming our understanding of cellular processes, protein 
functions and regulatory networks, paving the way for more accurate predictive models and 
advancing research in this critical domain.
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