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Introduction

Modeling the brain tissue in vitro is a challenging problem in 
modern neurobiology and neuropharmacology. Complexity 
of the brain structure and diversity of cell-to-cell commu-
nication in various conditions make this task almost 
unachievable. However, development of adequate in vitro 
brain models would ultimately lead to better understand-
ing of brain plasticity, efficient selection of new drug can-
didates, and further progress in neurobioengineering.

Phenomenon of brain plasticity is based on an ability of 
brain to modify its structure or function in a response to the 
action of various exogenous or endogenous stimuli.1 This 
is a fundamental property of the brain that is based on syn-
aptic transmission, synapse establishment and elimination, 

growth and retraction of cellular processes, neurogenesis, 
gliogenesis and cell death, angiogenesis and recession of 
microvessels, modulation of intracellular pathways and 
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intercellular communication, adaptation of metabolism to 
the current needs of the particular brain region or neuronal 
circuit.2,3 Therefore, reconstruction of brain tissue in vitro 
is facing to the problems related to the complexity in 
reproducing the numerous mechanisms leading to signifi-
cant changes in the brain tissue architecture and functional 
activity upon action of numerous external stimuli. Even 
there is a recent technological leap from the simple planar 
(2D) in vitro models to more complicated 3D ones,4,5 it 
seems to be insufficient to achieve the main goal of the in 
vitro modeling—to recreate the brain activity as an inte-
gral result of information perception, processing and 
responding. This is particularly important in neuropharma-
cology where correct assessment of a drug pharmacody-
namics and pharmacokinetics at the preclinical stage is 
crucial for choosing the appropriate strategy and further 
improvements.

Various approaches have been already established to 
model the brain tissue in the in vitro conditions either in 
the transwell format, on microfluidic chips, in 3D hydro-
gels, or as cerebral organoids derived from the human 
induced pluripotent stem cells. Thus, we are not going to 
analyze their advantages and limitations here just address-
ing the readers to several up-to-date reviews.6–16 Due to 
apparent difficulties in the reconstruction of the whole 
brain tissue in an in vitro system, significant attempts have 
been paid to establish the in vitro models of some brain 
compartments like neurovascular unit (NVU), blood-brain 
barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), 
neurogenic niches (NNs).17–19 In this review we focus on 
mechanisms of brain plasticity that are controlled by the 
structural and functional integrity of tissue barriers, and 
how this phenomenon could be properly reproduced in the 
in vitro brain models.

Complexity of the neurovascular unit 
and key brain tissue barriers

NVU consists of brain microvessel endothelial cells 
(BMECs), pericytes, perivascular astrocytes, other glial 
cells (oligodendrocytes and microglia), neurons, and 
extracellular matrix. It is a platform for diverse intercellu-
lar communications in the brain. As an example, activated 
neurons release glutamate and potassium that are taken up 
by astrocytes, they produce lactate which is used by neu-
ronal cells to support energy production, or by endothelial 
cells to control the blood flow and BBB integrity.20–22 
Thus, NVU could be considered as a self-regulatory com-
partment within the brain tissue where almost all the basic 
neurobiological and plastic phenomena are realized: neu-
ronal excitability, neuron-astrocyte metabolic coupling, 
gliovascular control, immune recognition, neurogenesis/
gliogenesis. Therefore, the general goal to reproduce the 
changeable brain which is sensitive to the action of 

external stimuli in the in vitro conditions may be reduced 
to the task on modeling the NVU.

Structural and functional integrity of the blood-
brain barrier

BBB is recognized as a part of the NVU with the main 
focus on functional and structural integration of BMECs 
and contacting cells (pericytes and astrocytes). BMECs are 
coupled via tight, gap and adherens junction proteins that 
control paracellular permeability.23 In addition, BMECs 
express numerous transporters serving for membrane-
assisted transcellular permeability. BMECs possess rather 
high density of mitochondria, low fenestration rate, trans-
ferrin and insulin receptors, and highly controlled perme-
ability.24 BMECs metabolism and functional activity affect 
the integrity of the BBB and control blood supply in active 
brain regions.25,26 Pericytes and perivascular astrocytes 
cover the layer of BMECs and provide tight regulation of 
their integrity, permeability and metabolic plasticity. Their 
contribution to the barrier functionality has been described 
in details elsewhere.21,22,27,28

The commonly accepted view on the BBB as a 
mechanical barrier in the brain is gradually replaced with 
the understanding that BBB and NVU, in general, are the 
regulated and interactive entity of the brain.29 Such shift 
in a paradigm is partially related to the accumulating data 
on heterogeneity of NVU in various brain compartments. 
Particularly, gray matter is characterized by greater glu-
cose consumption, higher vascular density, reduced 
expression of expression of junctional proteins occludin, 
claudin-5 and α-catenin in BMECs, lower structural 
integrity of endothelial layer, but higher resistance to the 
agents inducing BBB breakdown, protoplasmic astro-
cytes with numerous fine processes.30 Within the neuro-
genic niches of the adult brain, astroglial coverage of 
BMECs is intrinsically defective in the subventricular 
zone (SVZ), but is rather tight in the hippocampal sub-
granular zone (SGZ).31 Also, direct contacts of astroglial 
end-feet and BMECs that affect the efficiency of neuro-
vascular coupling differ in various cortical layers.32 The 
electrical resistance of BMECs is 1500–8000 Ω∙cm2 in 
vivo (Table 1), thereby suggesting high level of the BBB 
structural integrity.33,34

Structural and functional integrity of the BBB is under 
the control of NVU components, but, vice versa, BBB per-
meability affects the activation of neuronal and glial cells 
due to transport of cytokines, growth factors, metabolites 
and transmitters to the loci of stem/progenitor cells main-
tenance and recruitment.9,35 Almost all the central nervous 
system disorders (neurodevelopmental, neurodegenera-
tive, inflammatory) are characterized by elevated BBB 
permeability which is recognized as a sign of severe brain 
tissue alterations.
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Structural and functional integrity of the blood 
-cerebrospinal fluid barrier

Another barrier in the brain—blood-cerebrospinal fluid 
barrier (BCSFB)—consists of the barrier cells of the arach-
noid membrane and choroid plexus epithelial cells that are 
linked with tight junctions. In contrast, choroid plexus cap-
illary endothelial cells are not tightly-coupled, therefore, 
they can’t provide efficient barrier function. The choroid 
plexus (CP) locates in each of the two lateral ventricles of 
the brain, in the third and fourth ventricles. Ependymocytes, 
along with microvascular cells, form the choroid plexus, 
whereas the ependymal membrane (ependyma) separates 
the cerebrospinal fluid and the CNS parenchyma. Despite 
a similar embryological origin, ependymal cells and epi-
thelial cells of the choroid plexus have certain differences. 
First, the choroid plexus epithelial cells are tightly-coupled 
near their apical surface.36 Second, the differentiation of 
choroid plexus epithelial cells from their neuroepithelial 
progenitors during embryogenesis is accompanied by the 
expression of several types of enzymes and secretory pro-
teins, the most important of which is transthyretin, a pro-
tein that provides thyroxine transport.37 Third, the choroid 
plexus epithelium expresses specific receptors that act as 
keys for the transduction of humoral signals between the 
blood and the CNS, including growth hormones, insulin, 
insulin-like growth factor, prolactin, vasopressin, and lep-
tin.38 Forth, these cells express a huge number of specific 
transporters and ion channels on their apical surface. This 
polarized distribution of transport systems helps to move 
complexes of bioactive molecules across the BCSFB and 
wash out toxins and other potentially harmful substances 
from the CNS.39

Choroid plexus provides synthesis and secretion of cer-
ebrospinal fluid (CSF) (approx. 0.4 mL/min per gram of 
tissue, or up to 500 mL in adult humans per day),40 and 
exchange of molecules between the blood and the CSF. 
BCSFB controls ultrafiltration of blood plasma compo-
nents from capillaries into the lumen of brain ventricles 
and production of CSF, secretion of some peptides and 
proteins into CSF as well as absorption of various sub-
stances from CSF.41 For instance, up to 20% of CSF in the 
human brain originates from the brain interstitial fluid 
(ISF), and there is an important mechanism to remove 
metabolites and potentially toxic substances from the brain 
parenchyma: CSF goes into the brain tissue alongside the 
perivascular spaces up to microvessels, then due to activity 
of AQP4 in perivascular astrocytes CSF is transferred into 
the interstitial space to refill ISF.42 Finally, the fluid leaves 
the brain tissue at the level of veins: through ependymal 
cells into ventricles, via pia-glial membranes into the sur-
face of the brain and spinal cord, and by means of glym-
phatic system into extracranial lymph nodes.42

Choroid plexus epithelial cells (CPECs) are originated 
from the ventricular ependymal cells and are considered as 

modified ependymal cells.43 Ependymal cells include mul-
ticiliated cells of the cubic epithelium lining the cavities of 
the ventricles of the brain and the central canal of the spi-
nal cord of vertebrates. More than half-century ago, it was 
shown that due to the movement of cilia, ependymocytes 
create the flow of cerebrospinal fluid inside the lateral ven-
tricles of the brain,44 then, the protective function of the 
ependyma was clearly demonstrated as an ability of these 
cells to regulate the transport of molecules between the 
cerebrospinal fluid and choroidal capillary.45 This ability is 
provided by the presence of different types of intercellular 
contacts and anchor proteins: (i) in the apical part, the cells 
are interconnected by means of adherens junctions; (ii) in 
the middle part, there are gap junctions formed by connex-
ons; (iii) within the BCSFB, ependymocytes are connected 
with tight junctions.46,47 Electrical resistance of CPECs is 
just 150 Ω∙cm2 in vivo (Table 1).34

CPECs cells express various types of ion channels and 
transporters for the transfer of glucose, fructose, lactate, 
urate, several ions, and for the tightly-controlled secretion 
of CSF. These cells are well-equipped with enzymes—
cytochromes P450—needed for the metabolism of endog-
enous hydrophobic molecules and xenobiotics.34,48,49 
Presumably, they should express wide spectrum of recep-
tors sensitive to metabolites produced locally or trans-
ferred from the peripheral blood. For instance, recent data 
suggest that CPECs as well as ependymal cells express 
lactate GPR81 receptors,50 thereby they are able to sense 
lactate which is considered as a key molecule in intercel-
lular metabolic coupling and brain plasticity.21

Ependymal cells (EpCs) locate at the boarder of the cer-
ebral ventricles and the brain parenchyma (Figure 1). In 
the adult brain, ependymocytes express stem cell markers 
such as integrin-beta-1.51–53 Being the actual barrier 
between the CSF and brain cells, EpCs differ in the fre-
quency of movement of their cilia, which is characteristic 
of a particular type of ependymocytes and remains con-
stant throughout life. A decrease in cilia movement (e.g. 
when cells are exposed to toxic agents like alcohol) leads 
to the accumulation of CSF and an increase in the volume 
of the brain ventricles.54 Disfunction of the ciliary appara-
tus leads to dramatic consequences: altered production and 
movement of cerebrospinal fluid, as well as impaired neu-
rogenesis caused by deregulated production and secretion 
of regulatory molecules needed for the establishment of 
pro-neurogenic microenvironment in the nearest neuro-
genic niche—subventricular zone.55–59

In contrast to BMECs and CPECs, the ependymal cells 
that line the ventricular wall to separate the CSF from the 
brain ISF are interconnected with gap junctions, making 
them permeable to most substances, including macromole-
cules.34 EpCs express functional purinergic receptors 
(P2X7) that are sensitive to extracellular ATP, therefore, 
they could be activated by massive ATP release from dam-
aged cells in neuroinflammation or brain lesions.60 ATP 
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itself or adenosine, which is a metabolite of ATP acting at 
A2B receptors in EpCs, stimulate ciliary beat frequency, 
thereby affecting CSF dynamics.61 Stabilizing role of 
ependymal cells on the integrity of the ventricular wall has 
been shown: disruption of the ependyma leads to oblitera-
tion of the cerebral aqueduct and hydrocephalus.62 Some 
specialized ependymal cells, such as tanycytes and epend-
ymocytes of the CP, provides neuroendocrine and sensory 
function.63 In the cooperation with CPECs, ependymal cells 
protect the brain fluid environment from toxic compounds 
which is particularly important in the developing brain.64

Thus, the complexity of the structure of key barriers in 
the brain tissue is associated not only with the presence of 
cells that are diverse in morphology, physiology and 
expression profile, but also with the permanent changes in 
their functional activity that are determined by the brain 
plasticity. In other words, the reproduction of an adequate 
model of such complex systems is impossible without tak-
ing into account the action of factors that initiate short-
term and long-term changes within the NVU: (i) excitation 
of neurons accompanied by glial activation; (ii) release of 
neuro- and gliotransmitters, metabolites, cytokines, growth 
factors, exosomes into the extracellular space; (iii) 
dynamic changes in the composition of extracellular 
matrix; (iv) modulation of neurogenesis and cerebral angi-
ogenesis; (v) activity-driven changes in local microcircu-
lation, production and flow of CSF and ISF.

Dynamic changes in the brain compartments 
affected by BMECs, CPECs, and EpCs

Establishment of microfluidic in vitro systems allows 
reproducing some characteristics of fluids dynamics within 

the tissue. Blood flow is an important regulator of BMECs 
viability and functional competence, whereas CSF/ISF 
production and flow are needed for the adequate function-
ing of brain parenchyma. Attempts to reproduce the latter 
phenomenon, as a rule, face serious gaps in understanding 
the general mechanisms of CSF/ISF dynamics.

Fluid dynamics in the brain, compartmentalization of 
water in the brain, and CSF flow show circadian/diurnal 
characteristics: water diffusibility is higher at night and 
associates with sleep midpoint (the circadian marker).65 
CSF flux is higher in the resting period compared to the 
active period.66 Generation of circadian rhythms is pro-
vided by neurons in the suprachiasmatic nucleus (SCN).67 
Moreover, CP is now considered as a part of the circadian 
clock in the brain. The machinery of circadian rhythmicity 
is based on the transcriptional activator CLOCK-BMAL1 
(Circadian Locomotor Output Cycles Kaput; Brain and 
Muscle ARNT-Like 1) that are needed for the transcription 
of clock proteins PER1 and 2 (Period 1 and 2) bound to 
CRY1 and 2 (Cryptochromes 1 and 2).68 CP cells express 
all the components of the circadian rhythm machinery in a 
gender-dependent manner.69 Deregulated expression of 
BMAL1 and PER2 has been detected in experimental 
Alzheimer’s disease.70 In the in vitro co-cultures of CP and 
suprachiasmatic nucleus (SCN) cells, the long period of 
rhythms in the SCN is restored to the level of the behavio-
ral circadian period in the presence of CP cells that are 
equipped with the connexins 43 (Cx43) and, probably, 
other connexins which support synchronization, therefore, 
SCN circadian clock is controlled by some signaling mol-
ecules released by CP cells into the CSF.71 Circadian 
rhythms controlled by SCN and other brain structures (ret-
ina, CP, cortex, hippocampus, nucleus accumbens) could 

Figure 1.  Principles of structural and functional organization of BBB and BCSFB. Blood-CSF barrier, consisting of choroid plexus 
(CP) endothelial cells (ECs) and choroid plexus epithelial cells (CPECs), ensures its barrier function by tightly coupled CPECs, 
whereas ECs are highly fenestrated. In contrast, integrity of the blood-brain barrier is determined by endothelium where brain 
microvessel endothelial cells (BMECs) are contacted via tight junctions. The ventricular barrier (VB), located right between BBB and 
BCSFB, has low integrity since ependymal cells (EpCs) are mainly coupled via gap junctions and have high paracellular permeability.
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regulate brain fluids dynamics, CSF clearance, activity of 
membrane transporters, dopaminergic signaling and 
reward system feeding behaviors, drug metabolism.68,69,72 
CP is an additional source of melatonin production (even 
with non-circadian pattern) in the brain.73 There is a 
hypothesis that melatonin released from CP in nigdht 
could affect water permeability of the BCSFB.69 Actually, 
BBB also demonstrates dependence on the circadian 
rhythmicity: transporters activity and BBB permeability 
undergo daily oscillations.74–76 Expression of xenobiotic-
metabolizing cytochromes P450 (Cyp4x1 and Cyp2c11) in 
BMECs shows circadian/diurnal dynamics,77 so, the effi-
ciency of drugs seems to be different at night or day time 
as it was demonstrated for anti-epileptic medicines.76 
BMECs express the genes encoding for the proteins regu-
lating circadian rhythm that affect BBB permeability and 
xenobiotics metabolism.77,78

However, some other studies suggest that expression of 
junction proteins and transporters might have no depend-
ence on circadian rhythms, but expression pattern of pro-
teins involved in translation, angiogenesis and energy 
production demonstrate diurnal variations.79 As it was 
shown on the in vivo chemogenetically activated rodent 
neurons, BMECs change their expression pattern after 
stimulation of NVU neurons: the expression of adherens 
junctions and focal adhesion proteins, regulators of 
cytoskeletal dynamics is upregulated, whereas neuronal 
activity inversely correlates with the expression of ABC 
efflux transporters (incl. Pgp), LRP1, and PAR bZip circa-
dian-clock-regulated transcription factors. Thus, the net 
efflux transport through BMECs decreased with the activ-
ity in organisms demonstrating diurnal oscillations (e.g. in 
flies, mammals).80 But in a contrast to endothelial micro-
vascular cells located in peripheral organs, BMECs have 
much lower amplitude of clock gene expression,79 there-
fore, in general, circadian rhythm-related event could be 
more expressive in the BCSFB, but not in the BBB.

It should be noted that for the appropriate functioning, 
BMECs, CPECs, and EpCs require high energy resources, 
for instance, CP receives its blood supply up to 4 mL/min 
per gram which is 5–10 times higher than the blood supply 
rate in the brain parenchyma34; the density of mitochondria 
in BMECs and CPECs is up to 12%–15% of the total cell 
volume which is much higher than in peripheral endothelial 
or epithelial cells.58,81 Since energy production is coupled 
to dynamic changes in NAD+/NADH ration in cells, the 
barrier cells should depend on the availability of NAD+. 
Indeed, it was demonstrated in endothelial cells needed in 
NAD+ for angiogenesis and sprouting.82 Availability of 
NAD+ in cells depend on NAD+ producing enzymes (e.g. 
NAMPT—nicotinamide phosphoribosyl transferase which 
provides a rate-limiting step in the NAD+ salvage path-
way) and NAD+-consuming enzymes (e.g. CD38, CD157, 

PARP (poly(ADP)-ribose polymerase), SIRT (sirtuin/his-
tone deacetylase), and is directly linked to the activity of 
glycolysis and oxidative phosphorylation (OXPHOS) pro-
viding intracellular NAD+ regeneration.7,24 NAD+ con-
centrations in the CSF are thought to reflect pathological 
changes in the brain tissue, but the data are rather contro-
versial since they have been reported to be lowered in a 
case of aging, neurodegeneration, oxidative stress and 
inflammation or increased in some cases of neurodegenera-
tive pathology like Huntington’s disease.83,84

NAD+ intracellular concentrations have been shown to 
regulate circadian rhythm by affecting the activity of SIRT1 
and histone acetylation. It is connected to the competition 
of two enzymes—SIRT1 and PARP1—for the same sub-
strate—NAD+. Thereby, excessive activation of PARP1 
(e.g. caused by DNA damage) results in circadian phase 
advancements (stimulating effect on the circadian rhythm), 
and NAD+ levels and acetylated histones oscillate in 
antiphase. Moreover, it was found that NAD+ levels oscil-
late by approximately 40% during each circadian cycle in 
response to oscillations in NAMPT protein levels.85 Energy 
metabolism also shows clear dependence on the circadian 
rhythm: glycolytic activity and lactate production in cells 
are increased, but OXPHOS is suppressed in the absence of 
BMAL1, but decreases when CRY1 and CRY2 are inacti-
vated. All these effects are linked to the circadian regula-
tion of NAD+-dependent SIRT3 activity and mitochondrial 
proteins acetylation.86 NAD+ and NAMPT levels oscillate 
during the daily 24-h cycle.87 It is interesting that in plant 
cells, another metabolite of NAD+ - cyclic ADP-ribose 
which is produced by CD38/NAD+-glycohydrolase—
takes part in the circadian rhythm control (Ca2+-mediated 
feedback loop).88 Thus, intracellular NAD+ pool is regu-
lated by circadian clock and oscillates with 24-h rhythmic-
ity due to rhythmic changes in the expression of sirtuins, 
CD38, and PARP1.89 Transmission of circadian signals 
within the NVU requires cyclically expressed gap junc-
tions,76 thereby suggesting that synchronization of cells 
activity is a basis for circadian rhythmicity. Connexins sup-
porting synchronization of CPECs (as described above) 
might operate through the NAD+ availability since Cx43 
is functionally coupled to some NAD+-consuming 
enzymes (CD38), or mediate NAD+ transport to neighbor-
ing cells and its efflux to the extracellular space.90

In sum, BMECs and CPECs are not only the part of two 
barrier systems in the brain, but serve as a key regulators of 
cyclic/rhythmic changes in brain fluids, metabolism and 
plasticity. Their functional activity affected with genetic and 
non-genetic approaches is in the focus of numerous studies 
aimed to develop new treatment solutions,91 but still there is 
a shortage in available technological approaches that could 
allow precise reconstructing their rhythm-controlling action 
in the brain in vitro models.
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Integrity of brain barriers and control 
of adult neurogenesis

Maturation and acquisition of functional competence of 
brain cells greatly depend on efficient intercellular com-
munication and availability of soluble regulatory mole-
cules (transmitters, cytokines, metabolites) produced 
either locally or distantly. Neurogenesis within brain neu-
rogenic niches (NNs) is a clear example of how the cellu-
lar and humoral microenvironment determines the fate of 
cells at different stages of their development. Recent data 
suggest that not only local blood supply, but also CSF 
movement from lateral and third ventricles to neurogenic 
niches might contribute to adjusting the rate of neurogen-
esis to actual demand of developing and active brain.102 
Since embryonic and adult neurogenesis has been exten-
sively described in details elsewhere,103–106 we are going to 
focus here on a role of BBB and BCSFB in the regulation 
of adult neurogenesis stimulated in experience-driven 
brain plasticity and repair of lesioned brain tissue.

Neural stem cells (NSCs) are present in the nervous 
system in the embryonic and the postnatal period. They are 
the main source of new neurons that could be further inte-
grated into pre-existing or newly-established neural cir-
cuits.107 In most mammals, within 1–2 weeks after birth, 
radial glia cells produce adult NSCs in the subventricular 
zone (SVZ), and ependymal cells.108 Later throughout the 
life, two major neurogenic niches—SVZ and hippocampal 
subgranular zone (SGZ)—serve as sites of experience- or 
damage-driven neurogenesis. In addition, some non-con-
ventional neurogenic niches in hypothalamus, cerebellum, 
or non-recently generated immature cortical neurons con-
tribute to plasticity-associated changes in neurogenesis. 
Thus, brain plasticity critically depends on the ability of 
NSCs to keep their own pool, or to undergo effective 
recruitment upon action of external stimuli (e.g. in learn-
ing, recognition, memory consolidation, or in brain 
damage).

Microvascular support of neurogenesis in 
conventional neurogenic niches in the adult 
brain

It is clear now that neurogenesis in SVZ and SGZ depends 
on the functional activity of NVU as well as on the integ-
rity of the BBB and the BCSFB. Vascular scaffold plays an 
important role in the maintenance of SGZ and SVZ home-
ostasis by controlling the access of the niche environment 
to various soluble regulatory molecules, nutrients, oxygen, 
and cells.35 In early development, SVZ is formed due to 
terminal differentiation of telencephalic radial glial cells 
into either adult NSCs or EpCs.109 B-cells of astroglial lin-
eage locate in the SVZ and serve as NSCs and neuronal 
progenitor cells (NPCs) that are able to differentiate up to 
different types of neurons, and oligodendrocytes.110 NSCs/

NPCs in the SVZ produce stable contacts with local 
microvessels as well as receive the regulatory stimuli from 
the CSF compartment.111 Newly-established neuroblasts 
further move to various brain regions using microvessels 
as a vascular “road” for proper migration, such as to olfac-
tory bulbs, cortex, striatum, and this mechanism is acceler-
ated or suppressed in pathological conditions.112

In the hippocampal SGZ, neural stem cells may undergo 
cell division, thereby some daughter cells (DCX+PSA-
NCAM+ intermediate progenitors) differentiate into 
migrating neuroblasts and further to mature granule neu-
rons capable to integration into pre-existing neural net-
works within the hippocampal granule cell layer.113 In the 
SGZ NSCs have prominent radial processes serving for 
either establishment of direct contacts with local microves-
sels and for sending multiple branches into the inner 
molecular layer.114 Thus, SGZ NSCs may detect local 
changes in the microcirculation as well as actual neuronal 
activity within the granule cell layer (where neurons are 
tightly packed together and send their unmyelinated axons 
known as mossy fibers to the CA3 region), and inner 
molecular layer of the hippocampus dentate gyrus (which 
is enriched with numerous dendrites of granule cells, 
pyramidal basket cells and polymorphic layer cells, as well 
as axons coming from the entorhinal cortex).115

Fate of stem and progenitor cells within the niches 
depends on the availability of numerous regulatory mole-
cules coming from the blood. Well-established astroglial 
coverage of hippocampal microvessels predicts lower 
availability of blood-derived regulatory molecules within 
the SGZ, whereas loss of tight astroglial contacts in SVZ 
BMECs results in higher dependence of this neurogenic 
niche on cytokines, metabolites and growth factors coming 
from the peripheral blood. In addition, cells fate within the 
SVZ niche is affected by soluble factors of CSF origin.31

In a neurogenic niche, enhanced permeability of the 
BBB might be rather beneficial for the delivery of pro-
neurogenic factors. Moreover, even outside the niches, it 
might be recognized as a compensatory mechanism aimed 
to support the establishment of novel pro-neurogenic loci 
and restoration of the brain tissue. That is why it is not 
surprising that establishment of new neurogenic zones in 
the injured brain is seen in a close vicinity to periventricu-
lar area and microvessels with higher permeability than it 
is kept in the intact brain parenchyma.35 Particularly, this 
phenomenon has been described in rats subjected to the 
ischemic brain injury: novel neurogenic niches enriched 
with highly proliferating cells and microvascular scaffold 
with increased BBB permeability have appeared on day 
4–14 after artery occlusion along the walls of third and 
fourth ventricles. It is important to note that ischemia-
enhanced cell proliferation and neurogenesis parallel BBB 
leakage.116

Promotion of neurogenesis by the enhanced permeabil-
ity of the BBB is mainly attributed to the SVZ, but not to 
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the SGZ neurogenic niche.116 Within the SVZ, pre-existing 
higher permeability of the BBB is further elevated in the 
conditions of ischemia, thereby providing the access for 
the systemic VEGF. The latter triggers DLL4-Notch-
dependent interactions of BMECs and NSCs and increases 
SVZ neurogenesis for better tissue recovery.117 Direct con-
tacts of NSCs with endothelial cells, ependymal cells, and 
neurons are established due to different types of astroglial 
processes. The changes in the morphology of astrocytic 
processes affect the integrity of barriers, neurotransmitter 
clearance, K+ dynamics, and the supply of energy sub-
strates within the NVU.118 Presence of two types of astro-
glial processes, mitochondria-enriched branches and 
mitochondria-deprived leaflets, suggests that dynamic 
changes in astroglial metabolism (oxidative phosphoryla-
tion vs glycolysis) might correspond to the extension and 
retraction of processes and efficacy of astroglial coupling 
with other cells.118 Particularly in neurons, sprouting den-
dritic filopodia have a short lifespan, but when they are in 
a contact with astroglial processes, they have got an 
increased stability and ability to develop.119

In the lateral ventricles, CPECs produce cytokines and 
growth factors to support the pool of primitive neuroepi-
thelial precursors (NSCs that are the radial glia-derived 
cells) within the SVZ.120 Due to continuous proliferation, 
up to 80% of NSCs differentiate to neuroblasts, whereas 
20% provide the maintenance of the local stem cells 
pool.121 Being recruited, SVZ NSCs produce migrating 
neuroblasts that go along the rostral migratory stream (in 
rodents) up to olfactory bulbs to integrate into the pre-
existing local neuronal circuits.122 Thus, ependymocytes 
are the important part of the SVZ neurogenic niche.123 
Ependymal cells (type E) separating the subventricular 
zone from the lateral ventricle form rosettes, inside which 
cilia of neuronal stem cells of type B1 pass. The opposite 
process of type B1 cells is in contact with the vessel. When 
these cells divide, transitory amplifying cells (type C) 
appear to give rise to neuroblasts (type A).124

CPECs secrete numerous molecules that act at prolifer-
ating and migrating cells, for instance, insulin-like growth 
factors, bone morphogenetic proteins, Notch ligands. 
OTX2, which is secreted transcription factor, is produced 
and released by adult CPECs, and regulates migration of 
neuroblasts being absorbed by guiding astrocytes.125 
Recent data suggest that amyloid precursor protein (APP) 
is produced by CPECs in a form of sAPPα and positively 
affects proliferation of NSCs in SVZ and SGZ.126 Thus, 
secretory activity of CPECs results in the appearance of 
numerous regulatory molecules in the CSF that are sensed 
by receptors expressed in SVZ cells. NSCs located here 
are in tight interactions with ventricular ependymal cells 
and local blood microvessels to provide the microenviron-
ment permissive for the NSCs/NPCs maintenance and 
recruitment.127,128 NSCs send a short apical process 
through the ependymal cell layer to directly access the 

CSF as a source of regulatory molecules.129 At the same 
time, NSCs contacting with local vascular network remain 
their high proliferative activity up to late stages of ontogen-
esis (aging).130 Radial glia in the SVZ senses local micro-
circulatory changes and gradients of various homing 
factors (e.g. growth factors and cytokines attracting newly-
formed neuroblasts to the loci of brain tissue lesions).131,132 
In addition, NSCs are sensitive to the functional activity of 
neurons residing within the SVZ. It was shown that 
optogenetic activation of choline acetyltransferase-posi-
tive neurons in rodent SVZ results in enhanced prolifera-
tion of NSCs and neuroblasts production.133 The same 
could be achieved with the activation of 5HT serotonin 
receptors expressing in SVZ NSCs.134 Moreover, SVZ is 
directly innervated from dopaminergic projections from 
the substantia nigra and the ventral tegmental area, even 
the data on the local dopamine action are still controver-
sial.135 Thus, NSCs within the neurogenic niche serve as a 
“hub” to coordinate the activity of mature neurons, local 
microcirculation and permeability of barriers to provide 
the pro-neurogenic microenvironment.

Since CP possesses a role of circadian rhythm regulator, 
it is not surprising that development of NSCs/NPCs in 
both neurogenic niches depends on circadian oscillations: 
circadian clock genes are not required for neurosphere for-
mation in vitro, but their absence suppresses neurosphere 
growth, suppresses differentiation of cells along the neu-
ronal lineage, and promotes apoptosis.136 Whether or not it 
might be attributed to the regulatory role of CPECs in the 
in vivo conditions, remains to be assessed. Taking into 
consideration diurnal variations in the actual concentra-
tions of neurotransmitters (noradrenaline, histamine, 
orexin, glutamate, gamma-aminobutyric acid (GABA), 
serotonin, acetylcholine, and dopamine),137 one may sug-
gest that NSCs/NPCs might be sensitive to the local con-
centrations of neurotransmitters produced by neuronal 
activity governed by CPECs and SCN.

In the SGZ, recruitment and proliferation of NSCs are 
mainly under the control of local neurotransmitters (like 
glutamate and GABA).138 For instance, NSCs reside 
closely to GAD67+ terminals of parvalbumin-expressing 
(PV+) interneurons and respond tonically to GABA 
released from these neurons: GABA signaling reduces 
their proliferation and induces quiescence.139 Excitation of 
proliferating NPCs is produced by the activation of NMDA 
receptors and Cav1.2/1.3 channels which leads to promi-
nent changes in gene expression and cell differentiation,140 
whereas loss of Kv1.1 channel activity causes proliferation 
of neural progenitor cells in the SGZ.141

In recent decades, the role of EpCs as NSCs has been 
widely discussed. The expression profile of EpCs resem-
bles those of NSCs (Sox2, Nestin, CD133), but neurogenic 
capacity of ependymal cells might be suppressed at the 
transcriptional or post-transcriptional levels.142 Thus, sev-
eral studies have shown that this cell type does not 
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proliferate under normal conditions, and thus does not 
fully meet the characteristics of stem cells.143 However, 
ependymal stem cells may control various aspects of adult 
neurogenesis and even are able to generate neuronal and 
astroglial cells being activated in the ischemic brain.143 
Under certain conditions, EpCs can behave like NSCs: in 
nerve tissue injury, in stroke, in carcinogenic transforma-
tion, in blockade of Notch1 signaling or being exposed to 
various growth factors.144 Besides, ependymal cells 
express Noggin which positively controls neurogenic dif-
ferentiation and suppresses gliogenesis.145 Rostral migra-
tion of neuroblasts depends in part on the Slit2 gradient 
which is maintained by ciliary beating of ependymal 
cells.146 It has also been shown that ependymal cells 
express the ankyrin protein, which is necessary for main-
taining the SVZ structure and producing new neurons.147 
However, partial destruction of the ependyma by injection 
of neuraminidase into the subventricular zone leads to an 
increase in the production of neuroblasts, which proves the 
role of ependymocytes as negative regulators of NSC 
proliferation.148

Arachnoid barrier cells express various efflux trans-
porters (like Pgp), thereby contributing to the regulation of 
concentration of their ligands in the brain parenchyma and 
CSF.149 Moreover, the complex of choroid plexus, CSF, 
ependyma, and brain parenchyma controls distribution of 
neurotransmitters, peptides, hormones, and xenobiotics to 
different brain regions.150 As an example, SVZ enriched 
with neural stem cells (NSCs) and neuronal progenitor 
cells (NPCs) is fenced off the CSF via the layer of ependy-
mal cells (Figure 1), which are “sister” cells to the NSCs 
and are able to provide trophic and metabolic support, to 
participate in the synthesis and secretion of CSF, to medi-
ate steroidogenesis, and to regulate the selective passage 
of water.41 Specialized EpCs known as tanycytes locate in 
the third and fourth ventricles and communicate with the 
hypothalamic median eminence serving as a diet-regulated 
neurogenic niche important for the feeding behavior and 
metabolic control.151 EpCs coordinate CFS dynamics in 
(patho)physiological conditions by generating a direc-
tional CSF flow controlled by ciliary beating.109,152–154 
Neuroblast migration parallels CSF flow,146 thereby migra-
tion of SVZ-born neuroblasts depends on the fluid dynam-
ics, EpCs and CPECs physiology and metabolism.

Another intriguing mechanism of microvascular con-
trol within the SVZ relates to the existence of fractones 
that are the extracellular matrix-originated structures pro-
viding compartmentalization of the niche being, probably, 
the anchoring points for NSCs and regulatory molecules 
(growth factors, cytokines) as well as a platform for jux-
tacrine signaling. Ependymal cells and GFAP-expressing 
cells are responsible for their establishment.155 These 
structures are tightly coupled with local capillaries,156,157 
even the protein composition of vascular basement mem-
brane and fractones is different.158

In sum, there is a coordinated activity of BMECs, EpCs, 
and CPECs which is required for the local blood supply in 
neurogenic niches, or CSF production and movement 
toward sites of extensive cells proliferation, differentiation 
and maturation in the developing and adult brain. It is rea-
sonable that changes in the permeability of BBB and 
BCSFB would significantly affect the fate of cells at dif-
ferent stages of neurogenesis.

Barrier permeability and neurogenesis in non-
conventional neurogenic niches in the adult 
brain

In the brain parenchyma, BBB breakdown caused by brain 
tissue alterations promotes development of neuroinflam-
mation, brain edema, and secondary tissue injury.159–161 
This mechanism might be supportive for neurogenesis in 
non-conventional neurogenic niches (e.g. in the amygdala, 
hypothalamus, or cerebellum)162 or even in the brain cor-
tex. Indeed, another mechanism of plastic changes is based 
on the direct conversion of reactive astrocytes into mature 
neurons, or on the differentiation of so-called non-recently 
generated (dormant) premature DCX+PSA-NCAM+ 
neurons into mature ones in the brain cortex.2,163–167 Even 
the data on such mechanisms are rather controversial, sev-
eral attempts have been paid to reprogram local astrocytes 
in the brain tissue to treat neurodegeneration, for instance, 
based on NeuroD1 overexpression in reactive astrocytes 
resulting in increased neuronal density and regeneration 
within the lesioned loci in the ischemic monkey brain.168 It 
was demonstrated that resting astrocytes can’t be effi-
ciently transformed into neurons, whereas reactive astro-
cytes that are activated due to neuroinflammation are the 
“ideal” target for the desired transformation.169 This find-
ing corresponds to previous data on regenerative potential 
of activated astrocytes.170 Thus, it is tempting to speculate 
that transitory BBB breakdown causing activation of 
astrocytes within the NVU would be beneficial in the gen-
eration of astroglial population sensitive to triggers of neu-
ronal transformation.171 One may assume that optogenetic 
or chemogenetic activation of astrocytes either in vitro or 
in vivo might be useful not only for the controlled release 
of gliotransmitters and promotion of neuron-astroglial 
interactions,172,173 but also for the production of reactive 
glial cells susceptible for further conversion into mature 
neurons.

Maturation of DCX+PSA-NCAM+ dormant neurons 
(non-recently generated immature neurons that can stay in 
the undifferentiated status for decades in the primate brain) 
has been detected in the pyriform cortex.174,175 Presumably, 
their differentiation up to the mature neurons might be 
helpful for higher order processing of sensory inputs in the 
brain.176 Precise mechanisms of induction of these events 
are not clear yet, however, it was found that enzymatic 
depletion of PSA promotes the final stages of development 
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of immature neuronal population,175 the number of cells 
expressing PSA-NCAM induced by a dopamine receptor 
agonist decreases due to the differentiation of these cells 
associated with the loss of PSA-NCAM expression.177 
Then, newly-formed neurons become to be functionally 
integrated into the pre-existing neuronal ensembles in the 
cortex.174 Almost similar mechanism seems to exist in the 
amygdala where dormant immature DCX+PSA-NCAM+ 
neurons persist for several years, but then may develop 
into mature neurons during adolescence.178

On the other hand, recent data suggest that some mature 
SGZ neurons undergo so-called dematuration in the condi-
tions of hyperexcitation or neuroinflammation, and start to 
express the markers of immature neurons or NPCs coupled 
to the cell cycle re-entry.179 Since mature neurons are post-
mitotic cells, they can’t complete the cell cycle, but may 
respond to any cell stress via cell cycle re-entry mecha-
nism as a way to support apoptosis or mitotic catastrophe, 
DNA repair, and synaptic plasticity.180,181 It was proposed, 
that cell cycle-related molecular mechanisms serve as reg-
ulators of synaptic activity in neurons whose inability to 
proliferate is required for making the synaptic connec-
tions.180 In some cases, increased dematuration of neurons 
and enhanced cortical neurogenesis are the associated pro-
cesses in the primate brain,182 thereby suggesting involve-
ment of the pool of DCX+PSA-NCAM+Ki67 as dormant 
immature neurons in these events.183

Thus, changes in BBB permeability may affect neuro-
genesis in various brain regions that serve as a platform for 
the development of new neuronal and glial cells (Figure 2). 

Immature neurons may migrate from meninges consisting 
of external dura mater, arachnoid and internal pia mater to 
the brain parenchyma and further differentiate up to mature 
neurons or oligodendrocytes.184 Meninges project to the 
hippocampus and choroid plexus (pia matter wraps the 
CP), and such projections might be important for func-
tional coupling of conventional and non-conventional neu-
rogenic niches in the brain, presumably, due to activity of 
the blood-meningeal barrier (BMB). Whitin the BMB, the 
perivascular space is separated from the brain parenchyma 
by the pia mater basal membrane and astrocytes end-feet 
forming glia limitans. In physiological conditions, arach-
noid and pia contain neural precursors, stromal cells (peri-
cytes, telocytes, smooth muscle cells, fibroblasts, and pial 
cells), immune cells (macrophages, dendritic cells, and 
mastocytes).184 Pial cells do not express tight junctions but 
are joined by desmosomes and gap junctions, however, 
activated astrocytes may express tight junction machin-
ery.185 NSCs have been identified in the perivascular area 
endowed with a thin sheath of meningeal cells surrounding 
cerebral arterioles.184 In a contrast to pyramidal neurons, 
granule cells in the dentate gyrus of hippocampus are gen-
erated mainly postnatally.186 Immature cells have been 
shown to migrate in a CXCR4-dependent manner from the 
newly-discovered neurogenic niche (subhippocampal 
zone, SHZ) existing in the medial walls of the lateral ven-
tricles between the dorsal surface of the hippocampus and 
the CP through the fimbria-dentate junction along the 
meninges in the direction of the hippocampal dentate 
gyrus.187 In the adult rodent brain, proliferation of 

Figure 2.  Brain plasticity in the SVZ. Plasticity of neurogenic niche consisting of ventricular barrier ependymal cells (EpCs), 
neural stem cells (NCSs), transitory amplifying cells, neuronal progenitor cells (NPCs), neuroblasts, immature neurons, astrocytes, 
extracellular matrix proteins and other components, is under the control of blood-brain barrier (BBB) and blood-CSF barrier 
(BCSFB) integrity. Appropriate stimuli coming either from the blood in a case of BBB disruption or from the CSF due to choroid 
plexus (CP) activity induce two key long-term mechanisms of brain plasticity: angiogenesis and neurogenesis.
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progenitor cells in the dentate gyrus has been shown to be 
suppressed after fimbria–fornix lesions but not after 
entorhinal deafferentation (in physiological conditions, 
major and minor projections carrying sensory information 
come from the entorhinal cortex to the hippocampus), 
therefore, proliferation and/or differentiation in the SGZ 
seem to be controlled by factors reaching the hippocampus 
via fimbria-fornix afferents.186 Thus, CP is not only the 
part of the ventricular-SVZ neurogenic niche, it also 
affects the development of new cells in the adult hip-
pocampal SGZ either via secretion of numerous regulatory 
molecules (growth factors, cytokines and metabolites), or 
being involved into the regulation of immature cells migra-
tion from the SHZ along the meninges to the dentate gyrus.

Development of a changeable brain: 
4D neurogenic niche in vitro models

Evolution of the brain barriers in vitro models: 
Searching for the optimal microarchitecture

Development of the brain in vitro models started from the 
in vitro reconstruction of BBB using various sources of 
cells and different conditions for their co-culture. 
Particularly, the simplest model of the BBB in vitro is 
Transwell, which is a static two-dimensional culture sys-
tem with a microporous membrane. Transwell models very 
conventionally translate key barrier parameters in vivo, 
such as TEER and barrier permeability, whose values 
appear respectively below and above the generally accepted 
ranges of the norm. To solve this problem, numerous com-
parative studies of dynamic and static systems have been 
conducted, showing the primary role of flow-induced shear 
stress in increasing TEER and decreasing permeability—
new dynamic models catched on, allowing to obtain more 
close to physiological values of key BBB in vitro parame-
ters.188–191 These systems used the technology of the so-
called «hollow fibers», inside which a flow was created, 
determining the formation of tight contacts between 
endothelial cells (EC), as well as the inhibition of their cell 
cycle, resulting in a characteristic for brain capillaries mon-
olayer of cells without fenestrations between them.188,190

The main disadvantages of the hollow fiber model are 
the considerable wall thickness (an order of magnitude 
greater than the membrane thickness in Transwell sys-
tems), which limits intercellular interactions, as well as the 
long establishment of stable TEER values, which increases 
the experiment time.192

Further attempts to improve in vitro BBB models have 
been focused on the use of well-established microfluidic 
technologies. In 2012 Ross Booth and Hanseup Kim repre-
sentatively pointed out the advantages of microfluidic 
BBB models over standard ones and proposed an original 
PDMS chip design with two perpendicular channels, a 
polycarbonate membrane between them and two glass 

substrates with embedded electrodes for TEER registra-
tion.192 There were no obvious disadvantages of hollow 
fibers, therefore, it was the first step in extensive research 
and dissemination of physiologically more relevant micro-
fluidic models of the BBB.

In the same year, a simplified chip model using immor-
talized hCMEC/D3 EC line was presented.193 Cells were 
cultured there for 7 days and expressed tight junction pro-
teins (ZO-1) on day 4. Barrier function was studied by 
mechanical (shear stress) and biochemical (tumor necrosis 
factor—TNF) stimuli. Mechanical stimulation resulted in 
a threefold increase in TEER, and addition of TNF resulted 
in a 10-fold decrease.

All known types of co-cultures involved in BBB were 
used in the work.194 Neurons differentiated from iPSC in 
multi-well plates, as well as isolated brain endothelial 
cells, pericytes and astrocytes were co-cultured in a micro-
fluidic PDMS bioreactor based on two chambers separated 
by a porous membrane. Perfusion of both compartments 
was ensured. Pericyte-conditioned medium increased EC 
polarization (alignment of actin filaments in the flow 
direction), which is one of the main markers of barrier 
integrity (along with the expression of tight junction pro-
teins). Fluorescent dextrans with different molecular 
weight were used to test the barrier permeability, in par-
ticular, the diffusion of FITC-dextran was studied. It was 
experimentally shown that one of the key mechanisms of 
transfer of compounds across the barrier besides diffusion 
is active transport.

Around the same time, a different approach was devel-
oping, involving a more accurate reproduction of the 3D 
geometry of the capillary network in vitro based on hydro-
gel 3D printing.195 The system, based on hollow fiber tech-
nology, is a collagen matrix with four channels obtained by 
slow removal of micro-needles from the hydrogel and sub-
sequent seeding bEnd.3 (completely covered the surface in 
3–4 days). Thus, each channel is a lining of endothelial 
cells on some analog of the basal membrane (fibronectin 
coating) in the collagen hydrogel. The main goal of the 
model is to reproduce a more accurate capillary architec-
ture without the use of PDMS and a synthetic porous 
membrane. Non-physiological mechanical properties of 
PDMS (high modulus of elasticity), as well as its adsorp-
tion of hydrophobic compounds strongly limit the rele-
vance of organ-on-chip platforms and microfluidic 
bioreactors of BBB based on it. An alternative material is 
collagen 1, which has a close to extracellular matrix (ECM) 
in vivo elastic modulus (about 100 Pa). A system similar to 
the one described above, however, using a PDMS channel 
covered with an adhesive layer of poly-l-lysine and a layer 
of collagen, is presented in the work.196 The main draw-
back of these models is the incomplete reconstitution of 
the neurovascular unit as a multicellular ensemble.

Sufficient material for analysis has already been accu-
mulated, about 10 different microfluidic models of the 
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BBB have been developed, a comprehensive compara-
tive analysis of which is presented in an excellent 
review.98 Among other things, this review justifiably 
emphasizes the importance of validating in vitro BBB 
models by key parameters (TEER, permeability coeffi-
cient, shear stress, protein expression, barrier co-culture 
composition) and provides quantitative estimates to 
standardize measurements.

A year later,197 a new membrane-free microfluidic bio-
reactor design for the BBB with 4 horizontally divided 
channels—for nutrient medium, for the gel with neurons, 
for the gel with astrocytes, and for endothelial cells—was 
demonstrated. Cell-to-cell interactions within the NVU 
have been monitored using calcium intracellular imaging. 
Direct contacts between astrocytes and brain microvessels 
without the use of membranes were also reproduced in the 
study.198

However, membrane chips were not completely 
replaced by membrane-free ones, and new vertical PDMS 
chip with a polycarbonate membrane between the upper 
and lower layers was developed an year later.199 A feature 
of the design here was the use of parallelism for potential 
high-throughput screening—four channels were made in 
each PDMS layer, forming a total of 16 individual BBB 
cells on the chip.

Recently, one of the most successful commercially ori-
ented in vitro BBB model projects was considered to be 
OrganoPlate by MIMETAS. The original study, invested 
by Biogen pharmaceutical company, is a platform of 40 or 
96 compactly arranged microarrays for antibody transcy-
tosis testing.200 A special feature of the platform is that bi-
directional perfusion is performed by rocking it without 
the use of microfluidic pumps, which makes an extensive 
implementation of the technology more attractive. The 
obvious advantage of the system is the absence of mem-
branes and PDMS, as well as the flexibility and high 
degree of parallelism. At the same time, the shear stresses 
generated are rather low, which is a disadvantage.

Active development of the iPSC technology allowed 
the differentiation of brain endothelial cells according to 
standard protocols, the necessary components were 
selected and validation experiments were performed.201–203 
Progress in this field led to the introduction of iPSC-
derived endothelial cells into microfluidic devices. One of 
such devices was the development of D. Ingber and col-
leagues, structurally identical to the lung-on-chip pre-
sented by them earlier.204 The stated idea was to make a 
simple and most functional platform for drug delivery and 
screening systems. Among the achievements of the model 
are the long-term maintenance of the barrier function (for 
2 weeks) and its continuous measurement using the built-
in electrodes for TEER.

In one of subsequent reports, a membrane construction 
for more detailed study of nanoparticle transport was pre-
sented.205 The 3D astroglial network implemented there 
reproduces the physiological expression of aquaporin-4, 

thus it is a model for studying water transport (and ion 
homeostasis) within the BBB. Scientists were able to sim-
ulate eHNP-A1 transcytosis through the barrier, which 
defines eHNP-A1 as a potential drug delivery system for 
the CNS.

Receptor-mediated transcytosis as a way to deliver the 
drugs to the target regions of the brain parenchyma is cur-
rently a key tool in nanomedicine for BBB -associated dis-
eases and has significant potential for implementation in 
the clinic.206–209 Analysis of available literature data shows 
that there is a problem in increasing the targeting concen-
tration of a drug,210,211 thus, in vitro modeling of drug 
transport through the BBB and verification of such experi-
ments is of particular relevance. However, so far only two 
3D in vitro models of the BBB have been used to find cor-
relation with in vivo data,205,212 which indicates that the 
field of nanomedical applications in the development of 
drug delivery systems for CNS is at the stage of databases 
formation and first experiments on microfluidic and sphe-
roidal models. The key reference point here is the attempt 
to use receptor-mediated transcellular drug transport using 
nanocarriers,213 while paracellular pathways can only be 
used effectively if there is a prior exposure to the BBB that 
increases its permeability, that is, fenestrations naturally 
absent between endotheliocytes of brain microvessels.

One of the latest achievement in the field is the devel-
opment of pump-free, open-microfluidic BBB in vitro 
model with integrated fully transparent ITO electrodes 
presented by Andreas Hierlemann group.214 Chip design 
and electrodes configuration enable simultaneous high-
resolution imaging and TEER measurements. Scientists 
were aimed to study how BBB reacts to external stimuli 
and established ischemic conditions with oxygen-glucose 
deprivation, leading to morphological changes in endothe-
lial cells associated with BBB disruption. In contrast to the 
membraneless OrganoPlate, where cell perfusion is also 
performed by bidirectional flow by rocking the platform, 
this chip represents barrier model with vertical cell-to-cell 
interactions via a membrane between the lower vascular 
compartment and the upper parenchyma compartment.

The large number of devices under development has 
contributed to the systematization of advances in the field 
of bioreactors for BBB-on-chip MPS, the search for new 
approaches, and the development of new challenges. 
Given the accumulated experience, in recent years scien-
tists have sought not only to reproduce 3D barrier architec-
ture and create physiological conditions for BBB 
component cells, but also to integrate various biosensors 
into such platforms to automate quantitative experiments 
to improve the clinical applicability of in vitro models and 
to apply these platforms to model CNS diseases and con-
sider the role of the BBB in their pathogenesis.214–218

In contrast to numerous BBB-on-chip models, rather 
few BCSFB models have been created. In BCSFB there 
are two main types of barrier cells, namely tightly coupled 
CPECs, determining barrier properties, and fenestrated 
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ECs. Modeling the BCSFB in vitro is more complex than 
the BBB because it is quite difficult to obtain primary epi-
thelial cells due to a lack of suitable cell lines and prob-
lems in establishing appropriate conditions for their 
functioning in vitro (incl. filtration of blood plasma and 
production of CSF). However, over the last decade, mod-
els of the BCSFB have evolved, similar to those of the 
BBB, from static cell epithelium monolayers and cell cul-
ture filter inserts (Transwell-like barriers) to dynamic ones 
on microfluidic platforms.219–224

One representative example of Transwell BCSFB 
model is illustrated in the work.222 An inverted model of 
BCSFB designed to study the cellular and molecular 
mechanisms mediating the migration of immune cells 
through BCSFB. Primary CPECs growing on inverted 
Transwell filters were defined as a reliable in vitro model 
for experiments mimicking the T cell migration from the 
blood vessel side to the apical side facing the CSF. In addi-
tion, TEER and barrier permeability were evaluated for 
different membranes: TEER decreases by 50% when 
membrane pores are increased by a factor of 10, while bar-
rier permeability changes only slightly. Given the large 
variability of materials and pore sizes of membranes used 
in brain-on-chip models, it is worth considering this 
parameter separately when analyzing the obtained TEER 
values.

The microfluidic approach in the establishment of 
BCSFB in vitro models was introduced in 2023, when a 
previously developed standard chip geometry was used to 
create the dynamic BCSFB in vitro model.225 The main 
advantages of the model are the co-culture of human 
CPECs and BMECs and the application of shear stress. 
Barrier properties, including modeling of neuroinflam-
mation (TNF-treated cells), were assessed by immuno-
fluorescence imaging, permeability measurements and 
transcriptional profiling of epithelial cells. Thus, it was 
confirmed that TNF perfusion impairs the barrier function 
of BCSFB. Development of a more complex co-culture 
system incorporating immune cells or brain parenchyma 
cells, as well as measurement of TEER, might improve the 
presented model for further investigations.

Thereby, characteristic stages of evolution in the field 
of in vitro modeling of the BBB and BCSFB have been 
presented, with an emphasis on the biological and techni-
cal features of the systems being developed in this field. 
The reader is referred to the reviews for additional infor-
mation.17,31,33,213,226–231 The most representative works 
were analyzed and systematically reproduced in Tables 2 
and 3. Timeline of technology evolution with key excerpts 
is visualized in Figure 3.

Development of 4D neurogenic niche in vitro 
models

As we have mentioned above, neurogenesis in the embry-
onic and adult brain represents the good example of the 

brain plasticity phenomenon. During embryogenesis, mas-
sive development and migration of cells result in the estab-
lishment of very heterogenous brain tissue. Currently, 
iPSCs-derived cerebral organoids grown in the in vitro 
conditions are considered as best models for studying the 
early steps in brain developmental plasticity. Even they 
have numerous limitations (e.g. loss of vascularization and 
absence of microglia), but they are able to recapitulate 
some crucial mechanisms of fetal brain development.234 
As to the adult neurogenesis, establishment of conven-
tional neurogenic niches (NNs) is based on tight structural 
and functional coupling of neural, glial and endothelial 
cells with different stages of maturity. All key events 
within the niche—maintaining the pool of NSCs, their 
recruitment and proliferation, maturation of NPCs, migra-
tion and differentiation of neurobalsts—are driven by the 
changes in the tissue stiffness and local microenvironment 
which is provided by the secretory activity of resident cells 
or by the permeability of the BBB (either in SGZ or SVZ), 
BCSFC and VB (in SVZ).28,35,235,236

The NNs in vitro model should include the following 
compartments: (i) a chamber for NSCs/NPCs, neuroblasts 
and resident mature cells with regulatory activity, e.g. 
astrocytes; (ii) a channel covered with BMECs for repro-
ducing the bulk blood flow and BBB activity in niche 
microvessels; (iii) a channel covered with CPECs for 
reproducing the filtration of blood plasma and production 
of CSF for its further diffusion through the BCSFB and 
VB into the compartment with NSCs/NPCs and (im)
mature neuronal cells; (iv) a chamber for mature neuronal 
cells with the well-established synaptic connections and 
glial cells as an analog of brain parenchyma. The geometry 
of the model should provide the possibility for the short-
distance migration of newly-born cells along the chains of 
endothelial or astroglial cells, and their controlled matura-
tion and interaction with mature neurons. In vivo, stimu-
lus-driven proliferation of NSCs and their conversion into 
NPCs may take up to 3 days, followed by the differentia-
tion within 1 week and further development of mature neu-
rons within 4–6 weeks.237 There is a difference in the 
time-course of adult neurogenesis in two niches: develop-
ment of newborn neurons in the SGZ takes more 
than1.5 month before their complete maturation and func-
tional integration into the pre-existing neuronal circuits, 
whereas development of newborn neurons in the SVZ 
occurs within 1 month.238

Therefore, the following key aspects of NNs in vitro 
modeling should be taken into the consideration: (i) selec-
tion of appropriate extracellular matrix-mimicking 3D 
scaffolds (e.g. made of degradable biopolymers) with the 
appropriate stiffness, porousity, and biocompatibility, 
including those used for the reproction of BBB, BCSFB, 
and VB within the models; (ii) tightly-controlled addition 
or removal of extracellular molecules (e.g. neurotransmit-
ters, growth factors, metabolites) needed for the regulation 
of cells fate at different stages of their development; (iii) 
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establishment of concentration gradients of molecules in 
transwell systems or within the microfluidic platforms for 
the controlled proliferation, differentiation and migration 
of newly-born cells; (iv) maintaining the long-lived multi-
cellular ensembles recapitulating the whole cycle of neu-
rogenesis in vitro with the permanent monitoring of cells 
expression pattern, their proliferation and differentiation 
capacity.239–243

Thus, modeling the adult NN in vitro is a non-trivial 
task, and only few attempts have come close to creating a 
physiologically relevant NNs in 3D or 4D conditions. 
They include neurospheres cultured in the conditions pre-
venting cells attachment to the surface (e.g. droplet-based 
microfluidics), monolayers or hydrogel-embedded cul-
tures of NSCs/NPCs grown with or without other cell 
types, for example, astroglial cells, microglial cells, and 
BMECs.244–249

Figure 4 illustrates the technological leaps in BBB and 
BCSFB modeling. Graphical examples and comparative 

analysis of existing in vitro brain-on-a-chip models are 
provided.

Establishment of an “ideal” brain in vitro 
model: Shifting from 2D/3D to 4D conditions

Since developmental and adaptive plasticity is the most 
critical property of the brain, establishment of an “ideal” 
brain tissue in vitro models requires precise reproduction 
of events that reflect dynamic changes in the brain struc-
ture and function. Particularly, modulation of excitation of 
neuronal cells and activity of glial cells, neurogenesis, cell 
migration and physiological cell death, vasculogenesis/
angiogenesis and recession of microvessels, synaptogene-
sis and competitive elimination of synapses, barriergenesis 
and dynamic changes in the permeability of barriers, 
dynamics of brain fluids (blood plasma, interstitial fluid, 
and CSF) between brain compartments. It is obvious that 
such changes are implemented with different time-courses 

Figure 4.  Technological leaps in BBB, BCSFB and NN modeling. Transwell inserts, hollow fiber bioreactors and microfluidic chips 
as available tools to recreate brain tissue in vitro.
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(ms – h/days),250–253 therefore, physiologically relevant 
brain in vitro models should provide the possibility to 
monitor either fast or long-lasting events with good time 
resolution and accuracy.

A retrospective look at the development of the technol-
ogy for the brain in vitro modeling highlights the follow-
ing starting points for future research:

–  � As 3D architecture has been reproduced in various 
formats (spheroids, organoids, hydrogel cultures, 
microfluidic chips), attempts to realize the dynam-
ics of brain tissue histogenesis by relying on simula-
tion of key brain barriers may lead to a new class of 
models, 4D models in vitro, capable of reproducing 
neuro- and angiogenesis processes on chip. Thus, it 
might be possible to establish changing brain in 
vitro which could reproduce the most important 
mechanisms of brain development, maturation, 
repair, and aging. Particularly, special attention 
should be paid to the development of multi-sensor 
platforms for permanent registration of events 
induced by the action of external stimuli with the 
software for real-time analysis of huge dataset. As 
an example, one could propose the establishment of 
long-lived complex systems with the components of 
brain-on-chip barriers with the brain region-specific 
parenchyma sensitive to the action of various neuro-
transmitters, gliotransmitters, neuropeptides, and 
cytokines, and demonstrating detectable changes in 
the synaptic transmission, neurogenesis, and neoan-
giogenesis. Future research in this area will enable a 
qualitative leap in disease modeling, taking into 
account brain plasticity as its fundamental in vivo 
phenomenon, and consequently improve the valid-
ity of in vitro models for drug screening targeting 
neurodegenerative diseases in particular, and BBB/
BCSFB-associated CNS diseases in general;

– � The inclusion of molecular profiling methods 
(omics technologies) will allow, on the one hand, 
better identification of molecule targets at the pre-
clinical trials stage by identifying differences 
between genomic, transcriptomic, proteomic and 
metabolomic profiles for samples of sick and 
healthy subjects and, on the other hand, evaluation 
of therapeutic effects of candidate molecules on 
omics information obtained from the target area of 
target cells in the body. Thus, if omics technologies 
are integrated into the cycle of high-throughput 
drug screening systems, the predictive value of in 
vitro models can be improved to accelerate clinical 
translation of candidate drugs;

– � Full reconstruction of (patho)physiological brain 
fluids dynamics (either bulk flow or diffusion) is 
still unresolved problem in available brain in vitro 

models. Even there are some recent attempts to the 
CSF flow measurements in vitro254 or to the creation 
of in vitro platforms that provide the microenviron-
ment needed for the control of the brain hydrody-
namics,255 they mainly deal with the establishment 
and monitoring of one separate type of the flow (e.g. 
CSF or blood);

– � The trade-off between technological complexity 
(physiological relevance) and high performance of 
microfluidic systems for drug screening is one of the 
stumbling blocks between the transition of labora-
tory research (academia) to commercial technology 
implementation (industry). However, instead of 
searching for a compromise, it is advisable to focus 
on the target function of the project and match all 
parameters of the developed system to its final appli-
cation. In particular, for modeling neurodegenera-
tive diseases in vitro and studying their pathogenesis, 
the structure and function of the BBB and BCSFB, 
and the fundamental properties of the brain, systems 
with increased complexity and low reproducibility 
will certainly be a priority. On the other hand, sim-
pler systems with high repeatability and reproduci-
bility of research results are more suitable for 
simultaneous screening of drugs and performing a 
large array of quantitative in vitro assays.

In December 2022, the FDA de facto equated preclini-
cal testing of drugs in vivo (using animals) and in vitro 
testing (using standard Transwell systems, microfluidic 
organ-on-a-chip or other models). This means that the pre-
clinical trials phase could be significantly shortened in 
both time and cost in the coming years by more detailed in 
vitro screening and the complete abandonment of animal 
testing before the human clinical trial phase. We can state 
that the primary goal of developing organ-on-a-chip tech-
nology and, in particular, developing microfluidic BBB/
BCSFB systems on a chip to meet one of today’s major 
healthcare needs (management of CNS diseases) has fully 
justified itself and, moreover, receives a new impetus for 
development and wide implementation into standard prac-
tice by pharmaceutical companies.

Obviously, there are some preferences in using the 
cheaper in vitro models instead of animals. Nevertheless, a 
complete rejection of animal drug testing is unlikely in the 
coming years, and there are a number of good reasons for 
this. The main stopping factor here is the paucity of work 
(only two on BBB modeling) with validation of in vitro 
models by comparative in vivo experiments. The second 
reason relates to the current unavailability of real 4D 
(where fourth dimension is time) brain-on-chip models 
fully representing the changing/developing brain in vitro. 
The relevance of the problem of creating a relevant in vitro 
model of the NN to become a reliable platform for obtain-
ing repeatable and reproducible results in the study of 
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barrier function, disease modeling, drug screening is thus 
confirmed not only by the accumulated experience in the 
field, but also by the trend in recent years to reduce the use 
of animals in the preclinical trials and the appearance of 
the first in vivo-in vitro correlated data.

In sum, it is quite obvious that reproducing brain plas-
ticity in the in vitro models is a non-trivial task both in 
terms of the variability of cells whose interactions must be 
taken into account, and composition/dynamics of tissue 
barriers and extracellular fluids that regulate brain’s activ-
ity. Numerous attempts have been made to achieve the 
reconstruction of the brain tissue in vitro which could 
properly reflect the real network of brain cells and their 
ability to undergo plastic changes upon receiving the 
external stimuli like it happens in learning, memory encod-
ing and consolidation.218,256–259 However, we are still far 
from the complete solving the problem of constructing the 
4D models where the tissue undergoes dynamic changes 
similar to developing or experience-activated brain. Let’s 
summarize which tools are available now, and what char-
acteristics should have an “ideal” brain in vitro model:

1.	� There is a diversity of cells used for brain tissue 
modeling in vitro. Particularly, primary cell cul-
tures, cell lines, stem cells-derived terminally dif-
ferentiated cells, cerebral organoids spontaneously 
organized in vitro are currently in use.259–262 Still 
there are some technical difficulties in the estab-
lishment of tissue models made of human cells, in 
getting the correct phenotype of iPSC-derived cells 
in vitro, in the co-culture of different cells (e.g. 
neurons, astrocytes, BMECs, or CPECs) in rather 
simplified and unified conditions, as well as in 
monitoring of cell-specific functional activity 
within the multicellular ensembles.

2.	� Tissue architecture could be reproduced in static 
(transwell) or dynamic (microfluidic), 2D (planar) 
or 3D (spheroids, organoids, or cells embedded into 
the gels) formats. Even simple static models are still 
useful for studying intercellular communications in 
the brain tissue.17,28,219,263–265 Application of micro-
fluidic systems opens new opportunities for the 
establishment of changeable microenvironment, 
reconstruction of brain fluids flow and cells behav-
iors that are controlled by fluids movement and 
their chemical composition (e.g. fluidic shear stress 
enabling BMECs to develop and to function with 
higher efficacy), achievement of better barrier 
structural integrity as well as continuous monitor-
ing of brain cells metabolism and performing the 
high throughput high content imaging and analy-
sis.257,258,266,267 Implementation of 3D models allows 

recapitulating the brain complex microarchitecture, 
dimensionality, reconstructing different types of 
cell-to-cell and cell-to-extracellular matrix (ECM) 
communications, ECM- or vascular-derived tissue 
compartments, and assessing the self-organization 
of brain multicellular ensembles.8,268

3.	� Compartmentalization is achieved by reconstruct-
ing the brain tissue within the specially designed 
microchambers, microchannels usually separated 
with porous membranes or existing in a membrane-
less format. This approach allows establishing the 
integral brain tissue structure and intercellular 
interactions that depend on cell location, dynamic 
changes in the environment, for example, to pro-
vide optimal conditions for cell functional activity 
and metabolism, connectivity of various brain  
regions.10,256,258,269 Also, such compartmentaliza-
tion might be useful for getting the multiscale 
architecture of the brain tissue existing as a “net-
work of networks” in vivo.256,270

4.	� Introduction of various sensors to monitor cell 
activity within the model, for example, multielec-
trode assay for the assessment of neuronal excita-
bility and synaptic transmission, optical, impedance 
and electrochemical sensors for monitoring cell 
migration, proliferation, metabolism, chemical 
composition of the extracellular fluids, and multi-
ple intermolecular interactions, and BBB/BCSFB 
permeability.11,271,272 Other approaches include 
optical imaging of cells growing in vitro, analysis 
of subcellular events that are key for cell function-
ality (e.g. mitochondrial activity, calcium and 
cytoskeletal dynamics), molecular profiling of 
cells and extracellular fluids by means of transcrip-
tomic, proteomic, metabolomic approaches in 
(patho)physiological conditions.11,218,273–275

5.	� Application of novel materials and scaffolds mim-
icking ECM results in the improvement of cells 
viability, adhesion, interactions, functional activ-
ity, and communication. As an example, substrates 
with the desired stiffness, permeability, degradabil-
ity, compatibility, and dimensionality improve neu-
ral tissue engineering by providing appropriate 
electrical stimulation of cells,276,277 promote 
recruitment, proliferation and differentiation of 
NSCs,278,279 support controlled release of proneu-
rogenic or proangiogenic factors,271 protect the 
cells exposed to unfavorable in vitro conditions.280

6.	� Further progress in automatization and data analysis 
is extremely important, because complex reproduc-
tion of brain plasticity phenomenon in vitro will ulti-
mately lead to the appearance of a problem with 
massive data analysis for the assessment of brain 
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plasticity and establishment of appropriate feedback 
mechanisms in a model.

7.	� In addition to all above mentioned characteristics, 
the models aimed to reproduce key events in neu-
rogenesis and neurogenesis-coupled brain plastic-
ity should consider the following additional tasks:

7.1.	 establishment of multicellular ensembles made 
of NSCs/NPCs and their progeny as well as 
fully-differentiated cells (astrocytes, BMECs, 
CPECs, EpCs), tight integration of functionally 
and phenotypically distinct compartments 
(neurogenic niche, NVU/brain parenchyma, 
and associated brain tissue barriers) on a chip 
mimicking the regulation of neurogenesis in 
(patho)physiological conditions31,135,281–283;

7.2. reproduction of ECM composition, oxygen 
and nutrients supply for better cell viability 
and functionality, reproduction of metabolic 
plasticity and local humoral microenviron-
ment supporting cell-to-cell communications, 
establishment of conditions supportive for 
neurogenesis and angiogenesis204,284–286;

7.3. reconstitution of the chip microarchitecture, 
fluids exchange and establishment of chemi-
cal gradients that are supportive for NSCs/
NPCs maintenance due to dynamic changes 
in the concentrations of local and “systemic” 
regulatory molecules (neurotransmitters, gli-
otransmitters, growth factors, cytokines, 
alarmins, metabolites) produced by the cells 
themselves, infused into the microfluidic 
device artificially, or embedded into the ECM 
and scaffolds13,287;

7.4.	 achieving the controllable and reproducible 
recruitment, proliferation, differentiation, apop-
tosis of NSCs/NPCs, migration of neuroblasts, 
maturation of newly-formed neurons and their 
functional integration within the NVU/brain 
parenchyma compartment242,244,247,264,288,289;

7.5.	 establishment of the molecular machinery 
responsible for dynamic/phasic changes in 
the tissue (for instance, circadian/diurnal 
rhythms and/or mitochondrial dynamics) that 
are important for determining the stem cells 
fate or barrier functions136,290;

7.6.	 achievement of prolonged viability of the 
neurogenic niche in vitro model enabling 
long-lasting recording of “developmental” 
and plastic changes in the brain tissue.

The generalized characteristics of the brain tissue mod-
els are summarized in Figure 5.

In the context of multi-organ-on-chip methodology, 
continuous media circulation and inter-tissue interactions 
are required for the establishment of microphysiological 

systems suitable for studying molecular pathogenesis, 
drugs pharmacokinetics and pharmacodynamics, even in 
a patient-specific (personalized) mode.291 Brain plasticity 
based on neurogenesis, maturation and functional inte-
gration of newly-born cells into pre-existing circuits 
might be considered as an analog of “multi-organ-on-
chip” model. In this model, different brain compart-
ments are interconnected in the appropriate manner to 
provide balanced development of new neurons further 
disseminating within the compartment to provide a sub-
strate for brain plasticity seen in development, learning, 
cognition, or memory encoding and consolidation. 
Thus, development of the changeable brain in vitro 
model consisted of the neurogenic niche (as a compart-
ment for stimuli-driven neurogenesis), the brain paren-
chyma (as a compartment for neurogenesis control and 
assimilation of new cells), and brain tissue barriers like 
BBB and BCSFB (as compartments providing the 
adjustment of local microenvironment to actual func-
tional and metabolic needs) is one of the most ambitious 
tasks in neurobioengineering and, presumably, in regen-
erative neurology.

Conclusions

Current progress in brain tissue modeling has made it pos-
sible to mimic biological, biochemical, and even physical 
(mechanical) properties of the mammalian brain in the in 
vitro conditions. The main goal of such mimicking is to 
ensure proper physiological correspondence between in 
vivo and in vitro processes for receiving more reliable 
data in neurobiology, regenerative neurology and neurop-
harmacology. However, there are still some significant 
challenges whose solving would greatly increase the rel-
evance of existing brain tissue in vitro models. 
Neuroscience development as well as technology evolu-
tion allows reconstructing the 2D and 3D microarchitec-
ture with rather accurate cell composition, physiologically 
relevant mechanical stimulation, oxygen and nutrients 
supply. The question is whether we understand correctly 
the crucial mechanisms underlying brain plasticity. It is a 
multifaceted phenomenon whose reconstruction in vitro 
requires the development and long-term maintenance of 
4D models whose components are sensitive to the action 
of stimuli initiating plastic changes in the brain tissue. 
Thus, instead of separately assembled NVU/BBB, BCSFB 
or NN, we should focus on a combination of all these ele-
ments in a microfluidic platform. It might shed a light on 
the entire mechanisms of brain plasticity: stimulus-driven 
neuronal activity, synaptic transmission, glial activation, 
induction of neurogenesis and angiogenesis, and associ-
ated changes in blood, CSF and ISF movement. Also, 
being created with the patient-derived cells, such 4D 
models would be helpful in testing the individual trajec-
tory of brain development and aging, or in assessing the 
efficacy of drugs.
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