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Caen, Caen, France, 4 Department of Mathematics and Statistics, College of Science Imam Mohammad Ibn

Saud Islamic University (IMSIU), Riyadh, Saudi Arabia, 5 Department of Mathematical Statistics, Faculty of

Graduate Studies for Statistical Research, Cairo University, Giza, Egypt, 6 Valley High Institute for

Management Finance and Information Systems, Obour, Qaliubia, Egypt

☯ These authors contributed equally to this work.

* christophe.chesneau@unicaen.fr

Abstract

In this paper, we introduce the exponentiated power generalized Weibull power series

(EPGWPS) family of distributions, obtained by compounding the exponentiated power gen-

eralized Weibull and power series distributions. By construction, the new family contains a

myriad of new flexible lifetime distributions having strong physical interpretations (lifetime

system, biological studies. . .). We discuss the characteristics and properties of the

EPGWPS family, including its probability density and hazard rate functions, quantiles,

moments, incomplete moments, skewness and kurtosis. The main vocation of the

EPGWPS family remains to be applied in a statistical setting, and data analysis in particular.

In this regard, we explore the estimation of the model parameters by the maximum likelihood

method, with accuracy supported by a detailed simulation study. Then, we apply it to two

practical data sets, showing the applicability and competitiveness of the EPGWPS models

in comparison to some other well-reputed models.

1 Introduction

The Weibull distribution demonstrates adequate fits for most of the lifetime data, excepting

those having empirical hazard rates with non-monotone shapes. Such data are often encoun-

tered in survival analysis, making the Weibull model useless to analyze them. Discussions in

this regard can be found in [1]. The limitations of the Weibull distribution have motivated var-

ious generalizations and extensions, offering more flexible alternatives in terms of modelling.

Among them, there are the extended Weibull distribution by [2], the new extended Weibull

distribution by [3], the beta Weibull distribution by [4], the modified Weibull distribution by

[5], the (P-A-L) extended Weibull distribution by [6], the additive Weibull distribution by [7],

the generalized Weibull distribution by [8], the exponentiated Weibull distribution by [9], the
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Kumaraswamy Weibull distribution by [10] and the generalized modified Weibull distribution

by [11].

More recently, a very flexible extension of the Weibull distribution was introduced by [12],

called the exponentiated power generalized Weibull (EPGW) distribution. The cumulative dis-

tribution function (cdf) of the EPGW distribution with parameters α, β, λ and μ is given by

G
EPGW
ðx; a; b; l;mÞ ¼ ½1 � e1� ð1þlxmÞa �

b
; x > 0; ð1Þ

where λ> 0 is a scale parameter, and μ, α, β are shape parameters. For the sake of conciseness,

we now set φ = (α, β, λ, μ). Then, the corresponding probability density function (pdf) and

hazard rate function (hrf) are, respectively, given by

g
EPGW
ðx;�Þ ¼ blmaxm� 1ð1þ lxmÞa� 1e1� ð1þlxmÞa ½1 � e1� ð1þlxmÞa �

b� 1
ð2Þ

and

h
EPGW
ðx;�Þ ¼

blmaxm� 1ð1þ lxmÞa� 1e1� ð1þlxmÞa ½1 � e1� ð1þlxmÞa �
b� 1

1 � ½1 � e1� ð1þlxmÞa �
b

: ð3Þ

Among its interests, the EPGW distribution unifies several well-known lifetime distribu-

tions (such as the exponential, exponentiated exponential, Rayleigh, Burr type X, Weibull,

exponentiated Weibull, Nadarajah-Haghighi, exponentiated Nadarajah-Haghighi and power

generalized Weibull distributions), the corresponding hrf has flexible properties, showing

decreasing, increasing, upside-down bathtub and bathtub shapes, if β is an integer, it corre-

sponds to the distribution of the maximum lifetime of a random sample from the power gener-

alized Weibull distribution and several practical investigations show that the EPGW model

often gives better fits than other well-established generalized Weibull models. In this regard,

we may refer the reader to the complete work of [12].

In this paper, motivated by these attractive properties, we aim to extend the EPGW distri-

bution with the idea in mind to reach some new levels of flexibility, specially for the corre-

sponding pdf and hrf (expecting more types of monotonic and non-monotonic curves in

comparison to those of the pdf and hrf of the EPGW distribution (see [12, Figs 1 and 2])) and

several crucial measures, such as moments, skewness and kurtosis. In this regard, we adopt the

methodology introduced by [2] which consists in compounding continuous and power series

distributions as introduced by [13], i.e., including geometric, Poisson, logarithmic and bino-

mial distributions. The prime physical motivation behind this methodology is the modelling

of a lifetime system depending on the random number of independent components with ran-

dom lifetime. Thus, the number of component can be modeled by a zero-truncated discrete

random variable N and the lifetime of the i-th component can be modelled by a positive con-

tinuous random variable Xi. Then, the lifetime of the system can be modelled by either X� = inf

(X1, X2, . . ., XN) or X�� = sup(X1, X2, . . ., XN), depending on the structure of the components:

series or parallel, respectively. Similar applications can be found in industrial and biological

studies. From the statistical point of view, this compounding technique allows the construction

of flexible families of distributions and has proved itself in different settings. We may refer the

reader to the exponential power series family by [14], the Weibull power series family by [15],

the generalized exponential power series family by [16], the extended Weibull power series

family by [17], the Birnbaum- Saunders power series family by [18], the generalized modified

Weibull power series family by [19], the exponentiated power Lindley power series family by

[20], the inverse Weibull power series family by [21], the Burr-Weibull power series family by

[22] and the complementary generalized power Weibull power series family by [23].
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With the above arguments in mind, we introduce the exponentiated power generalized

Weibull power series (EPGWPS) family obtained by compounding the EPGW and power

series distributions. The new family contains a myriad of lifetime distributions as special mem-

bers, such as the exponentiated power generalized Weibull geometric (EPGWG), exponen-

tiated power generalized Weibull Poisson (EPGWPo), exponentiated power generalized

Weibull binomial (EPGWB), exponentiated power generalized Weibull logarithmic

(EPGWL), power generalized Weibull Poisson (PGWPo), power generalized Weibull geomet-

ric (PGWG), power generalized Weibull binomial (PGWB), and power generalized Weibull

logarithmic (PGWL) distributions. The aim of this paper is to provide all the main features of

the EPGWPS family, exploring both its mathematical and practical properties, with a focus on

the EPGWG distribution. In particular, we highlight the attractive properties of the EPGWG

model in a data analysis purpose. Two practical data sets are used in this regard.

The rest of the article is organized as follows. In Section 2, the EPGWPS family is intro-

duced. In Section 3, we present some special members of the EPGWPS family, with a focus on

the EPGWG distribution. Various mathematical and statistical properties of the new family

are obtained in Section 4. Maximum likelihood estimates of the unknown parameters are pre-

sented in Section 5, as well as a simulation study. The EPGWG model is applied to two practi-

cal data sets in Section 6. We give some concluding remarks in Section 7.

2 The EPGWPS family of distributions

In this section, we define the EPGWPS family and present some of its special members of

interest.

2.1 Definition

First of all, let us present the power series (PS) family of distributions. We consider a zero-

truncated discrete random variable N having a power series probability mass function (pmf)

given by

PðN ¼ nÞ ¼
an y

n

CðyÞ
; n ¼ 1; 2; . . . ; ð4Þ

where θ> 0 (at least, it can belong to a more restrictive domain), an� 0 depending only on n,

and C(θ) is the normalization constant, i.e., CðyÞ ¼
Xþ1

n¼1

any
n
. We suppose that C(θ) is finite

and its first, second and third derivatives with respect to θ are also finite and denoted by C0(θ),

C0 0(θ) and C00 0(θ), respectively. Then, the PS family is defined by the pmf given by (4) (see

[13]). In particular, it includes the geometric, Poisson, logarithmic and binomial distributions,

as detailed in Table 1.

Now, let us consider a sequence of independent and identically distributed random variable

X1, X2, . . . and X�� = sup(X1, X2, . . ., XN). Then, based on (1) and (4), the conditional cumulative

Table 1. Useful quantities of some power series distributions.

Distribution an C(θ) C−1(θ) Domain of θ
Geometric 1 θ(1 − θ)−1 θ(1 + θ)−1 (0, 1)

Poisson (n!)−1 eθ − 1 log(θ + 1) (0, +1)

Binomial m
n

� �
(θ + 1)m − 1 (θ + 1)1/m − 1 (0, +1)

Logarithmic n−1 −log(1 − θ) 1 − e−θ (0, 1)

https://doi.org/10.1371/journal.pone.0230004.t001

PLOS ONE Exponentiated power generalized Weibull power series family of distributions

PLOS ONE | https://doi.org/10.1371/journal.pone.0230004 March 20, 2020 3 / 25

https://doi.org/10.1371/journal.pone.0230004.t001
https://doi.org/10.1371/journal.pone.0230004


distribution function (cdf) of X��jN = n is given by

G
X��jN¼n

ðx;�Þ ¼ ½G
EPGW
ðx;�Þ�

n
¼ ½1 � e1� ð1þlxmÞa

�
bn
; x > 0: ð5Þ

One can notice that it is the cdf of the EPGW distribution with parameters α, βn, λ and μ.

Then, the EPGWPS family is defined by the cdf of X�� given by

Fðx;�; yÞ ¼
X1

n¼1

any
n

CðyÞ
G

X��jN¼n
ðx;�Þ ¼

C½yG
EPGW
ðx;�Þ�

CðyÞ

¼
Cfy½1 � e1� ð1þlxmÞa

�
b
g

CðyÞ
; x > 0:

ð6Þ

Based on this last expression, the corresponding pdf and hrf are, respectively, given by

f ðx;�; yÞ ¼ yg
EPGW
ðx;�Þ

C0½yG
EPGW
ðx;�Þ�

CðyÞ

¼ yblmaxm� 1ð1þ lxmÞa� 1e1� ð1þlxmÞa
½1 � e1� ð1þlxmÞa

�
b� 1 C0fy½1 � e1� ð1þlxmÞa

�
b
g

CðyÞ

ð7Þ

and

hðx;�; yÞ ¼ yg
EPGW
ðx;�Þ

C0½yG
EPGW
ðx;�Þ�

CðyÞ � C½yG
EPGW
ðx;�Þ�

¼ yblmaxm� 1ð1þ lxmÞa� 1e1� ð1þlxmÞa
½1 � e1� ð1þlxmÞa

�
b� 1
�

C0fy½1 � e1� ð1þlxmÞa
�
b
g

CðyÞ � Cfy½1 � e1� ð1þlxmÞa
�
b
g
:

ð8Þ

This new family is quite flexible because it contains a plethora of well-established lifetime

distributions and some new ones. In this regard, Table 2 lists some of them derived from the

EPGWPS family.

2.2 Special members of the EPGWPS family

In this section, we present special members of the EPGWPS family based on the discrete distri-

bution presented in Table 1. Thus, we introduce the exponentiated power generalized Weibull

geometric (EPGWG), exponentiated power generalized Weibull Poisson (EPGWPo), exponen-

tiated power generalized Weibull binomial (EPGWB) and exponentiated power generalized

Weibull logarithmic (EPGWL) distributions.

Table 2. Some distributions derived from the EPGWPS family (with varying λ and θ).

Name μ α β Family References

ENHPS 1 − − exponentiatedNadarajah-Haghighi power series New

NHPS 1 − 1 Nadarajah-Haghighi power series New

PGWPS − − 1 power generalized Weibullpower series [23]

EWPS − 1 − exponentiated Weibull powerseries [16]

WPS − 1 1 Weibull power series [15]

EExPS 1 1 − generalized exponential powerseries [16]

ExPS 1 1 1 exponential power series [16]

BPS 2 1 − Burr type X power series New

https://doi.org/10.1371/journal.pone.0230004.t002
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EPGWG distribution: The EPGWG distribution arises by taking an = 1 and C(θ) = θ(1 − θ)−1

with θ 2 (0, 1). By using the cdf given by (6), the EPGWG distribution is defined by the fol-

lowing cdf:

Fðx;�; yÞ ¼
ð1 � yÞ½1 � e1� ð1þlxmÞa �

b

1 � y½1 � e1� ð1þlxmÞa �
b
; x > 0: ð9Þ

One can remark that it is also a member of the Marshall-Olkin family defined with the

EPGW distribution as baseline (see [2]). Also, by using (7) and (8), the corresponding pdf

and hrf are, respectively, given by

f ðx;�; yÞ ¼
ð1 � yÞblmaxm� 1ð1þ lxmÞa� 1e1� ð1þlxmÞa ½1 � e1� ð1þlxmÞa �

b� 1

f1 � y½1 � e1� ð1þlxmÞa �
b
g

2 ð10Þ

and

hðx;�; yÞ ¼
ð1 � yÞblmaxm� 1ð1þ lxmÞa� 1e1� ð1þlxmÞa ½1 � e1� ð1þlxmÞa �

b� 1

f1 � y½1 � e1� ð1þlxmÞa �
b
gf1 � ½1 � e1� ð1þlxmÞa �

b
g

: ð11Þ

EPGWPo distribution: The EPGWPo distribution arises by taking an = (n!)−1 and C(θ) =

eθ − 1, with θ> 0. By using the cdf given by (6), the PGWPo distribution is defined by the

following cdf:

Fðx;�; yÞ ¼
ey½1� e1� ð1þlxmÞa �b � 1

ey � 1
; x > 0:

Also, from (7) and (8), the corresponding pdf and hrf are, respectively, given by

f ðx;�; yÞ ¼
yblmaxm� 1ð1þ lxmÞa� 1

ey � 1
e1� ð1þlxmÞa ½1 � e1� ð1þlxmÞa �

b� 1
�

ey½1� e1� ð1þlxmÞa �b

and

hðx;�; yÞ ¼
yblmaxm� 1ð1þ lxmÞa� 1

ey � ey½1� e1� ð1þlxmÞ
a
�b

e1� ð1þlxmÞa ½1 � e1� ð1þlxmÞa �
b� 1
�

ey½1� e1� ð1þlx
mÞa �b :

EPGWB distribution: The EPGWB distribution arises by taking an ¼
m
n

� �
and C(θ) = (θ + 1)m

− 1, with θ> 0 and m� n. Hence, from (6), the cdf of the PGWPo distribution can be

expressed as

Fðx;�; yÞ ¼
fy½1 � e1� ð1þlxmÞa �

b
þ 1g

m
� 1

ðyþ 1Þ
m
� 1

; x > 0:
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Also, from (7) and (8), the corresponding pdf and hrf are, respectively, given by

f ðx;�; yÞ ¼ myblmaxm� 1ð1þ lxmÞa� 1e1� ð1þlxmÞa ½1 � e1� ð1þlxmÞa �
b� 1

�
fy½1 � e1� ð1þlxmÞa �

b
þ 1g

m� 1

ðyþ 1Þ
m
� 1

and

hðx;�; yÞ ¼ myblmaxm� 1ð1þ lxmÞa� 1e1� ð1þlxmÞa ½1 � e1� ð1þlxmÞa �
b� 1

�
fy½1 � e1� ð1þlxmÞa �

b
þ 1g

m� 1

ðyþ 1Þ
m
� fy½1 � e1� ð1þlxmÞa �

b
þ 1g

m :

EPGWL distribution: The EPGWL distribution arises by taking an = n−1 and C(θ) = −log(1 −
θ), with θ 2 (0, 1). Hence, from (6), the EPGWL distribution has the following cdf:

Fðx;�; yÞ ¼
logf1 � y½1 � e1� ð1þlxmÞa �

b
g

log ð1 � yÞ
; x > 0:

Also, from (7) and (8), the corresponding pdf and hrf are, respectively, given by

f ðx;�; yÞ ¼
yblmaxm� 1ð1þ lxmÞa� 1e1� ð1þlxmÞa ½1 � e1� ð1þlxmÞa �

b� 1

log ð1 � yÞfy½1 � e1� ð1þlxmÞa �
b
� 1g

and

hðx;�; yÞ ¼
yblmaxm� 1ð1þ lxmÞa� 1e1� ð1þlxmÞa ½1 � e1� ð1þlxmÞa �

b� 1

fy½1 � e1� ð1þlxmÞa �
b
� 1g log

1 � y

1 � y½1 � e1� ð1þlxmÞa �
b

( )
:

3 On the EPGWG distribution

First fo all, we recall that the EPGWG distribution is defined with the cdf, pdf and hrf given by

(9), (10) and (11), respectively. Preliminaries works show attractive properties for this distribu-

tion in terms of flexibility of the related functions, thats why we put the light on it in this sec-

tion. Let us investigate the asymptotic properties of f(x;ϕ, θ) and h(x;ϕ, θ). When x! 0, we

have

Fðx;�; yÞ � ð1 � yÞabl
bxmb; f ðx;�; yÞ � ð1 � yÞabl

b
mbxmb� 1

and

hðx;�; yÞ � ð1 � yÞabl
b
mbxmb� 1:

So

lim
x!0

f ðx;�; yÞ ¼ lim
x!0

hðx;�; yÞ ¼

þ1 if mb < 1;

ð1 � yÞabl
b if mb ¼ 1;

0 if mb > 1:

8
>>><

>>>:
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In this case, we see that the values of μ and β are determinant in the asymptotic properties

of f(x;ϕ, θ) and h(x;ϕ, θ). Also, when x! +1, we have

1 � Fðx;�; yÞ �
1

1 � y
be1� ð1þlxmÞa ; f ðx;�; yÞ �

1

1 � y
bl

a
maxma� 1e1� ð1þlxmÞa

and

hðx;�; yÞ � l
a
maxma� 1:

Hence

lim
x!þ1

f ðx;�; yÞ ¼ 0; lim
x!þ1

hðx;�; yÞ ¼

0 if ma < 1;

l
a if ma ¼ 1;

þ1 if ma > 1:

8
>>><

>>>:

Here, μ and α are determinant in the asymptotic properties of f(x;ϕ, θ) and h(x;ϕ, θ). Natu-

rally, the curves of f(x;ϕ, θ) and h(x;ϕ, θ) can take various forms depending on the values of the

parameters. In this regard, the critical points of these functions can be of interest. A critical

point for f(x;ϕ, θ) is solution of the following non-linear equation: {log[f(x;ϕ, θ)]}0 = 0 accord-

ing to x, where, after some algebra,

f log ½f ðx;�; yÞ�g
0
¼ ðm � 1Þ

1

x
þ ða � 1Þlm

xm� 1

1þ lxm
� lamxm� 1ð1þ lxmÞa� 1

þðb � 1Þlam
xm� 1ð1þ lxmÞa� 1e1� ð1þlxmÞa

1 � e1� ð1þlxmÞa

þ2yblma
xm� 1ð1þ lxmÞa� 1e1� ð1þlxmÞa ½1 � e1� ð1þlxmÞa �

b� 1

1 � y½1 � e1� ð1þlxmÞa �
b

:

The degree of complexity of this equation is high; only a mathematical software can be used

to provide a numerical evaluation of a critical point. Also, its nature depends on the sign of

{log[f(x;ϕ, θ)]}00 taken at this point, which requires a similar numerical treatment. Similarly, a

critical point for h(x;ϕ, θ) is solution of the following non-linear equation: {log[h(x;ϕ, θ)]}0 = 0,

where

f log ½hðx;�; yÞ�g
0
¼ ðm � 1Þ

1

x
þ ða � 1Þlm

xm� 1

1þ lxm
� lamxm� 1ð1þ lxmÞa� 1

þðb � 1Þlam
xm� 1ð1þ lxmÞa� 1e1� ð1þlxmÞa

1 � e1� ð1þlxmÞa

þ2yblma
xm� 1ð1þ lxmÞa� 1e1� ð1þlxmÞa ½1 � e1� ð1þlxmÞa �

b� 1

1 � y½1 � e1� ð1þlxmÞa �
b

þð1 � yÞblma
xm� 1ð1þ lxmÞa� 1e1� ð1þlxmÞa ½1 � e1� ð1þlxmÞa �

b� 1

f1 � y½1 � e1� ð1þlxmÞa �
b
gf1 � ½1 � e1� ð1þlxmÞa �

b
g
:

Again, the considered non-linear equation is too massive to expect an analytical solution,

only a numerical solution can be derived; a mathematical software can help in this regard.

The same remark holds for the nature of such a critical point which requires the calculus of

{log[h(x;ϕ, θ)]}00 taken at this point.
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A comprehensive study on the shapes of f(x;ϕ, θ) and h(x;ϕ, θ) can be performed by a simple

graphical approach. Hence, Fig 1(i) shows plots of f(x;ϕ, θ) for various values of the parameters

and Fig 1(ii) shows the same for h(x;ϕ, θ).

From Fig 1(i), we observe that f(x;ϕ, θ) can be decreasing and has left skewed, right

skewed and (near) symmetrical shapes, with various degree of skewness and kurtosis. Also,

Fig 1(ii) reveals a wide panel of shapes for h(x;ϕ, θ), including decreasing, increasing, (near)

constant and non-monotonic shapes of various kinds (reverse J, tilde, U (bathtub) and

reverse U).

We now highlight the individual role of the parameters in the shapes of f(x;ϕ, θ) in Fig 2.

In particular, for the considered values, we see that α and λ have great effects on the kurto-

sis, βmainly impacts the mode, μ can produce tilde shapes and impact the skewness, and θ has

an influence on the nature of the skewness and can round the top of the curve. In particular,

Figs 1 and 2 reveal that the pdf and hrf of the EPGWG distribution has more rich curvatures

forms in comparison to the pdf and hrf of the former EPGW distribution (see [12, Figs 1 and

2]). This makes the EPGWG distribution very attractive to model various kinds of lifetime

data.

4 Properties

In this section, some mathematical and statistical properties of the EPGWPS family are

discussed.

4.1 On the EPGWPS and EPGW distributions

Here, we discuss some immediate results on the EPGWPS family. First fo all, let us notice that

the cdf of X� = inf(X1, X2, . . ., XN) is given by

F
X�
ðx;�; yÞ ¼ 1 �

C½y � yG
EPGW
ðx;�Þ�

CðyÞ
¼ 1 �

Cfy � y½1 � e1� ð1þlxmÞa
�
b
g

CðyÞ
; x > 0:

The following result shows the relation existing between X� and the EPGW family.

Proposition 4.1 Let G� 1

EPGW
ðx;�Þ be the quantile function corresponding to GEPGW (x; ϕ).

Then, the random variable

Y ¼ G� 1

EPGW
½1 � G

EPGW
ðX�;�Þ;��

has the cdf of the EPGWPS family.

Proof: For any x 2 R, the cdf of Y is given by

FYðx;�; yÞ ¼ PðY � xÞ ¼ PfG� 1

EPGW
½1 � G

EPGW
ðX�;�Þ;�� � xg

¼ PfX� � G� 1

EPGW
½1 � G

EPGW
ðx;�Þ;��g

¼ 1 � F
X�
G� 1

EPGW
½1 � G

EPGW
ðx;�Þ;��g ¼

C½yG
EPGW
ðx;�Þ�

CðyÞ
:

We recognize the cdf of the EPGWPS family, ending the proof of Proposition 4.1.

A simple link between the EPGWPS family and the EPGW distribution is determined

below.

Proposition 4.2 Let d = min{n 2 N: an> 0}. Then, when θ! 0+, the EPGWPS family
defined with the parameters α, β, λ, μ and θ has for limiting case the EPGW distribution with
parameter α, βd, λ and μ.
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Proof: The limit of the cdf of the EPGWPS family when θ! 0+ is determined as follows:

lim
y!0þ

Fðx;�; yÞ ¼ lim
y!0þ

C½yG
EPGW
ðx;�Þ�

CðyÞ
¼ lim

y!0þ

Xþ1

n¼1

any
n
½G

EPGW
ðx;�Þ�

n

Xþ1

n¼1

any
n

¼ lim
y!0þ

ad½GEPGW
ðx;�Þ�

d
þ
Xþ1

n¼dþ1

any
n� d
½G

EPGW
ðx;�Þ�

n

ad þ
Xþ1

n¼dþ1

any
n� d

¼ ½G
EPGW
ðx;�Þ�

d
¼ ½1 � e1� ð1þlxmÞa �

bd
:

We thus obtain the cdf of the EPGW distribution with parameter α, βd, λ and μ. This ends

the proof of Proposition 4.2.

The following result is about a stochastic order involving the EPGWPS family and EPGW

distribution.

Proposition 4.3 Let R and S be two random variables such that R follows the EPGW distribu-
tion and S has the cdf of the EPGWPS family, both with identical parameters ϕ. Then S is greater
to R in likelihood ratio order, i.e., the ratio function of the corresponding pdfs (the one of S over
the one of R) is increasing.

Proof: Let f(x;ϕ, θ) be the cdf of S and gEPGW (x; ϕ) be the pdf of R. Then, owing to (7), we have

f ðx;�; yÞ

g
EPGW
ðx;�Þ

¼ y
C0½yG

EPGW
ðx;�Þ�

CðyÞ
;

Fig 1. Plots of the (i) pdf of the EPGWG distribution and (ii) hrf of the EPGWG distribution, for various values of the parameters.

https://doi.org/10.1371/journal.pone.0230004.g001
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Fig 2. Plots of the pdf of the EPGWG distribution to better understand the roles of the parameters in its shape properties.

https://doi.org/10.1371/journal.pone.0230004.g002
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which is increasing according to x as composition of increasing functions. This proves Proposi-

tion 4.3.

The following result highlights an important representation of the pdf of the EPGWPS

family.

Proposition 4.4 The pdf of the EPGWPS family can be expressed as an infinite number of lin-
ear combination (mixture) of pdfs of order statistics of the EPGW distribution.

Proof: Upon differentiation according to x of the first expression of F(x;ϕ, θ) in (6), almost

surely, the pdf of the EPGWPS family is given by

f ðx;�; yÞ ¼
Xþ1

n¼1

any
n

CðyÞ
g
X��jN¼n

ðx;�Þ; ð12Þ

where g
X��jN¼n

ðx;�Þ is the pdf of the EPGW distribution with parameters α, βn, λ and μ, i.e.,

g
X��jN¼n

ðx;�Þ ¼ nblmaxm� 1ð1þ lxmÞa� 1e1� ð1þlxmÞa ½1 � e1� ð1þlxmÞa �
nb� 1

:

This proves Proposition 4.4.

Hence, by virtue of Proposition 4.4, we can obtain some mathematical properties of the

EPGWPS family by using those of the EPGW distribution.

4.2 Quantile function

The quantile function of the EPGWPS family is the function Q(y;ϕ, θ), y 2 (0, 1), such that

F(Q(y;ϕ, θ), ϕ, θ) = y. By using (6), after some algebra, we get

Qðy;�; yÞ ¼ G� 1

EPGW

(
C� 1½yCðyÞ�

y
;�

)

; y 2 ð0; 1Þ;

where

G� 1

EPGW
ðy;�Þ ¼

1

l

(

½1 � log ð1 � y1=bÞ�
1=a
� 1

" )#1=m

; y 2 ð0; 1Þ

and C−1(θ) is the inverse function of C(θ).

In particular, for the EPGWG distribution, we have C(θ) = θ(1 − θ)−1 and C−1(θ) = θ(1 + θ)−1,

implying that

Qðy;�; yÞ ¼
1

l
f½1 � log ð1 � ½yð1 � yþ yyÞ� 1

�
1=b
Þ�

1=a
� 1g

� �1=m

; y 2 ð0; 1Þ:

The q-quantiles are defined by xq(ϕ, θ) = Q(q;ϕ, θ), including the median defined by Me(ϕ,

θ) = x0.5(ϕ, θ). Also, the quantile function is of importance to define some measures of skew-

ness and kurtosis, which will be the object of the next section, and to generate values from the

EPGWPS family.

4.3 Skewness and kurtosis based on quantiles

We now present some useful measures of skewness and kurtosis of the EPGWPS family based

on the quantile function. To evaluate the skewness of the EPGWPS family, we can use Galton
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skewness introduced by [24] and defined by

Bð�; yÞ ¼
Qð1=4;�; yÞ þ Qð3=4;�; yÞ � 2Qð1=2;�; yÞ

Qð3=4;�; yÞ � Qð1=4;�; yÞ
:

Then, if B(ϕ, θ)<0, the distribution is left skewed, if B(ϕ, θ)>0, it is right skewed and if B(ϕ,

θ) = 0, it is symmetrical. Also, a well-established kurtosis measure is the Moors kurtosis intro-

duced by [25] and defined by

Mð�; yÞ ¼
Qð7=8;�; yÞ � Qð5=8;�; yÞ þ Qð3=8;�; yÞ � Qð1=8;�; yÞ

Qð6=8;�; yÞ � Qð2=8;�; yÞ
:

A high value of M(ϕ, θ) rather indicates a heavy tail for the distribution and a small value of

M(ϕ, θ) rather indicates a light tail.

Figs 3 and 4 investigate graphically the comportment of these two measures in the context

of the EPGWG distribution, according to the values of the parameters.

We observe various monotonic and non-monotonic shapes, with possible negative and pos-

itive values for the Galton skewness, showing the flexibility of these measures. This completes,

in some sense, the wide panel of skewness and kurtosis already noticed in Figs 1 and 2.

4.4 Moments

The moments plays an important role in any statistical analysis. They allow to measure crucial

features of a distribution (dispersion, skewness, kurtosis. . .). Here, we investigate different

Fig 3. Plots for the (i) Galton skewness and (ii) Moors kurtosis of the EPGWG distribution, for 1 < α, λ< 3, β =

3, μ = 2 and θ = 0.4.

https://doi.org/10.1371/journal.pone.0230004.g003
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kinds of moments of the EPGWPS family, with some related measures. Based on (7), the r-th

raw moment of the EPGWPS family is given by

m0rð�; yÞ ¼

Z þ1

� 1

xrf ðx;�; yÞdx

¼

Z þ1

0

xryblmaxm� 1ð1þ lxmÞa� 1e1� ð1þlxmÞa

½1 � e1� ð1þlxmÞa

�
b� 1
�

C0fy½1 � e1� ð1þlxmÞa
�
b
g

CðyÞ
dx:

This integral is complex; the use of a mathematical software is necessary to obtain a numeri-

cal evaluation of it.

Alternatively, we can provide a series expansion of m0rð�; yÞ by using (13). Indeed, we have

m0rð�; yÞ ¼
Xþ1

n¼1

any
n

CðyÞ
m0

EPGW ;r;nð�Þ; ð13Þ

where m0
EPGW ;r;nð�Þ denotes the r-th raw moment of the EPGW distribution with parameters α,

βn, λ and μ, which is given by [12, Equation (12)], i.e.,

m0
EPGW ;r;nð�Þ ¼

bnl� r=m
Xþ1

i¼0

Xþ1

j¼0

ð� 1Þ
iþjejþ1

ðjþ 1Þ
½r� mði� aÞ�=ðamÞ

bn � 1

j

� �
r=m
i

� �

G
r � mði � aÞ

am
; jþ 1

� �

;

where Gða; xÞ ¼
R þ1
x ta� 1e� tdt denotes the complementary incomplete gamma function.

Fig 4. Plots for the (i) Galton skewness and (ii) Moors kurtosis of the EPGWG distribution, for 1 < β, λ< 3, α =

3, μ = 2 and θ = 0.1.

https://doi.org/10.1371/journal.pone.0230004.g004
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Based on the raw moments, we can express the central moments μr(ϕ, θ) and cumulants

κr(ϕ, θ) of the EPGWPS family as, respectively,

mrð�; yÞ ¼
Xr

m¼0

r
m

� �
ð� 1Þ

m
m0

1
ð�; yÞ

m
m0r� mð�; yÞ

and

krð�; yÞ ¼ m
0
rð�; yÞ �

Xr� 1

m¼1

r � 1

m � 1

� �

kmð�; yÞm
0

r� mð�; yÞ;

where k1ð�; yÞ ¼ m
0
1
ð�; yÞ. The variance is given by σ2(ϕ, θ) = μ2(ϕ, θ). Also, we can defined

some skewness and kurtosis measures based on moments, as the skewness coefficient defined

by SK(ϕ, θ) = μ3(ϕ, θ)/σ3(ϕ, θ) = κ3(ϕ, θ)/κ2(ϕ, θ)3/2 and the kurtosis coefficient defined by KU
(ϕ, θ) = μ4(ϕ, θ)/σ4(ϕ, θ) = κ4(ϕ, θ)/κ2(ϕ, θ)2 + 3, respectively.

As illustration, Table 3 presents some numerical values of the first four moments, variance,

skewness and kurtosis of the EPGW distribution for some values of the parameters. We thus

see the flexibility of these measures according to the values of the parameters. In particular,

negative and positive values for the skewness are observed, as well as small (with one negative)

and high values for the kurtosis.

4.5 Incomplete moments

The incomplete moments find numerous applications in lifetime models. They allow to define

important quantities, such as the mean residual lifetime and mean inactivity time functions, as

well as mean deviations, Bonferroni and Lorenz curves. Here, we provide expressions for the

incomplete moments of the EPGWPS family. Based on (7), the r-th incomplete moment of the

EPGWPS family takes the form

mrðt;�; yÞ ¼
Z t

� 1

xrf ðx;�; yÞdx

¼

Z t

0

xryblmaxm� 1ð1þ lxmÞa� 1e1� ð1þlxmÞa

½1 � e1� ð1þlxmÞa

�
b� 1
�

C0fy½1 � e1� ð1þlxmÞa
�
b
g

CðyÞ
dx:

Table 3. The numerical values of the first four moments, variance, skewness and kurtosis of the EPGW distribution for some values of the parameters.

(α, β, λ, μ, θ) m0
1
ð�; yÞ m0

2
ð�; yÞ m0

3
ð�; yÞ m0

4
ð�; yÞ σ2(ϕ, θ) SK(ϕ, θ) KU(ϕ, θ)

(0.5, 0.5, 0.5, 0.5, 0.5) 70.0015 28790.48 17528965 12505353679 23890.26 3.2954 13.4583

(1.5, 0.5, 0.5, 0.5, 0.5) 2.0382 19.0176 345.2229 9805.441 14.8630 4.2908 32.9325

(1.5, 1.5, 0.5, 0.5, 0.5) 4.5018 50.9162 992.0219 28944.68 30.6496 2.8691 14.5714

(1.5, 1.5, 1.5, 0.5, 0.5) 0.5002 0.6285 1.3607 4.4116 0.3783 2.8691 26.2835

(1.5, 1.5, 1.5, 1.5, 0.5) 0.6784 0.5483 0.5002 0.5012 0.0880 0.3339 259.3242

(2, 1.5, 1.5, 1.5, 0.5) 0.5236 0.3204 0.2181 0.1610 0.0462 0.1844 436.9716

(2, 5, 1.5, 1.5, 0.5) 0.7057 0.5292 0.4182 0.3462 0.0311 0.1371 2214.396

(2, 5, 2, 1.5, 0.5) 0.5825 0.3606 0.2352 0.1607 0.0212 0.1371 2702.193

(2, 5, 2, 2, 0.5) 0.7570 0.5825 0.4551 0.3606 0.0094 -0.2526 29021.35

(2, 5, 2, 2, 0.9) 0.8404 0.7140 0.6125 0.5301 0.0076 -0.6825 61187.26

(2, 10, 0.2, 0.3, 0.9) 764.0262 953257.2 1785251287 4.8988 × 1012 369521.2 2.1916 3.4390

(5, 10, 0.2, 0.3, 0.9) 12.5788 216.9296 4782.063 131187 58.7030 1.2818 -5.2072

https://doi.org/10.1371/journal.pone.0230004.t003
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Due to its complexity, only a mathematical software can give numerical value for this

integral.

Alternatively, as for the r-th raw moment, we can provide a series expansion of m0rðt;�; yÞ
by using (13) as

mrðt;�; yÞ ¼
Xþ1

n¼1

any
n

CðyÞ
m

EPGW ;r;nðt;�Þ;

where mEPGW;r,n(t;ϕ) denotes the r-th incomplete moment of the EPGW distribution with

parameters α, βn, λ and μ, which is given by [12, Section 5], i.e.,

m
EPGW ;r;nðt; �Þ ¼ bnl

� r=m
Xþ1

i¼0

Xþ1

j¼0

ð� 1Þ
iþjejþ1

ðjþ 1Þ
½r� mði� aÞ�=ðamÞ

bn � 1

j

� �
r=m
i

� �

�

G
r � mði � aÞ

am
; jþ 1

� �

� G
r � mði � aÞ

am
; ðjþ 1Þð1þ ltmÞa

� �� �

:

In particular, thanks to m1(t;ϕ, θ), if a random variable X has the cdf of the EPGWPS family,

then we can derive the mean deviations about the mean m0
1
ð�; yÞ and the mean deviations

about the median M(ϕ, θ) are, respectively defined by

d1ð�; yÞ ¼ E½jX � m0
1
ð�; yÞj� ¼ 2m0

1
ð�; yÞFðm0

1
;�; yÞ � 2m1ðm

0

1
ð�; yÞ;�; yÞ

and

d2ð�; yÞ ¼ E½jX � Með�; yÞj� ¼ m
0

1
ð�; yÞ � 2m1ðMð�; yÞ;�; yÞ:

Also, the Lorenz and Bonferroni curves can be expressed via m1(t;ϕ, θ) as, respectively,

Lðp;�; yÞ ¼
m1½xpð�; yÞ;�; y�

m0
1
ð�; yÞ

; Bðp;�; yÞ ¼
m1½xpð�; yÞ;�; y�

pm0
1
ð�; yÞ

; p 2 ð0; 1Þ: ð14Þ

These curves finds applications in many areas, such as economics, reliability, medicine and

insurance. A nice survey in this regard can be found in [26].

Fig 5 displays these curve for the EPGWG distribution. More or less convex curves are

observed.

5 Estimation and inference

In this section, we investigate the maximum likelihood estimates (MLEs) of the parameters of

the EPGWPS family, from complete samples only.
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5.1 Method

Let x1, . . ., xn be a random sample of size n from the EPGWPS family and ψ = (α, β, λ, μ, θ)T.

Then, the total likelihood and log-likelihood functions for ψ are, respectively, given by

LðcÞ ¼ ynbn
l
n
mnan�

Yn

i¼1

xm� 1

i ð1þ lx
m

i Þ
a� 1e

1� ð1þlxmi Þ
a

½1 � e
1� ð1þlxmi Þ

a

�
b� 1 C0fy½1 � e

1� ð1þlxmi Þ
a

�
b
g

CðyÞ

and

‘ðcÞ ¼ n log ðyÞ þ n log ðbÞ þ n log ðlÞ þ n log ðmÞ þ n log ðaÞ þ ðm � 1Þ
Xn

i¼1

log ðxiÞ

þða � 1Þ
Xn

i¼1

log ð1þ lxmi Þ þ n �
Xn

i¼1

ð1þ lxmi Þ
a
þ ðb � 1Þ

Xn

i¼1

log ½1 � e1� ð1þlxmi Þ
a

�

þ
Xn

i¼1

log ½C0fy½1 � e1� ð1þlxmi Þ
a

�
b
g� � n log ½CðyÞ�:

The MLE of ψ, say ĉ, is obtained by solving the nonlinear system Un(ψ) = 0, where

UnðcÞ ¼
@‘ðcÞ

@a
;
@‘ðcÞ

@b
;
@‘ðcÞ

@l
;
@‘ðcÞ

@m
;
@‘ðcÞ

@y

� �T
. Let us now express the components of Un(ψ). For the

sake of conciseness, let us set, for i = 1, 2, . . ., n,

Oi ¼
C00fy½1 � e

1� ð1þlxmi Þ
a

�
b
g

C0fy½1 � e1� ð1þlxmi Þ
a

�
b
g
:

Fig 5. Plots of the (i) Lorenz curve of the EPGWG distribution and (ii) Bonferroni curve of the EPGWG distribution, for various values of the parameters.

https://doi.org/10.1371/journal.pone.0230004.g005
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Then, we have

@‘ðcÞ

@a
¼

n
a
þ
Xn

i¼1

log 1þ lxmi
� �

�
Xn

i¼1

ð1þ lxmi Þ
a log 1þ lxmi

� �

þðb � 1Þ
Xn

i¼1

ð1þ lxmi Þ
a log ð1þ lxmi Þe1� ð1þlxmi Þ

a

1 � e
1� ð1þlxmi Þ

a

þyb
Xn

i¼1

Oi½1 � e1� ð1þlxmi Þ
a

�
b� 1
ð1þ lxmi Þ

a log ð1þ lxmi Þe
1� ð1þlxmi Þ

a

;

@‘ðcÞ

@b
¼

n
b
þ
Xn

i¼1

log 1 � e
1� ð1þlxmi Þ

a
� �

þ y
Xn

i¼1

Oi½1 � e1� ð1þlxmi Þ
a

�
b
�

log ½1 � e1� ð1þlxmi Þ
a

�;

@‘ðcÞ

@l
¼

n
l
þ ða � 1Þ

Xn

i¼1

xmi
1þ lxmi

� a
Xn

i¼1

xmi ð1þ lx
m

i Þ
a� 1

þaðb � 1Þ
Xn

i¼1

xmi ð1þ lx
m
i Þ
a� 1e

1� ð1þlxmi Þ
a

1 � e1� ð1þlxmi Þ
a

þyba
Xn

i¼1

Oi½1 � e1� ð1þlxmi Þ
a

�
b� 1e1� ð1þlxmi Þ

a

xmi ð1þ lx
m

i Þ
a� 1
;

@‘ðcÞ

@m
¼

n
m
þ
Xn

i¼1

log ðxiÞ þ ða � 1Þl
Xn

i¼1

xmi log ðxiÞ
1þ lxmi

� al
Xn

i¼1

xmi log ðxiÞð1þ lx
m

i Þ
a� 1

þaðb � 1Þl
Xn
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:

Since ĉ has not a closed form, a mathematical software can be used for a numerical evalua-

tion. For interval estimation and hypothesis tests on ψ, the corresponding observed information

matrix is required. Here, the observed information matrix is given by I(ψ) = {−Irs}(r, s)2{1, . . .,5}2,

where, by denoting ψr the r-th component of ψ,

Irs ¼
@

2
‘ðcÞ

@cr@cs
:

Applying the well-established theory on the MLEs, the asymptotic multivariate normal dis-

tribution N 5ðc; IðĉÞ
� 1
Þ can be used to construct approximate confidence intervals for the

parameters, among others. In particular, by denoting ĉr the r-th component of ĉ, an
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asymptotic confidence interval for ψr at the level 100(1 − γ)% is given by

ACIr ¼ ðĉr � z1� g=2

ffiffiffiffiffi

Îrr
q

; ĉr þ z1� g=2

ffiffiffiffiffi

Îrr
q

Þ;

where Îrr is the r-th diagonal element of IðĉÞ� 1
and z1−γ/2 is the (1 − γ/2)-quantile of the stan-

dard normal distribution N ð0; 1Þ.

5.2 Simulation study

Here, in the context of the EPGWG model, we perform a Monte-Carlo simulation study to

check the accuracy of the MLE ĉ; it is expected to be as close as possible to ψ, specially when

the size of the sample is consequent, which is guaranteed by the well-know convergent proper-

ties of the related estimator. Thus, for several values of n, we generate N = 1000 random sam-

ples of size n from the EPGWG distribution via the use of the corresponding quantile

function, under the following sets of parameters, with order (α, β, λ, μ, θ):

Set1: (1.5, 1.5, 1.5, 1.5, 0.5), Set2: (1.5, 1.5, 1.5, 1.5, 0.2), Set3: (2, 1.5, 1.5, 1.5, 0.5),

Set4: (2, 2, 1.5, 1.5, 0.5), Set5: (2, 2, 2, 1.5, 0.5), Set6: (2, 2, 2, 0.5, 0.5).

Then, the MLEs are determined for each sample. For each n, from the N obtained MLEs,

we determine the mean square error (MSE) for ĉ. The numerical results are collected in Tables

4 and 5.

From these tables, for all the considered sets of parameters, we see that the MSEs decrease

as the sample sizes increases, as expected; this is consistent with the theoretical properties of

convergence of the MLEs.

6 Applications

In this section, the EPGWG distribution is used as model to analyze two practical data sets

given below.

D1 The first data set is obtained from [27]. The data are as follows: 3.70, 2.74, 2.73, 2.50, 3.60,

3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.40, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 3.75, 2.43,

2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56,

3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92.

D2 The second data set is reported by [28]. It concerns the strengths of 1.5 cm glass fibers,

measured at National physical laboratory, England. The data are as follows: 0.55, 0.93, 1.25,

1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59,

1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76,

1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30,

1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89.

Statistical descriptions of these two data sets are given in Table 6.

In particular, we see that the data sets have different skewness features; right skewed for D1

and left skewed for D2.

Then, we compare the fits of the EPGWG model with other competitors also based on the

Weibull distribution, namely the odd gamma Weibull-geometric (OGWG) model by [29],

beta-Weibull (BW) model by [4], gamma-Weibull (GW) model [29] and the standard Weibull

distribution.

The MLEs are computed via the R software, by using the algorithm L-BFGS-B. The minus

log-likelihood function is evaluated. Also, well-established goodness-of-fit measures are
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considered: Akaike Information Criterion (AIC), Cramer-von Mises (W�) and Anderson-Dar-

ling (A�). The golden rule is: the lower the values of these criteria, the better the fit. The value

for the Kolmogorov-Smirnov (KS) statistic and its p-value are also provided. The efficiency of

the maximum likelihood method along with the above criteria is well-established in a data

analysis setting. In this regard, we may refer to the works of [30], [31] and [32], and the refer-

ences therein.

Tables 7 and 8 present the MLEs, as well as their standard errors, for D1 and D2, respec-

tively. The values of the considered criteria for the considered models are given in Tables 9

and 10 for D1 and D2, respectively. From these values, it is clear that the EPGWG model is the

best: it possesses the lowest AIC, W�, A� and the greatest p-value (K-S) as well. Figs 6 and 7

show the fits of the estimated pdfs over the histograms and estimated cdfs over the empirical

cdfs for D1 and D2, respectively. Nice fits for the EPGWG model can be observed.

7 Concluding remarks and perspectives

Based on the exponentiated power generalized Weibull (EPGW) and power series distribu-

tions, we introduce a new family of lifetime distributions called the exponentiated power gen-

eralized Weibull power series (EPGWPS) family. It has the features to extend several widely

used distributions in the literature and to introduce a myriad of new ones, such as the expo-

nentiated power generalized Weibull geometric (EPGWG) distribution. The desirable

Table 4. The MLEs and MSEs of the EPGWG model for Set1, Set2 and Set3.

n Set1: (1.5, 1.5, 1.5, 1.5, 0.5) Set2: (1.5, 1.5, 1.5, 1.5, 0.2) Set3: (2, 1.5, 1.5, 1.5, 0.5)

MLE MSE MLE MSE MLE MSE

100 1.5075 0.0235 1.5143 0.0231 2.0391 0.0353

1.5458 0.0328 1.5257 0.0368 1.5179 0.0377

1.5428 0.0488 1.5259 0.0357 1.5654 0.0526

1.6677 0.2562 1.6306 0.2565 1.6438 0.3659

0.5101 0.0122 0.2101 0.0029 0.5355 0.0153

200 1.5094 0.0113 1.5083 0.0128 2.0136 0.0231

1.5093 0.0166 1.5119 0.0162 1.5275 0.0273

1.5130 0.0173 1.5210 0.0266 1.5226 0.0232

1.5506 0.0949 1.5588 0.0993 1.6139 0.1870

0.5129 0.0072 0.2047 0.0011 0.5104 0.0081

300 1.5054 0.0100 1.4971 0.0082 2.0038 0.0124

1.5021 0.0122 1.5114 0.0122 1.4905 0.0134

1.4995 0.0140 1.4988 0.0152 1.4826 0.0185

1.5224 0.0639 1.5418 0.0610 1.4992 0.0847

0.5098 0.0050 0.2015 0.0007 0.5098 0.0042

500 1.5060 0.0059 1.5061 0.0036 1.9962 0.0062

1.5096 0.0090 1.5032 0.0057 1.5101 0.0087

1.5096 0.0070 1.5100 0.0079 1.4964 0.0069

1.5367 0.0501 1.5185 0.0298 1.5343 0.0470

0.5045 0.0027 0.2021 0.0003 0.4997 0.0022

1000 1.5079 0.0024 1.5049 0.0025 1.9987 0.0037

1.4917 0.0038 1.5016 0.0037 1.5039 0.0037

1.5044 0.0039 1.5066 0.0036 1.4999 0.0042

1.4905 0.0174 1.5101 0.0177 1.5143 0.0192

0.5087 0.0014 0.2016 0.0002 0.5007 0.0012

https://doi.org/10.1371/journal.pone.0230004.t004
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properties of the family are revealed in this study. In particular, the EPGWG shows a wide

panel of monotonic and non-monotonic shapes for the corresponding pdf and hrf, which out-

performs the former EPGW distribution in terms of flexibility. We provide some expressions

for the quantile function, raw moments, incomplete moments, skewness and kurtosis. By

using two practical data sets and standard goodness-of-fit statistics, we show that the EPGWG

model is more adequate in fitting these data than some other models based on the Weibull dis-

tribution. As perspective of the EPGWPS family, we believe that the also introduced exponen-

tiated power generalized Weibull Poisson (EPGWPo), exponentiated power generalized

Weibull binomial (EPGWB) and exponentiated power generalized Weibull logarithmic

(EPGWL) distributions can have suitable issue in various statistical analyzes (data fitting,

regression, life testing. . .). Also, from the perspective of practical applications, the complexity

Table 5. The MLEs and MSEs of the EPGWG model for Set4, Set5 and Set6.

n Set4: (2, 2, 1.5, 1.5, 0.5) Set5: (2, 2, 2, 1.5, 0.5) Set6: (2, 2, 2, 0.5, 0.5)

MLE MSE MLE MSE MLE MSE

100 2.0165 0.0438 2.0097 0.0433 2.0121 0.0392

2.0257 0.0773 2.0177 0.0669 2.0709 0.0925

1.5072 0.0442 2.0092 0.0801 2.0531 0.0852

1.6103 0.2858 1.7146 0.7465 0.5082 1.5117

0.5387 0.0313 0.6632 1.4415 0.5310 0.0124

200 1.9855 0.0202 2.0140 0.0230 2.0056 0.0221

2.0343 0.0315 2.0180 0.0410 2.0313 0.0385

1.4900 0.0226 2.0236 0.0368 2.0204 0.0329

1.5733 0.0843 1.6361 0.3257 0.5525 0.0374

0.5012 0.0083 0.5407 0.0334 0.5105 0.0032

300 1.9791 0.0103 1.9900 0.0104 2.0115 0.0168

2.0361 0.0220 2.0227 0.0267 1.9943 0.0288

1.4897 0.0111 1.9909 0.0225 2.0038 0.0262

1.5742 0.0663 1.6055 0.1819 0.5163 0.0232

0.4935 0.0043 0.5059 0.0085 0.4979 0.0022

500 1.9965 0.0073 2.0246 0.0072 1.9957 0.0059

2.0100 0.0166 1.9974 0.0127 2.0201 0.0135

1.4963 0.0076 2.0364 0.0132 2.0039 0.0112

1.5289 0.0484 1.5247 0.0608 0.5232 0.0083

0.5029 0.0030 0.5211 0.0071 0.5055 0.0015

1000 2.0024 0.0044 2.0016 0.0039 2.0011 0.0049

2.0054 0.0061 1.9953 0.0081 2.0050 0.0090

1.5043 0.0040 1.9956 0.0067 2.0000 0.0088

1.5136 0.0146 1.5040 0.0365 0.5089 0.0051

0.5027 0.0018 0.5090 0.0032 0.5007 0.0009

https://doi.org/10.1371/journal.pone.0230004.t005

Table 6. Descriptive statistics for D1 and D2.

n mean median standard deviation skewness kurtosis

D1 50 2.95 2.94 0.64 0.40 1.02

D2 63 1.51 1.59 0.32 -0.88 0.80

https://doi.org/10.1371/journal.pone.0230004.t006
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of the EPGWG model could also be studied via Bayesian methods. In particular, one can con-

sider the deviance information criterion available in Bayesian inference, which is deemed as a

generalization of the AIC, providing a combined measure of model fit and complexity. In this

regard, we refer to the works of [33], [34], [35] and [36]. This aspect needs further investiga-

tion that we leave for a future work.

Table 7. MLEs and their standard errors (bottom) for D1.

Model α β λ μ θ
EPGWG 0.5413

(0.6974)

21.7307

(0.5872)

4.9224

(1.8777)

2.0174

(2.7770)

0.9748

(0.0537)

OGWG 0.7288

(1.1739)

10.3885

(8.6513)

0.6478

(2.4026)

0.6004

(3.1955)

BW 4.1328

(4.4343)

1.1059

(2.2364)

2.5999

(1.6052)

0.4248

(0.1426)

GW 0.4043

(0.1880)

15.1849

(9.1757)

4.2117

(7.0929)

W 4.7824

(0.4801)

0.3121

(0.0097)

https://doi.org/10.1371/journal.pone.0230004.t007

Table 8. MLEs and their standard errors (bottom) for D2.

Distribution α β λ μ θ
EPGWG 1.0816

(1.8981)

0.7213

(0.2897)

0.5339

(0.5678)

3.3051

(1.7041)

0.9464

(0.0772)

OGWG 2.2505

(1.6675)

2.1982

(1.4436)

0.1236

(1.0890)

0.6436

(0.3192)

BW 0.6335

(0.1348)

0.1997

(0.0323)

6.8846

(0.3042)

0.7530

(0.0027)

GW 2.1990

(0.8245)

2.1596

(1.0020)

0.6639

(0.1099)

W 5.7807

(0.5760)

0.6142

(0.0139)

https://doi.org/10.1371/journal.pone.0230004.t008

Table 9. Values of the considered criteria for D1.

Model � ‘̂ AIC W� A� KS p-value (KS)

EPGWG 46.4481 102.8963 0.0358 0.2668 0.0728 0.9536

OGWG 48.0628 104.1257 0.0770 0.5364 0.1071 0.6147

BW 47.6358 103.2717 0.0702 0.4859 0.0955 0.7517

GW 48.8049 103.6098 0.0726 0.5052 0.1002 0.6960

W 50.0858 104.1717 0.1194 0.8114 0.1298 0.3681

https://doi.org/10.1371/journal.pone.0230004.t009

Table 10. Values of the considered criteria for D2.

Distribution � ‘̂ AIC W� A� KS p-value (KS)

EPGWG 11.9175 33.8351 0.0885 0.5083 0.0976 0.5847

OGWG 14.8815 37.7662 0.2096 1.1634 0.1469 0.1316

BW 13.8646 35.7292 0.1693 0.9508 0.1404 0.1664

GW 14.8080 35.6160 0.2051 1.1397 0.1460 0.1359

W 14.8815 37.7662 0.2096 1.1634 0.1469 0.1316

https://doi.org/10.1371/journal.pone.0230004.t010
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Fig 6. Plots of the (i) estimated pdfs over the histogram and (ii) estimated cdf over the empirical cdf for D1.

https://doi.org/10.1371/journal.pone.0230004.g006

Fig 7. Plots of the (i) estimated pdfs over the histogram and (ii) estimated cdf over the empirical cdf for D2.

https://doi.org/10.1371/journal.pone.0230004.g007
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